
A GPU-Based Implementation of ADMIRE
Christopher Khan

Department of Biomedical Engineering
Vanderbilt University

Nashville, TN
christopher.m.khan@vanderbilt.edu

Kazuyuki Dei
Department of Biomedical Engineering

Vanderbilt University
Nashville, TN

kazuyuki.dei@vanderbilt.edu

Brett Byram
Department of Biomedical Engineering

Vanderbilt University
Nashville, TN

brett.c.byram@vanderbilt.edu

Abstract—Multipath and off-axis scattering are two of the pri-
mary mechanisms for ultrasound image degradation. To address
their impact, we have proposed Aperture Domain Model Image
REconstruction (ADMIRE). This algorithm utilizes a model-
based approach in order to identify and suppress sources of
acoustic clutter. The ability of ADMIRE to suppress clutter and
improve image quality has been demonstrated in previous works,
but its use for real-time imaging has been infeasible due to its
significant computational requirements. However, in recent years,
the use of GPUs for general-purpose computing has enabled
significant acceleration of compute-intensive algorithms. This is
due to the fact that many modern GPUs have thousands of
computational cores that can be utilized to perform massively
parallel processing.

Therefore, in this work, we have developed a GPU-based
implementation of ADMIRE. The computations were distributed
across two GPUs, and speedups of almost three orders of
magnitude were achieved when compared to a serial CPU
implementation. The frame rate depends upon various imaging
parameters, and we demonstrate this using a small cyst simula-
tion dataset and a large in-vivo kidney dataset. However, even
for the large dataset, the implementation still provides the ability
to process multiple frames of data per second. Due to this, it has
the capability to serve as a real-time imaging framework.

Index Terms—Ultrasound, GPU computing, real-time imaging

I. INTRODUCTION

One of the fundamental advantages of using ultrasound as
a medical imaging modality is its ability to provide real-
time imaging capabilities. Due to this, the most commonly
used ultrasound beamforming method today is delay-and-sum
(DAS) beamforming. This method is simple in that it consists
of only two steps. The first step is to time-delay the ultrasound
channel data in order to adjust for path length differences
between the transducer elements and the returning acoustic
wavefronts, and the second step is to coherently sum the
received signals across the aperture in order to obtain RF data.
The simplicity of the pipeline has led to real-time implemen-
tations of the method being deployed on clinical scanners.
Although DAS is widely used and has been implemented
in real-time, it still has important disadvantages. One of the
most important disadvantages is that it is less effective than
advanced beamforming methods when it comes to addressing
mechanisms such as multipath and off-axis scattering, which
produce acoustic clutter that degrades image quality [1].

To address these mechanisms, we have previously proposed
Aperture Domain Model Image REconstruction (ADMIRE)

[2], [3], [4]. The basis of this method is that it uses a model-
based approach to fit the aperture domain data and reconstruct
channel data that is decluttered. In particular, the Short-Time
Fourier Transform (STFT) of the time-delayed ultrasound
channel data is taken, and the aperture domain data for several
frequencies within each STFT window is fit using models. The
model matrix for each frequency consists of a grid of scattering
locations that can contribute to the observed aperture domain
signal, and each predictor represents the received aperture
signal for a wavefront, localized in time and frequency, that
is returning from one scattering location. A linear regression
model with elastic-net regularization is used to determine the
contributions of these scattering locations, and the decluttered
signal can then be reconstructed by only utilizing the locations
that do not contribute to multipath or off-axis scattering. The
decluttered channel data is obtained by taking the Inverse
Short-Time Fourier Transform (ISTFT).

Although ADMIRE can improve image quality by sup-
pressing acoustic clutter, it is computationally demanding. In
particular, the model decomposition stage of the pipeline is
the primary bottleneck because it typically requires thousands
of individual model fits to be performed. To reduce the com-
puting time required for these fits, a computationally-efficient
implementation of ADMIRE was previously developed [5].
This implementation utilizes independent component analysis
(ICA) in order to reduce the model matrix size for each fit.
For example, without ICA, the size of each model matrix X
is X ∈ CM×N, where M is the number of aperture elements
and N is the number of model predictors. With ICA, the size
is X ∈ CM×2M, which is much smaller because M < N.
For example, a typical value for M might be 128, while a
typical value for N might range from 10,000 to 1,000,000.
The second dimension of the matrix is 2M because ICA is
applied individually to the group of predictors that are within
the desired signal ROI and the group of predictors that are not
within the ROI. These two matrices are then concatenated to-
gether. This reduced model significantly decreases ADMIRE’s
computational time, but it still requires several minutes to
process one frame of channel data in many cases.

Real-time image processing with ADMIRE is currently
infeasible on a CPU. However, by using graphics processing
units (GPUs), the computational speed can be dramatically
improved. This is because GPUs are designed for massively
parallel processing, and the entire ADMIRE pipeline can be

Program Digest, 2019 IEEE International Ultrasonics Symposium (IUS)
Glasgow, Scotland, October 6-9, 2019

978-1-7281-4595-2/19/$31.00 ©2019 IEEE TuPoS-13.3

executed in parallel. Real-time GPU implementations of other
compute-intensive beamforming algorithms have already been
developed. For example, Hyun et al. developed a real-time
GPU implementation of short lag spatial coherence imaging
(SLSC) [6], [7], and Chen et al. developed a real-time GPU im-
plementation of minimum variance beamforming [8]. There-
fore, in this work, we have developed a GPU implementation
of ADMIRE. Moreover, we demonstrate the ability of the
implementation to perform real-time image processing.

II. METHODS

To develop the GPU implementation of ADMIRE, the
C programming language was utilized along with Nvidia’s
Compute Unified Device Architecture (CUDA) parallel pro-
gramming platform. The basis of this framework is that
data is transferred from host memory to the GPU’s memory,
where CUDA kernels are called for parallel processing. The
processed data is then transferred back to host memory. In
this case, the undelayed ultrasound channel data along with
various imaging parameters is being transferred to the GPU.

Once on the GPU, a CUDA kernel is utilized to compute
the delays for the data. In terms of the parallelism of the
GPU, it consists of streaming multiprocessors, and each one
contains many computational cores. Therefore, in a kernel,
blocks of GPU threads are initialized and distributed across
these streaming multiprocessors, where each thread is executed
on a computational core. For the delay kernel, each initialized
block corresponds to a specific depth and beam position
(assuming focused transmits), and each thread within a block
calculates the delay for an individual element. These delays
are then applied to the channel data in a separate kernel. This
kernel initializes the same number of blocks and threads as the
previous one, but each thread is now being used to perform
linear interpolation. The undelayed channel data is bound to
texture memory upon transfer to the GPU, and this type of
memory allows for fast interpolation to be performed. Each
thread performs a fetch from texture memory in order to obtain
its corresponding time-delayed data value.

After the channel data is delayed, the Short-Time Fourier
Transform (STFT) is taken with 0% window overlap. This
involves first using a kernel in order to obtain the data for
each STFT window. The kernel initializes blocks that each
correspond to a specific element, beam, and set of windows.
Within a single block, each thread corresponds to an individual
sample within one of the windows for the window group. For
example, if a single STFT window contains 10 data samples
with 10 additional zeros for zero padding, then 20 threads will
be utilized for that particular window. 10 threads will fetch the
10 data samples, and the other 10 threads will store zeros in
the respective window positions. In addition, the coefficients
for any windowing function can be transferred to the GPU and
multiplied to the data samples in order to perform windowing.

Once the data for each STFT window has been arranged, the
Nvidia cufft library is utilized to perform an in-place, batched
complex to complex transform. This involves taking a 1D
Fourier Transform along the depth dimension for each element

of each window. Due to the fact that a complex to complex
transform is used, zeros are stored for the imaginary compo-
nent of the input data. Following the batched transform, each
window contains the aperture data for multiple frequencies.
In ADMIRE, a subset of the frequencies corresponding to the
pulse bandwidth are typically fit. Therefore, a kernel is utilized
to obtain the data that only corresponds to the frequencies that
are selected for model decomposition. Each block in the kernel
corresponds to a specific STFT window and beam, and each
thread corresponds to a specific element. Every thread loops
through all of the desired frequencies within a window and
obtains the data for the element that the thread corresponds
to. The data is stored into a new array in such a format that
successive sets of aperture data follow one another. Moreover,
each set of aperture data has all of the real components stored
first followed by the imaginary components.

To prepare for model decomposition, another kernel is
utilized. Each thread in the kernel handles a specific set of
aperture data, and as many blocks are initialized as are required
for all aperture datasets to be accounted for. Each thread first
accounts for aperture growth if it is applied. To do so, an array
containing binary masks for the aperture data is transferred
to the GPU. If the binary mask for a specific aperture data
set contains a 0 in a certain position, then the thread will
not include the data in that position. However, if there is
a 1, then the thread will include the data in that position.
The data with aperture growth accounted for is stored into a
new array that contains successive sets of aperture data. Each
thread also standardizes its set of aperture data within this new
array. This involves dividing each set of aperture data by its
standard deviation (1

N formula). In addition, the λ parameter
that is used when performing linear regression with elastic-net
regularization is calculated for each set of aperture data. This is

calculated as 0.0189
√

yTy
N , where y is one set of aperture data

before being standardized. To account for the standardization,
each λ value is also divided by its respective aperture dataset
standard deviation. The standard deviation values and λ values
are stored into separate arrays on the GPU.

As previously stated, linear regression with elastic-net
regularization is utilized to fit each predictor matrix to its
corresponding set of aperture data. In the CPU implementation
of ADMIRE, the glmnet software package [9] is used to
perform the fits in a serial fashion. However, in the GPU
implementation, thousands of these fits can be performed
simultaneously. This is due to the fact that we have developed
a custom GPU implementation of cyclic coordinate descent,
which is the optimization method that is used to determine
the model coefficients for each fit. This method is also used
by glmnet, and it involves minimizing the objective function
shown in (1).

β̂ = argmin
β

(
1

2N

N∑
i=1

(
yi − xT

i β
)2

+ λ

(
α ‖β‖1 +

(1− α) ‖β‖22
2

))
(1)

Cyclic coordinate descent is executed on the GPU by

Program Digest 2019 IEEE IUS
Glasgow, Scotland, October 6-9, 2019

TuPoS-13.3

having each thread perform a fit involving a specific set of
aperture data. As many blocks are initialized as are required
for handling all of the sets of aperture data corresponding to
the different frequencies, STFT windows, and beams. All of
the predictor matrices can be pre-computed and transferred
to the GPU only once because the same models can be
reused for different image frames. These predictor matrices
are all collapsed and stored into a 1D array before they are
transferred. The array strides for where the data for each fit
begins are also transferred to the GPU due to the fact that
aperture growth causes many of the fits to have a different
number of aperture elements. Each thread performs cyclic
coordinate descent until one of two convergence criteria is first
met. These two convergence criteria include setting a limit
to the maximum number of iterations allowed and setting a
tolerance for the maximum model coefficent change between
iterations. These convergence criteria are different from glm-
net, which utilizes a criterion that focuses on the impact of
the change in coefficients on a fit as described in [9]. Once
the optimization is terminated, each thread unstandardizes the
model coefficients for the fit by multiplying them by the
standard deviation that was previously stored. Each thread then
reconstructs its decluttered aperture data by only using the
predictors corresponding to a specific ROI as shown in (2). By
doing so, the contributions of the predictors that correspond
to off-axis scattering and multipath scattering are eliminated.

yROI =XROI β̂ROI (2)

Once reconstruction is complete, another kernel is utilized
to store the data back into the original array containing all of
the STFT data for all of the frequencies. The frequencies for
which a model fit is not performed are zeroed out. The number
of blocks initialized for the kernel corresponds to the number
of STFT windows, and each thread within a block stores the
reconstructed aperture data for all of the fitted frequency cases
within the STFT window for a specific beam. The negative
frequencies are not fitted in order to save computational time.
Therefore, for each positive frequency that was fitted, the
complex conjugate of its reconstructed signal data is stored
for the corresponding negative frequency. After the data is
stored, the cufft library is used to perform an in-place, batched
complex to complex transform. This process involves taking
a 1D Inverse Fourier Transform along the depth dimension
for each element of each window. As previously stated, the
window overlap used for the STFT is 0%, so performing just
the 1D Inverse Fourier Transforms gives the Inverse Short
Time Fourier Transform of the data in this case.

A kernel following the Inverse Short Time Fourier Trans-
form is then used to obtain the decluttered channel data with
the samples corresponding to the zero padded positions re-
moved. Each block corresponds to a specific depth region and
beam, and each thread obtains the depth samples within the
depth region for a specific element. Only the real component
of the data is stored for each sample, and the data is also
normalized by the Inverse Fourier Transform length. To obtain

the summed RF data from the channel data, a summing kernel
is used. Each block corresponds to a specific depth and beam,
and each thread corresponds to a specific element. The sum is
computed within each block, and this represents the coherently
summed aperture data for each image location. An optimized
summing algorithm as described in [10] is used whenever
possible. The envelope data is calculated from the RF data
by first taking the Hilbert Transform. The process for taking
the Hilbert Transform follows the discrete algorithm that is
described in [11] and is used by MATLAB. On the GPU, this
involves performing an in-place, batched complex to complex
transform using the cufft library in order to compute the
1D Fourier Transform of each beam. A kernel is then used
to weight the different frequency bins. Each block in the
kernel corresponds to a specific frequency bin, and each thread
corresponds to a specific beam. Once the data is weighted, the
cufft library is used to perform an in-place, batched complex
to complex transform, which gives the 1D Inverse Fourier
Transform of each beam.

The magnitude of the IQ data is computed using a separate
kernel. Each block corresponds to a specific depth, and each
thread corresponds to a specific beam. A single thread takes
the complex data sample for its depth and beam position, and
it computes its magnitude after normalizing it by the Inverse
Fourier Transform length. The results are stored into a separate
array, which is then transferred back to the host. The envelope
is log compressed and displayed within MATLAB.

III. RESULTS

To compare the GPU and CPU implementations of
ADMIRE, benchmarks were performed utilizing an in-vivo
kidney dataset and a Field II cyst simulation dataset. The
model matrices for both cases were pre-computed, and ICA
was applied. The computations for the GPU implementation
were split across a GeForce GTX 1080 Ti GPU and a
GeForce RTX 2080 Ti GPU. More beams were distributed to
the 2080 Ti GPU due to the fact that it is more powerful. The
host computer used for the benchmarks contained dual Intel
Xeon Silver 4114 CPUs @ 2.20 GHz with 10 cores each.
The MATLAB programming language was used for the CPU
implementation, and the number of computational threads
was set to 1. To perform cyclic coordinate descent for the
CPU implementation, a MEX file written in Fortran from the
glmnet software package was utilized. The imaging/processing
parameters can be seen in Table I. Fig. 1 shows the in-vivo
kidney and simulated cyst datasets processed with DAS,
GPU ADMIRE, and CPU ADMIRE. The processing times
are displayed on each image, and the contrast ratio values
are also shown for a given ROI. Both of the datasets were
already time-delayed, so this was not included in the run
times. Moreover, post-envelope calculation steps such as
normalization, log compression, and scan conversion (kidney
dataset) were not included in the timing either. Data transfer
times between host and GPU memory were included in the
GPU implementation run times.

Program Digest 2019 IEEE IUS
Glasgow, Scotland, October 6-9, 2019

TuPoS-13.3

Fig. 1. Images processed with DAS (left), GPU ADMIRE (center), and CPU ADMIRE (right). The top row is for the in-vivo kidney dataset, and the bottom
row is for the simulated cyst dataset.

TABLE I: Imaging/Processing Parameters for Each Dataset
Imaging/Processing Parameter Kidney Dataset Cyst Dataset
Depth Samples 2,235 640
Elements 128 128
Beams 121 128
f0 (MHz) 3.47 3
fs (MHz) 13.89 40
Padded STFT Window Length 10 40
STFT Window Overlap 0% 0%
Frequencies Fit per STFT Window 3 4
α for Regularization 0.9 0.9
Coord. Descent Max Iterations 100,000 100,000
Coord. Descent Coeff. Change Tol. 10 10

IV. DISCUSSION

As shown in Fig. 1, the GPU implementation of ADMIRE
provides a computational speedup of almost three orders of
magnitude when compared to the CPU implementation while
still providing a similar increase in contrast ratio. ADMIRE
processing on a GPU took only 72 ms for the cyst dataset,
and even for the kidney dataset, processing took 381 ms.
This means that real-time imaging can be achieved for many
applications. Frame rates can be further increased by taking
advantage of the fact that the entire field-of-view does not
necessarily need to be processed with ADMIRE. For example,
in a procedure such as a biopsy, ADMIRE can be applied to
an ROI corresponding to the area of tissue removal while DAS
can applied to the other regions that are of lesser interest.

V. CONCLUSIONS

We have developed a GPU implementation of ADMIRE
that is almost three orders of magnitude faster than the CPU
implementation. Moreover, we have demonstrated the potential
of this implementation to be used for real-time imaging. Future
work includes further optimizing the code and interfacing it
with a Verasonics Vantage 128 ultrasound research system.

VI. ACKNOWLEDGEMENT

This work was supported by NIH grants R01EB020040 and
S10OD016216-01 and NAVSEA grant N0002419C4302.

REFERENCES

[1] G. Pinton, G. Trahey, and J. Dahl. “Sources of image degradation in
fundamental and harmonic ultrasound imaging using nonlinear, full-
wave simulations.” IEEE transactions on ultrasonics, ferroelectrics, and
frequency control 58.4 (2011): 754-765.

[2] B. Byram and M. Jakovljevic. “Ultrasonic multipath and beamforming
clutter reduction: a chirp model approach.” IEEE transactions on ultra-
sonics, ferroelectrics, and frequency control 61.3 (2014): 428-440.

[3] B. Byram, K. Dei, J. Tierney, and D. Dumont. “A model and regu-
larization scheme for ultrasonic beamforming clutter reduction.” IEEE
transactions on ultrasonics, ferroelectrics, and frequency control 62.11
(2015): 1913-1927.

[4] K. Dei and B. Byram. “The impact of model-based clutter suppressionon
cluttered, aberrated wavefronts,” IEEE transactions on ultrasonics, ferro-
electrics, and frequency control, vol. 64, no. 10, pp. 1450–1464, 2017.

[5] K. Dei, S. Schlunk, and B. Byram. “Computationally-Efficient Implemen-
tation of Aperture Domain Model Image Reconstruction (ADMIRE).”
IEEE transactions on ultrasonics, ferroelectrics, and frequency control
(2019).

[6] D. Hyun, G. Trahey, and J. Dahl. “In vivo demonstration of a real-time
simultaneous B-mode/spatial coherence GPU-based beamformer.” 2013
IEEE International Ultrasonics Symposium (IUS). IEEE, 2013.

[7] D. Hyun, G. Trahey, and J. Dahl. “Real-time high-framerate in vivo
cardiac SLSC imaging with a GPU-based beamformer.” 2015 IEEE
International Ultrasonics Symposium (IUS). IEEE, 2015.

[8] J. Chen, B. Yiu, H. So, and A. Yu. “Real-time GPU-based adaptive beam-
former for high quality ultrasound imaging.” 2011 IEEE International
Ultrasonics Symposium. IEEE, 2011.

[9] T. Hastie and J. Qian. “Glmnet vignette.” Retrieve from http://www. web.
stanford. edu/˜ hastie/Papers/Glmnet Vignette. pdf. Accessed September
20 (2014): 2016.

[10] M. Harris. “Optimizing parallel reduction in CUDA.” Nvidia developer
technology 2.4 (2007): 70.

[11] L. Marple. “Computing the Discrete-Time Analytic Signal via FFT.”
IEEE transactions on signal processing. vol. 47, 1999, pp. 2600–2603.

Program Digest 2019 IEEE IUS
Glasgow, Scotland, October 6-9, 2019

TuPoS-13.3

