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Abstract—Recently, deep learning entered the ultrasound (US)
image reconstruction community, demonstrating unprecedented
performances on image reconstruction tasks. The use of deep
neural networks to reconstruct, restore or enhance US images
has been challenged on its capability to preserve time-coherence,
mostly because of their inherent non-linear properties. Most novel
image reconstruction methods are typically only evaluated on static
images, lacking any demonstration of their potential applicability
to other imaging modes, such as vector flow imaging (VFI) and
shear-wave elastography, which heavily rely on the time-coherence
of consecutive reconstructed images. In this work, we demonstrate
that our previously proposed convolutional neural network (CNN)-
based image restoration approach, trained exclusively to improve
the quality of static images, does not harm the time-coherence
of consecutive frames in the context of VFI. Using dynamical
numerical phantoms inspired by the synthetic aperture vector flow
imaging (SA-VFI) challenge, we quantitatively show that the use
of such an image restoration technique does not damage vector
flow estimations, computed with a state-of-the-art speckle tracking
algorithm, on simple phantoms with constant echogenicity, and
that it even has the potential to improve such estimations in more
complex scenarios.

Index Terms—Deep learning, speckle tracking, ultrasound
imaging, vector flow imaging.

I. INTRODUCTION

Image reconstruction has always been an active field of
research in the ultrasound (US) community, as it is an essential
part of any US scanner for providing a well-interpretable image
to an operator, given raw radio frequency (RF) sensor data.
Even though US is a dynamic imaging modality in essence,
thanks to its real-time capabilities, the image quality of newly
proposed image reconstruction methods is traditionally evalu-
ated on static images, typically using meaningful quantitative
metrics such as the ones proposed by the plane-wave imaging
challenge in medical ultrasound (PICMUS) [1].

The recent emergence of deep learning techniques in the
US image reconstruction community has raised concerns
concerning the robustness of such methods to preserve the
time-coherence of consecutive images, mostly because of their
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inherent non-linear properties. Such a concern is of course valid,
especially in the ultrafast era that has led to breakthrough
new imaging modes, such as shear-wave elastography and
vector flow imaging (VFI), which heavily rely on the time-
coherence of consecutive frames [2]. Indeed, most of these
imaging modes rely on displacement estimations which are
only achievable when the time-coherence of the underlying
physical phenomenon is preserved in the reconstructed images.

In this work, we propose to assess the time-coherence ro-
bustness of a convolutional neural network (CNN)-based image
restoration method in the context of VFI, which has recently
been the subject of the synthetic aperture vector flow imaging
(SA-VFI) challenge [3]. For the image restoration method,
we have used the same strategy and network architecture as
presented in our previous work [4], which has demonstrated the
ability to reconstruct high-quality images from a single plane
wave (PW) insonification. For the velocity estimation, we have
implemented a method greatly inspired by the winning-team
of the SA-VFI challenge [5], i.e. a speckle tracking technique
based on normalized cross-correlations of consecutive frames
with a coarse-to-fine multi-pass scheme. The resulting vector
flow estimations is evaluated both locally and globally using
quantitative statistical metrics on numerical dynamic phantoms
inspired by the SA-VFI challenge and adapted to the PICMUS
imaging configuration. These evaluations are performed both on
image sequences reconstructed using conventional delay-and-
sum (DAS) beamforming and using the proposed CNN-based
approach, allowing us to assess how the latter affects vector flow
estimations which are directly related to the time-coherence of
consecutive frames.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the proposed CNN-based image enhance-
ment method proposed in [4] and presents the deployed speckle
tracking method. Section III describes the experiments and
metrics used to asses the resulting VFI quality, and Section IV
discusses the obtained results. Concluding remarks are given
in Section V.

II. PROPOSED APPROACH

In order to assess the effect of a CNN-based image
reconstruction approach on the time-coherence of consecutive
frames, we have considered speckle tracking, a VFI method
that relies strongly on proper time-coherence between frames
to provide high-quality velocity estimations. In this section,
we first summarize the CNN-based approach proposed in our
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previous work [4], followed by a detailed description of the
deployed speckle tracking algorithm.

A. Ultrasound Image Enhancement Using Deep Learning

As proposed in [4], we apply a carefully trained CNN to low-
quality US images, reconstructed using conventional delay-and-
sum (DAS) beamforming from the measurements of a single
PW acquisition with normal incidence, to significantly reduce
the inherent image artifacts such as side and grating lobes. We
use a neural network architecture adapted from the popular
U-Net. It is a residual CNN and thus performs a mapping
Fθ(X) = X +Rθ(X), where X ∈ RNx×Nz and Rθ is a mapping
function, with trainable parameters θ, capable of predicting
the negative noise to be applied to a low-quality input image
to recover a high-quality image.

The training dataset is composed of images reconstructed
with a conventional DAS beamformer from simulated data of
randomly generated tissue-mimicking phantoms. It contains
both low-quality images described above and high-quality
images reconstructed from full synthetic aperture measurements.
The low-quality and high-quality images serve as input and
reference (i.e. labels) during training phase.

B. Speckle Tracking Method

Speckle tracking, more generally called particle image
velocimetry (PIV), is a method extensively used in optical flow
measurements. It has also been shown to be very successful
in the domain of US VFI, as it was the method implemented
by the winning-team [5] of the SA-VFI challenge.

At its core, PIV consists of pattern-matching between regions
of two consecutive images, X0 and X1, using 2D cross-
correlation. A displacement vector field d̂(x, z) can be estimated
from the maxima of the obtained correlation coefficients. Given
the knowledge of the elapsed time ∆t between consecutive
frames, the corresponding velocity estimate v̂(x, z) = d̂(x, z)/∆t
can be determined. We have deployed a state-of-the-art instance
of PIV, inspired by the popular PIVlab toolbox [6] and [5]. The
method consists of performing multiple passes of displacement
estimations using FFT-based correlation. Between passes, the
original image X1 is deformed to more closely resemble image
X0, using the current displacement estimate. This method
allows a progressively higher precision and displacement-range-
coverage with each additional pass.

The input to each single pass are two frames, X0,X1 ∈
RNx×Nz , as well as both the interrogation window size Ni ×Nj

and the window overlap o ∈ [0,1]. First, the two frames are
divided into windows according to the chosen interrogation
window size and overlap. This way, we obtain interrogation
window stacks W0,W1 ∈ R

K×Ni×N j , where K is the resulting
number of windows. Collectively, the window centers (xk, zk),
where k ∈ {0,1, . . . ,K − 1}, represent a uniform sampling grid
of the physical image region. Each window pair (W0,k,W1,k) is
used to estimate the displacement at the corresponding window
center, by computing the coefficients Ck ∈ R

Ni×N j of the zero-
normalized 2D cross-correlation (ZNCC) between them. We

use FFT-based correlation for computational efficiency and
thus compute

Ck =
1

NiNj
F −1 (W̃0,kW̃1,k

)
, (1)

where F denotes the 2D discrete Fourier transform (DFT) and
the 2D DFT of the normalized windows is defined as

W̃n,k = F

(
Wn,k − µn,k

σn,k

)
for n ∈ {0,1}, (2)

with µn,k and σn,k representing the mean value and standard
deviation of the respective window Wn,k . From the ZNCC co-
efficients Ck we determine a first estimate of the displacement
d̂(xk, zk), by extracting the positions of the maximal correlation
value for each window pair k. Using the correlation coefficients
Ck around each peak, we apply 2D Gaussian regression to
increase the displacement estimation accuracy to a sub-pixel
level, as suggested in [7]. At the end of each pass, the resulting
displacement vector field is added to the running total of all
previous passes.

Between passes, the current estimate d̂(xk, zk) is processed
by first removing statistical outliers and then smoothing the
resulting displacement vector field, using the robust unsuper-
vised smoothing algorithm proposed in [8]. Finally, the resulting
displacement estimates are used to deform the original frame
X1, using bivariate spline interpolation, which reduces the
difference between the two input frames X0 and X1 at each
pass.

III. EXPERIMENTS

In this section, we provide a detailed description of the
pipeline used to evaluate the preservation of the time-coherence
between consecutive low-quality frames, that were restored
using specifically trained CNNs [4]. We provide in-depth de-
scriptions of the numerical phantoms, the imaging configuration
and the exact speckle tracking parameters used to estimate the
phantom velocities, as well as the metrics used to evaluate the
quality of the vector flow estimations.

A. Numerical Phantoms
We exclusively use numerical dynamic phantoms to have

precise control and knowledge of the exact displacement be-
tween frames. Three phantoms of identical geometric properties
are considered, differing only in their echogenicity properties.
For a fair evaluation of the time-coherence preservation to be
possible, the phantoms have been chosen to only generate a
limited amount of imaging artifacts, to still allow high-quality
velocity estimations even for low-quality images.

All three phantoms, denoted A, B and C, are counter-
clockwise spinning disks, embedded in a fully anechoic
background, with a maximum velocity vmax. The disks have
a radius r and are centered at (xc, zc)T with respect to the
transmitter array. The relevant values are listed in Table I. The
reflection coefficients inside the respective phantoms are chosen
to result in the dB-compressed echogenicity distributions
specified in Table I. Inside the phantom, a density of 20 points
per resolution cell has been used to ensure a fully diffusive
speckle pattern.
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TABLE I
SPINNING DISK PHANTOM PARAMETERS

Phantom
xc
[mm]

zc
[mm]

r
[mm]

vmax
[m/s]

dB-compressed
echogenicity

A uniform
B 0 27.5 10 3 angular, linear gradient of 40 dB
C radial, linear gradient of 40 dB

B. Imaging Configuration

All RF channel data are generated using an in-house spatial
impulse response model simulator, which accounts for 3D
effects and element directivity. The used imaging setup is
identical to the one used in the PICMUS challenge1. Single
PW acquisitions with normal incidence of the phantoms are
simulated at a 5 kHz pulse repetition frequency (PRF).

From each PW pulse-echo measurement, a low-quality RF
image is reconstructed, using conventional DAS beamforming
with spline interpolation and a receive apodization based on the
element directivity. The image grid limits are chosen according
to the PICMUS settings and the grid is spaced with (∆x,∆z) =
(λ/4, λ/8). The low-quality images are then either fed into
U-Net16 or U-Net32, as described in [4], or are left unaltered
for comparison purposes.

Eventually, before speckle tracking is applied, the envelope
of the each RF image is extracted using the Hilbert transform
along the z-axis, and the z-dimension is then down-sampled by
a factor of two, resulting in a square, uniform sampling grid.

C. Speckle Tracking Settings

Our phantoms were designed to have geometric properties
and velocity-to-effective-PRF ratios, that are very similar to
the spinning disk phantom setup provided by the SA-VFI
challenge [3]. For this reason, and because of the similarity
of the deployed speckle tracking algorithm, we use the same
four-pass coarse-to-fine PIV configuration with square window
sizes of 4 mm, 2.5 mm, 2 mm and 1 mm, and a window overlap
of 65 % as it was proposed in [5]. For our purpose, however,
neither ensemble-cross-correlation nor any other averaging
method is deployed. Thus, for each velocity estimation, a single
pair of frames is used, reconstructed as previously described
from two consecutive PW acquisitions.

D. Performance Evaluation

For each combination of one of the phantom types, i.e. A, B
or C, with one of the reconstructed image, i.e. low-quality (LQ),
U-Net16 or U-Net32, M = 400 pairs of consecutive frames
are evaluated resulting in M independent velocity vector
field estimations v̂m(x, z), where m ∈ {0,1, . . . ,M − 1}. The
estimations v̂m(x, z) are compared to the theoretic velocity
v(x, z) = vmax/r (x − xc, z − zc)T inside a spinning disk.

Mean local bias eµ and mean local standard deviation eσ are
used as performance metrics. Given M independent scalar field
estimations p̂m(x, z), the corresponding theoretical reference

1https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/about_
settings.html

TABLE II
VELOCITY ESTIMATION QUALITY METRICS

Phantom Image eµ ( ‖v̂ ‖) eσ ( ‖v̂ ‖) eµ (ϕ(v̂)) eσ (ϕ(v̂))
Quality [%] [%] [°] [°]

A
LQ 2.27 3.69 1.98 3.94

U-Net16 2.44 3.45 2.13 3.97
U-Net32 2.39 3.34 2.11 3.83

B
LQ 2.72 5.61 2.25 10.14

U-Net16 2.98 5.24 2.48 9.97
U-Net32 2.92 5.13 2.39 9.65

C
LQ 2.76 6.88 1.95 13.01

U-Net16 2.40 3.85 2.22 5.85
U-Net32 2.35 3.76 2.17 6.07

values p(x, z), as well as a discrete sampling grid composed
of K points (xk, zk), these metrics are defined as

eµ(p̂) =
1
K

K−1∑
k=0

��eµ(p̂(xk, zk))��, (3)

eσ(p̂) =

√√√
1
K

K−1∑
k=0

e2
σ(p̂(xk, zk)), (4)

where the local error bias and standard deviation are defined
as

eµ(p̂(xk, zk)) =
1
M

M−1∑
m=0

p̂m(xk, zk) − p(xk, zk), (5)

eσ(p̂(xk, zk)) =

√√√
1
M

M−1∑
m=0

(
p̂m(xk, zk) − p̂(xk, zk)

)2
, (6)

and p̂(xk, zk) denotes the scalar field average of the M
independent estimations.

The metrics are calculated on both the normalized estimated
velocity magnitudes ‖ v̂m(x, z)‖/vmax and the estimated velocity
angles ϕ(v̂m(x, z)), for the natural sampling grid of the last
speckle tracking pass, with parameters as previously defined.
In the case of the velocity angle, circular statistics are used.

IV. RESULTS AND DISCUSSION

As mentioned before, the simplicity of the chosen phantoms
enables a rather accurate vector flow estimation even using
low-quality images, which is confirmed by the achieved results
shown in Table II. Overall, we can see that while using the
CNNs leads to a slightly worse velocity estimation bias, it
increases the robustness of the estimation slightly or even
quite significantly, as in the case of phantom C. Generally, the
differences are below one percent and thus the influence of the
CNNs on the time-coherence between consecutive US frames
can be considered insignificant. In the case of phantom C, for
which qualitative representations of the estimated vector flow
using LQ and U-Net32 enhanced images are shown in Fig. 1,
the velocity estimations are even improved using the CNNs.

Analyzing the local errors (eµ, eσ) depicted in Fig. 2 and 3,
we can conclude that the estimation improvement is particularly
located in the low-intensity areas (towards disk center) of
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Fig. 1. Vector flow estimation on phantom C using LQ (left) and U-Net32
enhanced (right) images. The estimated vector flow is represented as red arrows
overlayed over one of the two images used for the respective estimations. The
images are displayed in B-Mode with a dynamic range of 50 dB.

Fig. 2. Local velocity magnitude estimation error bias and standard deviation
for both LQ and U-Net32 enhanced images of phantom C.

phantom C. This behavior seems to come from side-lobe
artifacts originating from the high-intensity phantom regions
(towards disk border), interfering with the speckle pattern inside
the low-intensity regions of phantom C. This would imply that
the CNNs are not only successful in reducing said artifacts,
but also in restoring the underlying speckle patterns, including
the contained physical information.

V. CONCLUSION

We have proposed to assess the preservation of time-
coherence of a specific CNN-based image reconstruction
approach, by comparing vector flow estimations of consecutive
US images reconstructed using the CNN-based approach to
the estimations obtained from images reconstructed using con-
ventional DAS beamforming. The vector flow estimation was
performed using a state-of-the-art speckle tracking algorithm,
whose performance relies heavily on an intact time-coherence
of the analyzed images. Using this approach, we were able to

Fig. 3. Local velocity angle estimation error bias and standard deviation for
both LQ and U-Net32 enhanced images of phantom C.

demonstrate that the vector flow estimation is not altered by the
CNN in simple configurations where the phantom echogenicity
is constant, hence guaranteeing the time-coherence preservation
of the proposed CNN-based image restoration method.

Furthermore, we have shown that the use of the CNN-based
restoration method proposed in [4] seems to have the potential
to improve the resulting vector flow estimations in more
challenging environments where the analyzed displacement
spans a large dynamic range. This observation, which will be
investigated in further studies, could be highly beneficial to
applications in which only a very small amount of acquisitions
per frame are allowed, such as in cardiac elastography.
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