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Abstract—Ultrafast plane-wave ultrasound imaging offers very
high frame rates but entails large volumes of backscattered data
collected by sensor array over multiple plane-wave emissions
at different angles. We propose a simple method for reducing
the total amount of sampled data (subject to subsequent beam-
forming and coherent compounding). First, we acquire the zero-
angle data in full, and then perform deterministic subsampling
of the remaining nonzero-angle data. Our subsampling patterns
are angle-specific and derived based on the zero-angle data.

Index Terms—Plane-wave ultrasound imaging, coherent com-
pounding, reduced data acquisition

I. INTRODUCTION

Ultrafast plane-wave (PW) ultrasound imaging [1] typically
involves acquiring a 3D raw dataset RF(t, x, θ) by a transducer
array, where θ denotes the steering angle of an emitted PW
pulse (giving rise to the backscattered signals to be sampled), x
refers to the individual sensor positions within the array, and
t represents the sampling time instance. After beamforming
and coherent compounding, we get a 2D compounded image
dataset D(z, x), where z = ct/2 is the imaging depth, and c
is the speed of sound in the insonified medium.

Our objective is to reduce the amount of sensor array data
recorded in RF(t, x, θ), whose subsequent processing would
still produce acceptable-quality D(z, x). One way to achieve
this goal is to use powerful techniques from the compressed
sensing theory [2]. Briefly, to obtain an unknown data vector
u, we first acquire a smaller-sized vector of its measurements
v = Au = AΦw, where (typically) A is a sub-Gaussian
random matrix, and Φ is some fitting orthonormal basis, such
that u = Φw with w being sparse. We can then recover u
by solving a suitable constrained optimization problem, e.g.,
argmin ‖w‖1 subject to ‖AΦw−v‖2 ≤ ε for some ε > 0. In
this work, however, we explore a different approach that does
not involve using A, Φ, or iterative optimization. Instead, we
first acquire zero-angle RF(t, x, θ = 0) in full, from which we
derive deterministic subsampling patterns for the remaining
nonzero-angle raw data. Next, we subsample RF(t, x, θ 6= 0)
accordingly, then beamform the acquired samples, and finally,
compound the resulting beamformed data to produce D(z, x).

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

Among various methods for computing D(z, x), we focus
on Fourier-domain image reconstruction [3]–[7]. Specifically,
we shall make use of the zero-offset depth migration technique
from our previous work [7], which is briefly outlined below.
In the sequel, the f -axis, kx-axis, and kz-axis data refer to the
outputs of the Fourier transform applied to the t-axis, x-axis,
and z-axis data, respectively.

For each angle θ, we first transform the corresponding 2D
raw data Pθ(t, x) into its spectrum Fθ(f, kx).

1 Next, we remap
the f -axis data into the kz-axis data via linear interpolation,
which yields the migrated spectrum Kθ(kz, kx). Then, we
transform the latter into its (kz, x)-domain representation
(via the inverse Fourier transform along the kx-axis), and
multiply the result element-wise by exp(jπkzx tan(θ)), thus
producing the phase-shifted spectrum Sθ(kz, x). Finally, we
compound all of such θ-specific spectra Sθ(kz, x) by adding
them together (i.e., summing over a given set of θ values), and
then apply the inverse Fourier transform along the kz-axis to
obtain D(z, x). The spectral remapping step mentioned above
is performed using the following formulas [7]:

Kθ(kz, kx) = A(kz, kx, θ) · Fθ (fmig(kz, kx, θ), kx) , (1)

fmig(kz, kx, θ) =
ckz

1 + cos(θ)

[
1 + (kx/kz)

2
]
, (2)

A(kz, kx, θ) =
c

1 + cos(θ)

[
1− (kx/kz)

2
]
. (3)

In the sequel, we shall focus on H(z, x), the complex-valued
Hilbert transform of D(z, x) (along the z-axis), which will be
our desired output instead of D(z, x).

II. PROPOSED METHOD

Let Nt, Nx, and Na denote the number of sampling time
instances, the number of sensors (channels), and the number
of PW emission angles, respectively. The full acquisition of
RF(t, x, θ) would entail collecting as many as Nt ×Nx ×Na
samples. We want to reduce the total number of acquired raw
data samples, while still aiming to produce acceptable-quality
compounded images.

1Note that Pθ(t, x) is simply a 2D “slice” of RF(t, x, θ) for a particular
value of θ.
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We begin the acquisition process by fully sampling the zero-
angle 2D raw RF data P0(t, x), i.e., our initial cost is Nt×Nx
samples. Then, for each θ 6= 0, we are to acquire some fraction
p < 1 of the corresponding 2D raw RF data Pθ(t, x). The total
cost will become equal to Nt×Nx+p×(Nt×Nx)×(Na−1)
samples, which implies the savings of 1+p×(Na−1)

Na
× 100%.

Let P∗θ(t, x) denote a subsampled representation of Pθ(t, x),
and let Mθ(t, x) be a binary sampling matrix for Pθ(t, x). If we
have Mθ(tl, xm) = 1 for some specific location (tl, xm) within
our sampling grid, then P∗θ(tm, xl) = Pθ(tm, xl); otherwise,
P∗θ(tm, xl) = 0. We express such subsampling compactly as
P∗θ(t, x) = Mθ(t, x)�Pθ(t, x), where � denotes the element-
wise multiplication. The total number of ones in Mθ(t, x) must
be equal to Np = p× (Nt ×Nx).

Given multiple θ-specific P∗θ(t, x) as inputs, we apply our
Fourier-domain reconstruction sequence from [7] to all of them
individually, which is then followed by compounding (over all
nonzero θ values) and the Hilbert transform computations:

P∗θ(t, x)→ F∗θ(f, kx)→ K∗θ(kz, kx)→ S∗θ(kz, x),∑
θ 6=0

S∗θ(kz, x)→ H∗(z, x).

The zero-angle data P0(t, x), acquired in full, yields

P0(t, x)→ F0(f, kx)→ K0(kz, kx)→ S0(kz, x)→ H0(z, x).

Finally, our target output H(z, x) is estimated as follows:

Ĥ(z, x) = H∗(z, x) + H0(z, x) + H̃(z, x), (4)

where H̃(z, x) serves as an auxiliary “data filler” to mitigate
the negative impact of subsampling. In the worst case, H̃(z, x)
is simply all zeros. In the best case, it provides an adequate
approximation of unknown H

∗
(z, x) that represents what we

would have obtained from the missing data:

P
∗
θ(t, x)→ F

∗
θ(f, kx)→ K

∗
θ(kz, kx)→ S

∗
θ(kz, x),∑

θ 6=0

S
∗
θ(kz, x)→ H

∗
(z, x),

where each “hypothetical” P
∗
θ(t, x) contains the data samples

from Pθ(t, x) that are not in P∗θ(t, x). Equivalently, P
∗
θ(t, x) =

Mθ(t, x)�Pθ(t, x), where Mθ(t, x) is the complemented ver-
sion of binary Mθ(t, x). Since P

∗
θ(t, x) = Pθ(t, x)− P∗θ(t, x),

we get H(z, x)− Ĥ(z, x) = H
∗
(z, x)− H̃(z, x), which stresses

the importance of H̃(z, x) being close to unknown H
∗
(z, x).

The main idea of this work pertains to the derivation of the
θ-specific sampling pattern matrices Mθ(t, x) from the zero-
angle information stored in P0(t, x). The first step is to identify
which Np data samples in P0(t, x) are deemed most useful:
for example, we may select those having the largest absolute
values. Next, we record their corresponding locations as ones
in our initial zero-angle matrix M0(t, x), and then generate its
(kz, x)-domain representation denoted by SM0 (kz, x):

M0(t, x)→ FM
0 (f, kx)→ KM

0 (kz, kx)→ SM0 (kz, x). (5)

For any given θ 6= 0, the binary sampling matrix Mθ(t, x)
can now be obtained from SM0 (kz, x) as follows. We multiply
SM0 (kz, x) element-wise by exp(−jπkzx tan(θ)), transform it
into its (kz, kx)-domain version, and perform demigration (i.e.,
we remap from fmig back to f ), thus producing a particular θ-
specific (f, kx) spectrum. Then, we apply the inverse Fourier
transform to the said spectrum, which yields the desired (t, x)-
domain matrix M̃θ(t, x) ≈ Mθ(t, x). To get our final Mθ(t, x),
we simply binarize M̃θ(t, x) via thresholding: for example, the
first Np largest-magnitude elements of M̃θ(t, x) become 1,
while the rest are set to 0. Essentially, SM0 (kz, x) goes through
the reconstruction sequence (5) in reverse, except that θ 6= 0 is
now incorporated into the corresponding remapping equations.

III. EVALUATION RESULTS

To evaluate our proposed subsampling method, we have
used two experimental datasets from PICMUS-2017 [8], cor-
responding to Na = 5 PW emissions (5.208-MHz frequency,
67% bandwidth, 2.5-cycle excitation) at −16◦, −8◦, 0◦, +8◦,
and +16◦. These datasets, referred to as TYPE-1 and TYPE-2,
were recorded by a 128-element 38.4-mm linear probe, whose
sampling frequency was set to 20.832 MHz [8]. For each θ,
the Nt-by-Nx size of raw RF data frames was 1536 × 128.
After reconstruction, we generated the B-mode images by
log-compressing their respective normalized envelope sections
covering the z-axis range [5, 50] mm, as shown in Fig. 1.
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Fig. 1. Reference TYPE-1 (left) and TYPE-2 (right) compounded images.

Fig. 2 illustrates the effect of subsampling applied to the
16◦-angle TYPE-2 raw RF data frame. The top part of Fig. 2
shows the grayscale image of the absolute values of Pθ(t, x)
elements (100% RF data), while the bottom part shows the cor-
responding image of P∗θ(t, x) for p = 0.03 (3% RF data). Note
that we were able to capture many large-magnitude samples,
whose locations were specified in advance by Mθ(t, x) derived
from SM0 (kz, x) for θ = +16◦. Recall that SM0 (kz, x) itself is
generated from M0(t, x). In this work, we obtain M0(t, x)
from the initial zero-angle RF data P0(t, x) acquired in full:
we simply identify the locations of the first Np=0.03 largest-
magnitude samples in P0(t, x), and then set the corresponding
elements in M0(t, x) to 1 (with the others made equal to 0).

Table I provides the quantitative quality indicators for the
TYPE-1 and TYPE-2 images under consideration. These met-
rics have been computed using the original PICMUS-provided
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Fig. 2. Subsampling illustration: TYPE-2 RF data, θ = +16◦, p = 0.03.

evaluation routines [8]. The TYPE-1 images are assessed based
on the contrast-to-noise ratios (CNR, dB) for the top/bottom
cyst phantoms (two anechoic cylinder targets), as well as the
axial/lateral full widths at half-maximum (FWHM, mm) for
the bottom-right point phantom (a wire target). The TYPE-2
images are assessed based on the average axial/lateral FWHM,
computed over all seven point phantoms.

In this work, we report the following cases of subsampling
Na − 1 = 4 nonzero-angle raw RF data frames:
A) p = 0.01, resulting in 79.2% overall savings;
B) p = 0.03, resulting in 77.6% overall savings;
C) p = 0.09, resulting in 72.8% overall savings.

Note that our initial (full) acquisition of the zero-angle data
incurs the immediate cost of Nt×Nx samples, which amounts
to 20% with respect to their total number (Nt × Nx) × Na.
In all cases, we let

H̃(z, x) =
‖H∗(z, x) + H0(z, x)‖2

‖H0(z, x)‖2
· H∗0(z, x), (6)

where H
∗
0(z, x) denotes the reconstruction result for the input

P
∗
0(t, x) = M0(t, x) � P0(t, x) that simulates the “missing”

portion of the initial zero-angle raw RF data frame (i.e., as if
it underwent M0(t, x)-based subsampling). The multiplication
factor in (6) accounts for the energy content difference arising
due to compounding.

TABLE I
ACQUISITION COST AND RESULTING IMAGE QUALITY INDICATORS.

Acq. TYPE-1 TYPE-2
Case Cost Top/Bottom Axial/Lateral Axial/Lateral

(%) CNR (dB) FWHM (mm) FWHM (mm)

5PW 100 8.0/9.5 0.49/0.48 0.47/0.44

1PW 20.0 8.6/6.0 0.48/0.85 0.48/0.80
A 20.8 8.4/6.0 0.46/0.79 0.46/0.68
B 22.4 6.1/6.0 0.46/0.64 0.47/0.60
C 27.2 3.5/6.2 0.47/0.60 0.46/0.55

Fig. 3 shows the images available after the initial acqui-
sition of the zero-angle RF data frame. Acquiring additional
four nonzero-angle RF data frames in full would yield the
compounded images seen in Fig. 1. Comparing the 1-PW and
5-PW entries in Table I, it is reasonable to anticipate that
compounding zero-angle full-input reconstruction data with
nonzero-angle partial-input reconstruction data would produce
the top and bottom CNR values within [8.0, 8.6] and [6.0, 9.5]
dB, respectively; we would also expect the lateral FWHM
values to decrease from 0.80-0.85 towards 0.44-0.48 mm.

Table I and Fig. 4, 5, and 6 confirm the expected FWHM
improvement (down to 0.55-0.60 mm), but the overall contrast
performance is actually much worse than anticipated.2 This
discrepancy can be attributed to the fact that our current ap-
proach favors large-magnitude samples, thus aiming to capture
signals from strong reflectors, such as wire targets. Formation
of the image portions containing weak reflectors and anechoic
targets is done mostly by H0(z, x) and H̃(z, x). Our current
choice of H̃(z, x) appears to be inadequate for the TYPE-2
images (in terms of the CNR values obtained), meaning that
further investigations into enhanced H̃(z, x) are needed.
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Fig. 3. Initial zero-angle images: single PW emission at θ = 0.
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Fig. 4. Compounded images: nonzero-angle RF data subsampling, p = 0.01 (case A).
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Fig. 5. Compounded images: nonzero-angle RF data subsampling, p = 0.03 (case B).
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Fig. 6. Compounded images: nonzero-angle RF data subsampling, p = 0.09 (case C).
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