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Abstract— Carotid atherosclerotic plaque composition is a 

valuable predictor of stroke risk. Ultrasound spectral analysis has 

been successfully implemented clinically for determining plaque 

composition in coronary arteries via intravascular ultrasound. 

Noninvasive implementation for carotid plaque requires 

compensation for the attenuating effects of overlying tissue. This 

study examines the effects of four attenuation compensation 

techniques on the accuracy of a carotid plaque classification 

system using spectral analysis and random forest machine 

learning classification. Radiofrequency (RF) data was acquired 

from 20 subjects prior to carotid endarterectomy (CEA). 41 

fibrous (F), 60 hemorrhagic and/or necrotic core (H/NC), and 54 

calcified (Ca) regions of interest (ROI) were selected from the RF 

data corresponding to homogenous zones within the histology of 

the excised plaque tissue. Additionally, 219 ROI’s were obtained 

from the adventitia (Adv) of six normal subjects. Power spectra 

for the ROI’s were computed and normalized to a uniform 

phantom. Four attenuation compensation methods were applied 

to the spectra: (1) 0.5 dB/cm-MHz; (2) optimum power spectral 

shift estimator (OPSSE); (3) 1-step and (4) 2-step normalized 

backscatter from adventitia.  A linear fit of the resulting estimated 

backscatter transfer functions (eBTF) was performed over the 

fundamental bandwidth of 2.5 – 6.9 MHz. Eight spectral 

parameters were used to build the random forest classification 

models. While there were no statistically significant differences in 

the accuracy of the classification models based off each 

attenuation compensation approach, our work has shown that 

additional attenuation compensation may provide a benefit for 

characterizing carotid plaque. 

 
Index Terms— Ultrasound, attenuation compensation, carotid 

plaque, tissue characterization 

I. INTRODUCTION 

The ability to predict future cerebrovascular accidents 

(CVAs), such as stroke, in patients with carotid atherosclerosis 

is currently limited.  While a high degree of carotid stenosis is 

the primary determining factor for selecting patients for carotid 

endarterectomy (CEA) to prevent stroke, the benefit of CEA in 

asymptomatic patients with high grade stenosis and 

symptomatic patients with a non-significant degree of stenosis 

is unclear.  

Studies have shown that a large number of CVAs are caused 

by rupture-prone plaques with specific morphological features, 

regardless of degree of stenosis [1]–[3]. In carotid 

atherosclerosis, intra-plaque hemorrhage with a necrotic core 

distinguishes unstable, rupture-prone lesions from more stable 

ones.  Thus, while plaque composition matters more than 

degree of stenosis in plaque rupture, it is generally unavailable 

at the point of care with current diagnostic tools.  

While spectral analysis of intravascular ultrasound 

backscatter has been successfully implemented clinically for 

determining plaque composition in coronary arteries [4], [5],  

noninvasive implementation for carotid plaque characterization 

requires the ability to compensate the attenuation effects of 

overlying tissue in order to be sensitive to spectral parameters. 

This study examines the effects of four attenuation 

compensation techniques on characterizing human carotid 

plaque using spectral analysis and a random forest machine 

learning algorithm. Specific focus is placed on identifying 

hemorrhagic and/or necrotic core (H/NC) tissue, since this type 

of plaque tissue is most often associated with vulnerable or 

rupture-prone atherosclerotic lesions. An ultrasound-based 

technique that can noninvasively identify vulnerable lesions 

may aid in better risk stratification, particularly for 

asymptomatic patients and those with stenosis not considered 

clinically relevant. 

II. HUMAN STUDY 

A Siemens S3000 ultrasound system with Siemens Axius 

Direct Ultrasound Research Interface (URI) software was used 

to acquire beamformed RF data at a 40 MHz sampling rate from 

20 subjects prior to carotid endarterectomy (CEA).  Using a 

9L4 linear array transducer, RF data was acquired in transverse 

slices approximately 1 cm apart throughout the plaque region. 

Histology slices of a portion of the excised plaque tissue 

obtained following removal during the CEA were prepared and 

matched to ultrasound frames. Regions of interest (ROI’s),   

RF data points by 15 scanlines (~ 1.2 mm x 1.2 mm), were 
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drawn in the RF data corresponding to homogenous zones 

within the matched histology slide. ROI’s were categorized as 

F - fibrous (n = 41), H/NC - hemorrhagic and/or necrotic core 

(n = 60), or Ca - calcium (n = 54). Additionally, 209 ROI’s were 

obtained from the adventitia (Adv) of six normal subjects.  

III. SPECTRAL ANALYSIS 

Under the assumptions of linear propagation, transmission 

and reception of the ultrasound wave, as well as single 

scattering (Born approximation) in a homogenous propagation 

medium, the power spectrum S(f,d) of a backscattered RF signal 

can be expressed as the product of the transmit and receive 

transfer function G(f), diffraction effects D(f,d), attenuation 

from overlying tissue A(f,d), and backscatter transfer function 

B(f), represented as 

𝑆(𝑓, 𝑑)  =  𝐺(𝑓) ∙  𝐷(𝑓, 𝑑) ∙  𝐴(𝑓, 𝑑) ∙ 𝐵(𝑓, 𝑑).        (1)                                                

Implementing spectral analysis to determine tissue composition 

requires separating the effects of the system, diffraction, and 

attenuation from the backscattered signal in order to be 

sensitive to the tissue properties. An autoregressive model 

(Yule-Walker, order = 24) was used to estimate an average 

power spectrum for each of the ROI’s previously described. 

Below we discuss approaches to compensate for G(f), D(f,d), 

and A(f,d)  to obtain an estimate of the backscatter transfer 

function (eBTF) that is robust and sensitive to the scattering 

properties of the target tissue within each ROI. 

IV. ATTENUATION COMPENSATION METHODS 

A. Reference Phantom Method 

For in vivo applications in soft tissue, the reference phantom 

method has been demonstrated to effectively compensate for 

attenuation and diffraction effects, as well as the system transfer 

function [1]. Reference RF data was acquired from a 0.5 

dB/cm- 

MHz phantom with identical transducer and system settings 

used to scan patients. A stable reference spectrum was obtained 

by averaging across 10 RF data frames and all scanlines. Each 

plaque ROI power spectrum was normalized to a reference 

power spectrum, Sref(f,d), corresponding to the same depth. An 

illustration of this normalization step is shown in figure 1. With 

the normalization step, the eBTF is defined as 

𝑒𝐵𝑇𝐹(𝑓, 𝑑) =  
𝑆𝑠𝑎𝑚(𝑓,𝑑)

𝑆𝑟𝑒𝑓(𝑓,𝑑)
                     (2)  

where the subscripts sam and ref represent the tissue sample 

and reference phantom, respectively. In a homogenous medium 

with uniform attenuation properties, the cumulative overlying 

attenuation is expressed as  

𝐴(𝑓, 𝑑)  = 𝑒{−4𝛽∙𝑓∙𝑑} ,               (3)     

where β is the slope of attenuation expressed in dB/cm-MHz.  

Substituting (1) and (3) into (2), 

𝑒𝐵𝑇𝐹(𝑓, 𝑑) =  
𝐵𝑠𝑎𝑚(𝑓,𝑑)

𝐵𝑟𝑒𝑓(𝑓,𝑑)
 𝑒4(β𝑠−β𝑅)𝑓∙𝑑,      (4)  

we see that the difference between the reference phantom 

attenuation and the attenuation of overlying tissue layers may 

still have an impact on the backscattered signals. While the 

eBTF does not need to be a perfect measure of the backscatter 

transfer function, it is desired that this robust approach permits 

the extraction of parameters sensitive to tissue properties. The 

following 3 attenuation compensation approaches were used to 

explore whether adding an additional attenuation compensation 

step to the phantom normalization improved our ability to 

characterize plaque tissue by enhancing separation of tissue 

properties.   

B. Optimum power spectral shift estimation 

The optimum power spectral shift estimator (OPSSE) [2],  is 

         
Fig. 1.  Left – Sample average ROI power spectrum from plaque tissue and average reference phantom power spectrum. 

Right – eBTF within the usable 20dB down bandwidth of 2.5 -6.9 MHz. Linear fit parameters: slope, intercept and mid-

band fit. Extreme points: maximum, minimum and corresponding frequencies. IB, a mean intensity parameter, was used 

but is not shown here. 
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a correlation-based centroid shift estimator that improves upon 

the hybrid method [3] for estimating local attenuation 

coefficients in soft tissue. OPSSE provides an estimation of the 

center frequency shift with lower variance and higher stability 

compared to previous spectral shift methods [4], [5]. While the 

approach was initially used to isolate the scattering effects of 

the target tissue [2], we explore its use here as an attenuation 

compensation method to improve estimation of our power 

spectra by directly determining the attenuation of overlying 

tissue layers, βR. 

To calculate the attenuation of overlying tissue layers, RF 

data from a large window of interest (≈10mm x 5.5mm) was 

divided into 5 axially consecutive blocks with 75% overlap. An 

average power spectrum was calculated for each block and 

normalized to a reference phantom. Following normalization, a 

Gaussian filter with center frequency (fc) and bandwidth (σ) 

similar to the transmit pulse,  

𝐺(𝑓) = 𝑒
{−

(𝑓−𝑓𝑐)
2

2𝜎2 }

 ,                           (5) 

was applied to yield the Gaussian filtered normalized spectrum 

𝐺𝑆(𝑓, 𝑑) = 𝑒
{−

(𝑓−𝑓𝑐)2

2𝜎2 }
∙

𝐵𝑠𝑎𝑚(𝑓,𝑑)

𝐵𝑟𝑒𝑓(𝑓,𝑑)
 𝑒4(β𝑠−β𝑅)𝑓∙𝑑 .      (6)     

We estimated  fc and σ by fitting a 2-term Gaussian model to 

the received signal from the reference spectrum at the depth of 

the axial transmit focus. The 0.5 dB/cm-MHz attenuation was 

added back into the spectrum prior to fitting. Steps in 

rearranging Eq. (6), shown in previous work [4], [5], ultimately 

suggest that the normalized and Gaussian filtered spectrum will 

have a Gaussian form centered at  

𝑓𝑐 =  𝑓 − (β𝑠 − β𝑅)𝑑𝜎2  .                         (7) 

OPSSE correlates the Gaussian filtered normalized spectrum 

with the following weight to estimate the shift in center 

frequency. 

𝐵𝑜𝑝𝑡 =
𝑑

𝑑𝑓
(

1

𝐺(𝑓)
)                               (8) 

A linear least-squares fit of consecutive center frequency shift 

estimates along depth was used to calculate the attenuation 

coefficient of the tissue layers overlying the carotid artery.  

C. Adventitia-based attenuation compensation 

Adventitia has been used as a reference for tissue 

characterization [6]. Our adventitia-based attenuation 

compensation approaches use backscatter from the adventitia 

of normal subjects as a reference to compensate for attenuation 

differences between the reference phantom and tissue layers 

overlying the ROI’s. 209 ROI’s were selected from the 

adventitia of 6 normal subjects. An average power spectrum 

was estimated for each ROI and normalized to a uniform 

reference phantom.  A linear least-squares regression model 

was obtained for each frequency within the fundamental 

bandwidth by fitting a line to the graph of eBTF(f) versus depth 

for all 209 ROI’s. For the one-step approach, depth was defined 

as the distance from the surface of the transducer to the starting 

edge of the ROI.  The 2-step approach adds an additional 

parameter to the linear regression model by dividing the total 

depth into 2 layers, shown in figure 2: d1, skin and fat, and d2, 

the remaining muscle and other overlying tissue in the path to 

the ROI. An additional attenuation compensation was applied 

to each plaque ROI by inserting the ROI depth into the 

regression equations and subtracting the output from the eBTF.  

D. Random Forest Classification 

A linear least squares fit of the resulting eBTF was performed 

over the fundamental bandwidth of 2.5 MHz – 6.9 MHz, and a 

set of eight spectral parameters, shown in figure 1, were used to 

classify ROI’s. These are slope, y-intercept, mid-band fit, 

integrated backscatter and the maximum and minimum powers 

with their corresponding frequencies [7]–[11]. 

A classification model for each data set was created using the 

MATLAB® treebagger [7] function, which implements the 

random forest algorithm [8]. Two-thirds of the data was 

randomly selected for training the model, while the remaining 

one third was used for cross-validation. The predicted outcomes 

of the cross-validation sets were compared to the known plaque 

types from histology to obtain the predictive accuracy, 

sensitivity and specificity of the classification models: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
All Correct Decisions

Total Cases
             (9) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
True Positive Decisions

Decisions Actually Positive
 (10)              

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
True Negative Decisions

Decisions Actually Negative
              (11) 

An overall measure of agreement between the predictions and 

histology interpretation was determined by the Kappa statistic 

κ,  

  

 
 

Fig 2. Sample grayscale image of a carotid artery from normal subject. 
Adventitia ROI in orange. The total depth of the ROI is the distance from 

the surface of the transducer to the starting edge of the ROI. Two layers of 

tissue comprise the total depth: (d1) skin/fat tissue and (d2) muscle, 

connective and other tissue. 
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κ =
𝑛𝑎− 𝑛𝜀

𝑛− 𝑛𝜀
 ,                                     (12)  

where n = number of samples, na = number of agreements and 

nε = number of agreements due to chance. The measure should 

fall between 0 and 1. Generally, a result of zero indicates low 

agreement (i.e. low predictive accuracy), while a test with 0.70 

≤ κ ≤ 1 indicates a substantial to almost perfect agreement, with 

histology [9]. 

V. RESULTS 

 The accuracy assessment of each classification system 

was based on the confusion matrix constructed from the 

predicted and known values of each cross-validation data set. 

Plaque ROI’s were classified into three types: Calcium (Ca); 

Fibrous/Fibro-Fatty (F); Hemorrhagic and/or Necrotic Core 

(H/NC). Results in Table I focus primarily on H/NC versus not 

H/NC, since this tissue type is associated with vulnerable or 

rupture-prone plaques.  Four measures were considered: overall 

Kappa statistic, H/NC accuracy, H/NC sensitivity and H/NC 

specificity. While there were no statistically significant 

differences found in any of the methods to accurately classify 

the tissue types, the 2-step adventitia-based compensation does 

trend toward being the best overall, with a Kappa statistic of 

0.70, 80% accuracy, 85% sensitivity. Specificity was similar for 

all attenuation compensation methods, between 71% and 77%. 

VI. DISCUSSION 

 This study combined ultrasound spectral analysis with 

a random forest machine learning algorithm to classify carotid 

plaque tissue. Four attenuation compensation methods were 

compared for their effects on the accuracy of our classification 

system. Specific focus was placed on H/NC. The results of this 

study demonstrate that a reference phantom alone may be 

sufficient for attenuation compensation. However, this was a 

preliminary analysis with a small sample size. Thus, trends in 

the data appear to suggest that additional compensation beyond 

the 0.5 dB/cm-MHz based phantom attenuation may be 

beneficial. Obtaining a larger sample size and more 

importantly, comparing directly to histology is needed for a 

better comparison between compensation approaches. While 

ROI’s used here were taken from homogeneous areas, plaques 

are heterogeneous by nature, and overlap between spectral 

parameter values is a likely source of inaccuracy in 

classification.  

VII. CONCLUSION 

  A 0.5 dB/cm-MHz attenuation coefficient slope is a 

reasonable choice for attenuation compensation. Our work has 

shown that additional attenuation compensation may provide a 

benefit. Specifically, using adventitia as a reference shows 

promise. The final determination of the best attenuation 

compensation approach to use will depend on comparison to 

histology. 
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TABLE I 

CLASSIFICATION SYSTEM ACCURACY 

Attenuation Compensation Method Kappa Statistic H/NC Predictive Accuracy H/NC Sensitivity H/NC Specificity 

   % CI % CI 

0.5 dB/cm-MHz phantom 0.49 67% 55% 33-77 74% 59-90 

OPSSE 0.52 69% 65% 44-86 71% 55-87 

1-step  adventitia-based 0.55 71% 60%  39-81 77% 63-92 

2-step adventitia-based 0.70 80% 85% 69-100 77% 63-92 

CI - 95% confidence interval 
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