Theoretical Study of Thermally Stable Large-Coupling SH₀ Plate Wave Resonators

J. Zou*, V. Yantchev, S. Samadian, and P. J. Turner Resonant Inc., Santa Barbara, CA, USA *E-mail: jzou@resonant.com

Abstract—The thermal stabilization techniques for the fundamental (SH₀) Plate acoustic wave (PAW) resonators based on LiNbO₃ are theoretically investigated in this paper. The SH₀ mode offers an ultra-large coupling coefficient (k^2) at a certain crystal cut angle and normalized plate thickness, but its poor temperature coefficient of frequency (TCF) hinders its application in RF systems and needs further improvement urgently. By adding SiO₂ with positive TCF to the LiNbO₃ plate, a robust temperature compensation approach can be achieved for the SH₀ resonators on LiNbO₃/SiO₂ bilayer and SiO₂/LiNbO₃/SiO₂ sandwiched structures. The propagation characteristics of the SH₀ wave propagating in the layered medium are carefully investigated. Despite the trade-off between TCF and k^2 , the SiO₂/LiNbO₃/SiO₂ structure provides large k^2 and near-zero TCF for wider thickness combinations. Furthermore, the periodic structure dispersion of the simplest zero-TCF stack is provided and the critical threshold IDT thickness is given.

Keywords—Lithium niobate, piezoelectricity, resonators, temperature coefficient of frequency (TCF), thermal stability.

I. INTRODUCTION

In response to the drastically increasing demands for ubiquitous wireless connectivity, faster data delivery in wireless mobile, Internet-of-Things (IoT), autonomous vehicles, and artificial intelligence, new services currently go into operation requiring progressively wider frequency bands. The coupling coefficient (k^2) of the commercially popular surface acoustic wave (SAW) or bulk acoustic wave (BAW) technology is between 6%-13%, limiting the filter bandwidth (*BW*) to up to 6%. Both the current bands wider than 6% with tight specifications and the ultra-wide band (> 15%) required by the next-generation re-configurable filters and cognitive radios point the urgent need of micro-acoustic resonators with ultra-large k^2 [1]-[3].

A LiNbO₃ plate based SH₀ Plate Acoustic Wave (PAW) resonator characterizes the largest k^2 among all acoustic wave devices, up to 50% in certain cut angles and LiNbO₃ thickness [1]. As a result, the SH₀ PAW technology can be an excellent solution to the ultra-wide bands, as well as recently proposed XBARs [4]. However, LiNbO₃ features a material property of drastically softening when temperature rises, leading to very poor temperature coefficient of frequency (*TCF*) of ~ -70 ppm/°C. This poor *TCF* would be unacceptable for any application in current or future RF systems. So an improvement of the thermal stability of LiNbO₃-based SH₀

V. Plessky GVR Trade SA and Resonant Inc., Gorgier, Switzerland

resonators is highly desirable for enabling low-temperaturedrift and ultra-wide-band filters [5].

The thermal stability can be achieved by adding SiO₂, which has a positive *TCF* of ~ +80 ppm/°C to the LiNbO₃ plate, forming a robust passive compensation. The SH₀ wave propagation characteristics are carefully investigated after introducing the non-piezoelectric SiO₂ herein and optimized stack proposed for achieving the thermal insensitivity and large k^2 simultaneously. Moreover, the periodic structure dispersion of the simplest zero-*TCF* stack is provided.

Fig. 1. Calculated (a) phase velocity and (b) first-order *TCV* versus rotation angle of the first six Plate modes in the rotated *YX* LiNbO₃ membrane $(h_{LiNbO3}/\lambda=0.1)$ when the mechanical loading of IDT is ignored $(h_{IDT}=0)$.

Fig. 2. Calculated (a) $f - \beta$ dispersion curve and (b) dispersive k^2 of the first six Plate modes in the 30° YX LiNbO₃ membrane ($h_{IDT} = 0$).

II. SH₀ PLATE WAVE PROPAGATING IN LINBO₃ MEMBRANE

A. Cut Angle

Fig. 1 (a) and (b) show the k^2 and temperature coefficient of velocity (*TCV*) across all rotation angle from the *YX* LiNbO₃ for the first six Plate modes with $h_{LiNbO3}/\lambda = 0.1$ (λ is twice the IDT pitch). The k^2 varies largely due to the prominent anisotropy of the piezoelectric matrix, so the optimal cut angle can be chosen so as to optimize the k^2 . The peak k^2 of 55% happens at rotation angle of ~30° with Euler angle (0°,120°,0°). It is also interesting to note that at this rotation angle of around 30°, the k^2 's of most other Plate modes are minimized, especially the A₁ Lamb mode that is outstanding around Z-cut.

The *TCV* can be derived from the temperature coefficients of elasticities (*TCE*'s) and temperature dependence of density of LiNbO₃ [7]. By adding the effect of *TCV* together with the thermal expansion coefficient (α), *TCF* can be estimated as:

$$TCF_{1st} = \frac{1}{f} \frac{\partial f}{T} = \frac{1}{v} \frac{\partial v}{T} - \alpha_x = TCV_{1st} - \alpha_x$$
(1)

The α_x of LiNbO₃ is around 15.4 ppm/°C so that the LiNbO₃ plate based resonators show very poor intrinsic *TCF* of

-60—100 ppm/°C. Luckily at the rotation angle of ~ 30° the *TCV* of the SH₀ mode is minimized across the entire cut angle.

B. Dispersion

The dispersion characteristics of the first six Plate waves propagating in the 30° YX LiNbO₃ with $h_{LiNbO3}/\lambda = 0.1$ are shown in Fig. 2 (a). The normalized wave number of the x axis corresponds to normalized LiNbO₃ plate thickness:

$$\frac{\beta \cdot h_{LiNbO3}}{2\pi} = \frac{h_{LiNbO3}}{\lambda} \cdot$$
(2)

Evidently, the SH_0 mode shows weakest dispersion and features the advantage of pitch-controlled frequency even when the LiNbO₃ plate thickness approaches zero. In addition, the low dispersion of the fundamental modes also allows the agile design of the acoustic-coupled filters [6].

Fig. 2 (b) depicts the dispersive k^2 of the first six Plate waves for the single-IDT transducer configuration in the 30° *YX* LiNbO₃. At this cut angle of (0°,120°,0°), the SH₀ mode features very large k^2 while the other modes are suppressed. Especially when LiNbO₃ is thin (< 0.2 λ), the k^2 is higher than 40% and clean wide-band spectrum is expected.

III. SH₀ WAVE CHARACTERISTICS IN LINBO₃/SIO₂ and SIO₂/LINBO₃/SIO₂

A. Phase Velocity Degradation

The piezoelectric-dead SiO₂ layer loads the LiNbO₃ thin film and significantly reduces the phase velocity (v_p) of the SH₀ mode in the LiNbO₃/SiO₂ membrane, as shown in Fig. 3. The v_p of the SH₀ mode in the symmetrical SiO₂/LiNbO₃/SiO₂ membrane is higher than that in the LiNbO₃/SiO₂ bilayer structure, especially when the thicker SiO₂ layer is utilized and $h_{\text{LiNbO3}}/\lambda$ is small. At thin LiNbO₃ with $h_{LiNbO3}/\lambda = 0.1$ the SH₀ mode in the SiO₂/ LiNbO₃/SiO₂ membrane shows the phase velocity of roughly 4,280 m/s and in the LiNbO₃/SiO₂ bilayer structure around 4,200 m/s at $h_{\text{SiO2}}/\lambda = 0.2$.

Fig. 3. Comparison of the FEA simulated v_p dispersion of the SH₀ mode in the LiNbO₃/SiO₂ bilayer membrane and in the symmetrical SiO₂/LiNbO₃/SiO₂ composite membrane with 30° *YX* LiNbO₃.

Fig. 4. Comparison of the FEA simulated k^2 dispersion utilizing the SH₀ mode in the LiNbO₃/SiO₂ bilayer membrane and in the symmetrical SiO₂/ LiNbO₃/SiO₂ composite membrane with (a) single-IDT and (b) double-IDT.

B. Coupling Coefficient Degradation

As depicted in Fig. 4, the k^2 dispersion curves of the SH₀ mode on the LiNbO₃/SiO₂ and SiO₂/LiNbO₃/SiO₂ composite membrane are compared with single-IDT and double-IDT transducer configurations. The k^2 is usually deteriorated by the additional SiO₂ layer because of the acoustic energy absorption by the piezo-dead and soft SiO₂ layer. Since the acoustic wave field tends to be more involved in the LiNbO₃ layer of the symmetrical SiO₂/LiNbO₃/SiO₂ plate, the acoustic energy can be confined in the LiNbO₃ plate to enable a higher k^2 for the SH₀ mode. As a result, especially when thick SiO₂ layers are employed, the k^2 of the SH₀ mode in the SiO₂/LiNbO₃/SiO₂ sandwiched plate is larger than in the LiNbO₃/SiO₂.

Intriguingly, for some cases the k^2 of the SH₀ mode in the layered plates can be even larger than that in the LiNbO₃ single plate. For example when $h_{LiNbO3}/\lambda = 0.3-1$ is employed for double-IDT and double-SiO₂, the k^2 is much increased, where the growing contribution of the e_{15} piezoelectric constant by the surface constraint overcomes the loading effect.

C. TCF and Trade-Off

Neglecting the electrode thickness, the first-order *TCF*'s of the LiNbO₃/SiO₂ and SiO₂/LiNbO₃/SiO₂ SH₀ resonators can be theoretically predicted and are depicted in dashed lines of Fig. 5 and Fig. 6. By adding the SiO₂ layers onto the LiNbO₃ thin film, the *TCF*'s increase fast and cross 0 ppm/C°. However, the first-order *TCF*'s in the SiO₂/LiNbO₃/SiO₂ plate are slightly smaller than in the LiNbO₃/SiO₂ plate at the same h_{LiNbO3}/λ and h_{SiO2}/λ , giving opposite preference for selecting stack configuration from considering v_p and k^2 . In addition, there is also a general trade-off relation between the *TCF* and k^2 for selecting the stack thicknesses.

In order to compare the trade-offs, the k^2 values at zero *TCF* are identified and marked in dots in Fig. 5 and Fig.6. In general, the SH₀ mode in the sandwiched structure still offers a slightly larger k^2 than in the bilayer plate, especially at greater LiNbO₃ thicknesses. The simplest zero-*TCF* stack can be LiNbO₃/SiO₂ with $h_{LiNbO3}/\lambda = 0.1$, $h_{SiO2}/\lambda = 0.2$, and single-IDT. It is also interesting to notice that for double-IDT and double-SiO₂ the k^2 can be large (~30%) even at a thicker LiNbO₃ at zero-*TCF*, showing potential for the multi-frequency application (large pitch variation in the same stack).

Fig. 5 Trade-off between the first-order TCF_{1st} and intrinsic k^2 of the SH₀ mode in the LiNbO₃/SiO₂ bi-layer structure and symmetrical SiO₂/LiNbO₃/SiO₂ composite membrane with single-IDT transducer.

Fig. 6. Trade-off between the first-order *TCF* and intrinsic k^2 of the SH₀ mode in the LiNbO₃/SiO₂ bi-layer structure and symmetrical SiO₂/LiNbO₃/SiO₂ composite membrane with double-IDT transducer.

IV. DISPERSION

The periodically perturbed dispersion of the SH₀ wave propagating in LiNbO₃ membrane determined by the presence of a frequency stopband [8] will be impacted by adding the SiO₂ layer. The open-circuited (OC) dispersion analysis of the SH₀ wave travelling in the LiNbO₃/SiO₂ bilayer structure with near-zero TCF ($h_{LiNbO3}/\lambda = 0.1$ and $h_{SiO2}/\lambda = 0.2$) is provided in Fig. 7. For the OC boundary condition, the non-excited modes appear in the lower stopband edge when IDT is relatively thin $(h_{IDT}/\lambda = 4\%$ and $h_{IDT}/\lambda = 6\%$) and start to be at the upper stopband edge when the IDTs become thicker (h_{IDT}/λ) > 6%). The phenomenon of the non-excited mode below the OC excitable mode (f_p) is rare and detrimental to the passband performance. In this case, the short-circuited (SC) reflection coefficient is not enough to cover the OC excitable mode, and the OC reflection coefficient is negative. As a result, it is critical to use thicker IDT electrodes for the SH₀ resonators.

V. CONCLUSIONS

The thermal stabilization techniques for the SH_0 mode in $LiNbO_3$ PAW resonators is investigated using the $LiNbO_3/SiO_2$ and $SiO_2/LiNbO_3/SiO_2$ structures. The $SiO_2/LiNbO_3/SiO_2$

Fig. 7. Real part of the SH₀ propagation constant in single-IDT and opencircuited condition for different electrode thicknesses of the SH₀ mode propagating in the LiNbO₃/SiO₂ bilayer structure assuming $\lambda = 1 \mu m$, $h_{LiNbO_3}/\lambda = 0.1$, $h_{SiO_2}/\lambda = 0.2$ and DF = 0.5.

sandwiched membrane enables higher v_p and larger k^2 than the LiNbO₃/SiO₂ bilayer since the symmetric structure traps more acoustic field in the LiNbO₃ piezoelectric layer. By considering the trade-off between *TCF* and k^2 , simplest zero-*TCF* stack is proposed as LiNbO₃/SiO₂ with $h_{LiNbO_3}/\lambda = 0.1$, $h_{SiO2}/\lambda = 0.2$, and single-IDT. The dispersive stopband analysis is given for this structure and the threshold IDT thickness of 8% is provided for wide enough stopband *BW* covering passband. Intriguingly, the SiO₂/LiNbO₃/SiO₂ structure with double-IDTs offers a wide selection of thickness combinations for simultaneously enabling large k^2 and zero-*TCF*, showing potential for the multi-frequency applications.

REFERENCES

- M. Kadota, Y. Kuratani, T. Kimura, M. Esashi1, and S. Tanaka, "Ultrawideband and high frequency resonators using shear horizontal type plate wave in LiNbO3 thin plate," *Jpn. J. Appl. Phys.*, vol. 53, 07KD03, June 2014.
- [2] M. Kadota and S. Tanaka, "Ultra-wideband ladder filter using SH0 plate wave in Thin LiNbO₃ plate and its application to tunable filter," *IEEE Trans Ultrason Ferroelectr Freq Control*, vol. 62, May. 2015.
- [3] J. Zou, F. Iliev, R. B. Hammond, V. Plessky, S. Samadian, P. J. Turner, V. Yantchev, and N. O. Fenzi, "Design of Ultra-Large-Coupling SH₀ Plate Wave Resonators on LiNbO₃ with Clean Spectrum," *in IEEE Intl. Freq. Control Symp. (IFCS'19)*, Orlando, FL, USA, May 2019.
- [4] V. Plessky, S. Yandrapalli, P.J. Turner, L.G. Villanueva, J. Koskela and R.B. Hammond, "5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate," *Electronics Letters*, vol. 55, Nov. 2018.
- [5] M.-H. Li, R. Lu, Y. Yang, T. Wu, and S. Gong, "Temperature Stability Analysis of Thin-Film Lithium Niobate SH0 Plate Wave Resonators," J. Microelectromech. Syst., early access.
- [6] J. Zou, C.-M. Lin, A. Gao, and A. P. Pisano, "The multi-mode resonance in AlN Lamb wave resonators," *J. Microelectromech. Syst.*, vol. 27, issue 6, pp. 973-984, Dec. 2018.
- [7] R. T. Smith and F. S. Welsh, "Temperature dependence of the elastic, piezoelectric and dielectric constants of Lithium Tantalate and Lithium Niobate," *J. Appl. Phys.*, vol. 42, pp. 2219–2230, May 1971.
- [8] V. Yantchev, "Coupling-of-Modes Analysis of Thin Film Plate Acoustic Wave Resonators Utilizing the S0 Lamb Mode," *Trans Ultrason Ferroelectr Freq Control*, vol. 57, Apr. 2010.