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Abstract – Grain size estimation nondestructively as a method 

for characterizing the mechanical and structural integrity of 
materials has been long recognized. The scattering and attenuation 
of ultrasonic echoes depend on the frequency of the sound and grain 
size distribution. It is of high interest to estimate grain size and 
classify materials based on the scattering properties of the specimen 
microstructure. In this study, an ultrasonic NDE system is used for 
acquiring ultrasonic scattering signals. Backscattered signals 
collected from three steel blocks with different grain sizes are used 
to train the neural network for material classification and quality 
control. Scattering signals in time domain, frequency domain, and 
time-frequency distribution are applied to the neural network for 
grain size characterization and classification. The validation 
accuracy of the trained network is as high as 99% for grain size 
classification. 

Keywords – Grain Size Estimation, Neural Network, Ultrasound 
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I. INTRODUCTION 

Grain size characterization using ultrasonic microstructure 
scattering signals and signal attenuation is a promising method 
but somewhat limited for structural health monitoring [1] [2]. 
Signal attenuation measurements represent values within the 
entire propagation path and local grain size variations are 
difficult, if not, impossible to assess. The direct characterization 
of the scattering signal can be utilized to acquire information 
related to statistical variation in the scattered energy as a function 
of depth which is correlated to the grain size distribution [3] [4]. 
The intensity of the backscattered signal is a nonexplicit function 
of the average grain size, ultrasonic frequency, and random 
distribution of individual grains. 

In the Rayleigh scattering region, where the sound 
wavelength is larger than the grain size, the scattering coefficient 
is proportional to the average grain volume and the fourth power 
of the ultrasonic wavelet center frequency [5]. This is the most 
sensitive region for the grain size characterization, although, the 
signal is complex and cannot be readily characterized by 
conventional signal processing techniques. Therefore, a 
Multilayer Perceptron Neural Network (MLPNN) is designed 
and trained to characterize different grain sizes of heat-treated 
steel blocks [6] [7] [8] [9]. 

Section II of this paper presents the ultrasonic NDE system 
implementation with the laboratory equipment and experimental 
setup for acquiring backscattered signals. The acquired 
backscattered signal will be used as the input of the neural 
network for the grain size estimation. Section III presents 

ultrasonic grain size estimation algorithms based on MLPNN. 
Three different types of signal processing algorithms namely time 
domain segmentation, Power Spectrum Density (PSD) estimate 
and Split Spectrum Processing (SSP) technique are applied to the 
signal before passing the signal to the neural network for 
classification. Performance of these algorithms are analyzed and 
compared. Section IV concludes this paper. 

II. SYSTEM AND EXPERIMENT SETUP 

For this study, a testbed system is designed and implemented 
to obtain ultrasonic backscattered signals from steel blocks that 
have different grain sizes. Figure 1 is the system block diagram 
of the ultrasonic NDE system designed for this study. A 
Panametrics Model 5052PR ultrasonic pulser receiver is used in 
the system as the signal generator and echo receiver. It includes 
ultrasonic high voltage pulser, Transmit/Receive switch, filters 
and amplifiers in the system. An oscilloscope, Keysight 
MSOX2024A, is used as high frequency digitizer in the system. 
Digital synchronization signal is provided by the pulser receiver 
to synchronize with the oscilloscope. A water tank for ultrasonic 
testing with two stepper motors mounted allows us to move the 
ultrasonic transducer along x and y axes. The stepper motors are 
directly driven by an Arduino based stepper motor controller 
board. The ultrasonic NDE system is controlled by a desktop 
computer through USB ports. Customized Python libraries are 
implemented for controlling the stepper motor controller board 
using GRBL library and communicate with the oscilloscope 
using PyVISA library [10] [11]. The signal acquisition process is 
fully automated by using Python scripts. 

 
Figure 1. Ultrasonic NDE System Block Diagram 
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Figure 2 shows the ultrasonic NDE experimental setup to 
acquire backscattered signals for grain size estimation. A 
broadband immersive type of piezoelectric transducer centered at 
5 MHz is used to acquire raw data in this study. A pulse echo type 
of system described in Figure 1 is used for the backscattered 
signal acquisition. The backscattered signal is generated by 
microstructure (i.e., grains) scattering. To make the backscattered 
signal cleaner, a designed delay path from the transducer and the 
upper surface of the specimen is created.  

 
Figure 2. Ultrasonic Testing Arrangement to Acquire Backscattered 

Signal 

The ultrasonic grain scattering signal is sampled at 1 GSPS 
with 8-bits resolution and resampled (or downsampled) to 100 
MSPS. In this study, three types of 1018 steel blocks with 
different grain size were used. Among these three type 1080 steel 
blocks, two blocks were heat-treated at 1600- and 2000-degree 
Fahrenheit.  Each block has the grain size of 14, 24 and 50 
microns and they will be referred to as Grain14, Grain24 and 
Grain50 throughout this paper. The backscattered signals 
acquired from these blocks with different grain sizes will later be 
used for training MLPNN 

Figure 3 shows five plots of randomly selected backscattered 
signal raw data acquired for each test specimens. Signal displayed 
in Figure 3 are preprocessed by using down sampling, filtering, 
time synchronization, etc. These experimental grain signals 
measurements were made in Rayleigh scattering region which 
means the diameter d of the scattering center is very small 
compared with the ultrasonic wavelength [12]. The signal 
displayed in red, green and blue separately represent the 
backscattered signal obtained from the steel block with grain size 
of 14, 24 and 50 microns. We collected 40 backscattered signals 
for each specimen with different grain sizes for training the neural 
network. 

III. MLPNN BASED GRAIN SIZE ESTIMATION ALGORITHM 

 To characterize the backscattered signal with different grain 
size using neural network, the raw backscattered data must be 
prepared and labeled for training. In the following three 
subsections, three different data preparation methods are 
introduced for training the MLPNN. To compare different data 
preparation methods in parallel, the pre-processed data will be 
passed to the neural network with the same hyper parameter and 
training for the same amount of iterations. The neural network 
has two hidden layers of 512 and 256 neurons and will be trained 
with training data prepared in different methods for 50 epochs. 

Among all the training data, we will use 20 percent for neural 
network validation. For each grain size characterization 
algorithm, the signal will be segmented into different length of 
256 samples which cover around 7.6 mm distance in the 
specimen if we assume the sound velocity in steel is 5920 m/s.  

 
(a) Grain14 (b) Grain24 (c) Grain50 

 
Figure 3. Time Domain Raw Data 

A. Classification using Time Domain Signal 

 In this method, MLPNN is modeled and trained in 
TensorFlow using short segments with 256 samples of the 
backscattered signal in time domain. The sampled backscattered 
signal is sliced into time segments as shown in Figure 4, five 
randomly selected time segments from each specimen labeled in 
different colors were plotted.  

 
(a) Grain14 (b) Grain24 (c) Grain50 

Figure 4. Normalized Time Domain Segments of Backscattered 
Signals 

 After training the neural network for 50 epochs, the training 
validate accuracy converge. The neural network has the training 
accuracy of almost 100%. The testing accuracy of Grain14 vs 
Grain24 signals, Grain14 vs Grain50 signals, and Grain24 vs 
Grain50 signals were 83.33%, 94.72% and 93.68% respectively. 
Results show that using time domain segments as training input 
can recognize different grain sizes using backscattered signals 
with an average testing accuracy of 90.57%. The trained neural 
network performed marginal in classifying Grain14 and Grain24. 
The network can recognize Grain50 from Grain14 and Grain24 
successfully. 
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B. Classification using PSD of Signal 

 Figure 5 is the Power Spectrum Density (PSD) estimate of the 
normalized time segments displayed in Figure 4 using Welch 
averaged modified periodogram method [13]. The PSD 
estimation of the backscattered signal acquired from steel blocks 
with grain size of 14, 24 and 50 microns are marked with different 
colors in the figure. The PSD signal will be used as the training 
input of the MLPNN. 

 
Figure 5. Power Spectrum Density Estimate 

 After training the neural network for 50 epochs using the PSD 
estimation of the normalized backscattered signal segments, the 
testing accuracy for grain signal classification accuracy of 
98.82% (Grain14 from Grain24), 99.51% (Grain24 from 
Grain50) and 99.93% (Grain14 from Grain50) when we use the 
neural network to separate The average testing accuracy is 
99.42%. Results indicates that the PSD of the time segments 
gives the most accurate testing accuracy. 

C. Grain Signal Classification using SSP 

 SSP is an algorithm that performs time-frequency analysis 
[14] [15]. In SSP, the time domain signal is first transformed into 
frequency domain using discrete Fourier transform (DFT). In 
frequency domain, multiple Gaussian frequency bands are 
generated to split the spectrum into multiple frequency 
components. These components are separately recovered into 
time domain and finally concatenated as the time-frequency 
distribution for signal analysis. Before passing the SSP 
representation of the backscattered signal into MLPNN as 
training input, the SSP representation of the signal will be 
segmented in time axis. Figure 6 shows the segmented SSP 
results for 256 samples in time axis. Three randomly selected 
segments from each specimen are plotted.  

 After training the MLPNN for 50 epochs, the testing accuracy 
of using SSP were 85.14%, 94.17% and 94.58% when we 
characterize Grain14 vs Grain24, Grain14 vs Grain50 and 
Grain24 vs Grain50.  These results are slightly better than using 
time domain signal segments for training the neural network. 
However, SSP based MLPNN demands higher computing power 
to dissect and digest the sampled data. Also, adding frequency 
dimension to the training data will increase the input size which 

may need a neural network with higher capacities in terms of 
more neurons, layers, and consequently more coefficients. 

 
  (a) Grain14  (b) Grain24 (c) Grain50 

Figure 6. Time-Frequency Domain 

TABLE I. TESTING ACCURACY OF THE NEURAL NETWORK 

 Time (%) SSP (%) PSD (%) Average 
Grain14 
against 
Grain24  

83.33 85.14 98.82 89.10 

Grain14 
against 
Grain50 

94.72 94.17 99.51 96.13 

Grain24 
against 
Grain50 

93.68 94.58 99.93 96.06 

Average 90.57 91.30 99.42 93.76 

IV. CONCLUSION 

For this study, a testbed system is designed and implemented 
to acquire ultrasonic NDE signals from steel blocks that have 
different grain sizes (14, 24 and 50 microns). A 5 MHz ultrasonic 
piezoelectric transducer is used to test the steel block with 
different grain sizes. The ultrasonic grain scattering signal is 
sampled at 100 MHz with 8-bits resolution. The received signal 
is sliced into time segments with the length of 256 samples which 
represent the distance of roughly 7.6 mm in the target specimen. 
Table I shows the summation of the testing accuracy of different 
algorithms. The training accuracy was almost 100% and the 
testing results classified grain signals with as high as 99.93% 
accuracy. 
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