XBAR Filter Technology for 5G Handset Filters

P.J. Turner¹, V. Plessky^{1,2}, L.G. Villanueva³, S. Yandrapalli³, B. Garcia¹, J. Costa¹, J. Koskela^{1,2}, V. Yantchev¹, N.O. Fenzi¹, and R.B. Hammond¹ ¹Resonant Inc., Santa Barbara, CA, USA, ²GVR Trade SA, Gorgier, Switzerland, ³EPFL, Lausanne,

Background, Motivation and Objective

New 5G mobile phone specifications utilize high frequencies (4-6 GHz) and very large relative bandwidths exceeding 10%, pushing the limits of standard SAW and BAW technologies presently in wide use for high-selectivity handset filters. We have created a simple and novel resonator structure called XBAR [1] to specifically address this challenge, including the key elements required for practical handset filter design: strong coupling, impedance near 50 ohms, controlled spurious, low losses, low harmonic distortion and good power handling. The resonator uses the shear A1 Lamb mode in a suspended 400nm thick membrane of Z-Y cut LiNbO3, excited by interdigitated electrodes with a relatively low metallization ratio.

Statement of Contribution/Methods

In this work, we present the design, simulation, fabrication, and measurement of the first prototype XBAR bandpass ladder filters with 1 dB mid-band insertion loss. The filter was designed and optimized using Resonant's ISN acoustic wave filter design suite, built upon our highly-accurate FEM [2] tool. These models are highly predictive, as evidenced by the fact that simulated and measured filter performance show very good agreement for the first fabricated device of this fundamentally new technology.

Results/Discussion

Switzerland

Wafer-probe measurements of the five-resonator filter with an area of $1.8 \times 1.8 \text{ mm}^2$ demonstrate 600 MHz of bandwidth and 1 dB center-band insertion loss at 4.7 GHz. Hardware matching and mounting the filter in a test fixture increased the measured insertion loss to 1.5 dB. This device can be manufactured using standard optical photolithography despite the high frequency and is compatible with other existing high-volume production processes.

Fig. 1. Measured XBAR n79 filter mounted in a custom test fixture operating at 4.7 GHz showing 600 MHz bandwidth and mid-band loss of 1.5 dB including physical matching elements.

[1] V.P. Plessky et al., "5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate", Electron. Lett. 55(2), November 2018, DOI: 10.1049/el.2018.7297.

[2] Koskela, Julius, et al. "Hierarchical Cascading Algorithm for 2-D FEM Simulation of Finite SAW Devices." IEEE Trans Ultrason. Ferroelectr. Freq. Control 65.10 (2018): 1933-1942.