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Abstract— The attenuation coefficient (AC) has demonstrated
the ability to classify tissue state. Linear acoustic propagation is
assumed when estimating the AC using spectral-based methods
from the ultrasonic backscatter. However, the effects of acoustic
nonlinearities can distort the backscattered power spectra
versus depth. The distortion of the power spectra could result
in a bias in the estimation of the AC. The goal of the study was
to quantify the effects of nonlinear distortion on the estimation
of AC from ultrasonic backscatter using spectral methods. We
computed the AC from backscattered signals using the spectral
log difference method and a reference phantom to account for
diffraction effects. Computational simulations and experiments
in phantoms were performed. In the experiments, three tissue-
mimicking phantoms, named A, B and C having estimated AC
values of 0.60, 0.90, and 0.20 dB/cm/MHz, respectively, and
B/A ≈ 6.6 for each phantom were scanned using a single-
element focused transducer (f/2) having a 0.5” diameter and
5-MHz center frequency. The phantoms were scanned using
six excitation levels from a high-power (HP) pulsing apparatus
(RAM-5000, Ritec, USA). The AC was estimated from phantom
A using either phantom B (high attenuation) or phantom C
(low attenuation) as the reference. The AC was estimated
at each excitation level over the analysis bandwidth (−6-dB
criterion) to determine the effects of acoustic nonlinearity on
estimation of AC. The presence of nonlinear distortion can be
quantified through the Gol’dberg number, which is inversely
proportional to the product of the nonlinearity coefficient and
attenuation. We hypothesized that because the B/A values
were approximately the same for each phantom, the effects
of nonlinear distortion would be more pronounced when using
phantom C, which had much lower attenuation. Specifically,
increased excess attenuation due to transfer of energy from
the fundamental to the harmonics would be observed more
in phantom C. The AC estimate increased from 0.57 to 0.67
dB/cm/MHz as the excitation levels increased from level one
to six when using phantom B as a reference. In contrast,
when using phantom C as reference, the estimated AC slope
of phantom A decreased from 0.57 to 0.43 dB/cm/MHz as the
excitation levels increased from level one to six. Therefore, use
of a reference with different attenuation resulted in increased
bias of AC estimates due to nonlinear distortion being this
deviation larger when using low attenuating media.

Index Terms— Attenuation coefficient, spectral log difference,
quantitative ultrasound, nonlinearity parameter

I. INTRODUCTION

Ultrasonic attenuation has been explored in tissue char-
acterization for decades including recent studies in liver
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[1], breast [2], placenta [3], or indirectly in muscle [4],
among others biological tissues. Assuming linear acoustic
propagation, the estimation of the attenuation coefficient
(AC) in the frequency domain is straightforward because the
power spectra of a gated backscattered signal can be modeled
as a product of the system acquisition effects (i.e., scanner,
transducer, beam) and effects derived from intrinsic acous-
tic properties of the medium (i.e., attenuation, backscatter
coefficient). Several attenuation estimation methods in the
frequency domain are outlined in [5].

However, acoustic propagation is a more complex phe-
nomenon because every medium is inherently acoustically
nonlinear. The Gol’dberg number can be used as a rule of
thumb to predict the degree of acoustic nonlinearity in a
medium. Assuming monochromatic plane wave propagation,
the Gol’dberg number is computed as Γ = βkM

α , where k
is the wave number, β = 1 + 1

2
B
A , B/A is the acoustic

nonlinearity parameter of the medium, M is the Mach-
number equal to the particle velocity amplitude divided by
the equilibrium speed of sound of the medium, and α is the
attenuation coefficient. Γ � 1 means that acoustic nonlin-
earity might be negligible, whereas Γ� 1 means significant
nonlinearitiy can be expected. Strong acoustic nonlinearity
implies the generation of harmonics (2nd, 3rd, etc.) where
energy is transferred out of the fundamental band.

Most attenuation estimation methods use the power spectra
of the fundamental band. Therefore, we hypothesized that
harmonic generation might lead to inaccuracies in attenuation
estimation especially when large acoustic pressures are used.
In the present work we analyzed a representative method
for AC estimation in the frequency domain, namely, the
spectral log difference for estimating the AC. Ultrasonic
waveforms distorted by acoustic nonlinearity were obtained
from computer simulations of nonlinear media; and using
a high power pulse/receiver in experiments with physical
phantoms.

II. METHODS

A. Spectral-log-difference

The attenuation coefficient α(f) of a region of interest
(ROI) having uniform scattering can be determined by com-
puting the logarithm of the ratio of power spectra corre-
sponding to two sub-windows, S(f, zp) and S(f, zd), from
a proximal window and distal window, within the ROI, as
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log
S(f, zp)

S(f, zd)
= log

D(f, zp)

D(f, zd)
+ 4α(f)(zd − zp) (1)

where

S(f, zp) = P (f)D(f, zp)b(f, zp)A(f, z0)e−4α(f)(zp−z0),

S(f, zd) = P (f)D(f, zd)b(f, zd)A(f, z0)e−4α(f)(zd−z0),

D(f, zp) and D(f, zd) correct for the beam diffraction for
the power spectra of the proximal and distal windows, re-
spectively. Moreover, additional data acquisition is obtained
from a well characterized reference phantom using the same
settings such that

log
SR(f, zp)

SR(f, zd)
= log

DR(f, zp)

DR(f, zd)
+ 4αR(f)(zd − zp), (2)

where the subscript R stands for reference. If the speed of
sound is approximately the same for the unknown medium
and the reference phantom, the diffraction terms can be
eliminated. Therefore, the attenuation coefficient can be
computed as

α(f) =
1

4L

[
log

S(f, zp)

SR(f, zp)
− log

S(f, zd)

SR(f, zd)

]
+ αR(f) (3)

where L = zd − zp. The attenuation coefficient slope (ACS)
is the slope of the α(f) vs. f , where f corresponds to
frequencies in the analysis bandwidth corresponding to the
fundamental band.

B. Computer simulation

Computer simulated data were generated with the k-Wave
MATLAB toolbox [6]. Three random media X, Y, and Z
(2% standard deviation impedance) with same acoustic non-
linearity parameters (6.6) but different ACSs: 0.6, 0.9, and
0.2 dB/cm/MHz, respectively, were simulated. The source
(and sensor) had a diameter of 0.5” and a 1” focal length
and were configured in a 3-dimensional (3D) grid with 8.8
MHz maximum supported frequency (this limitation was
set by the available computational resources). Then, a 30%
bandwidth, Gaussian modulated pulse of 3.5 MHz center
frequency was used at the source so that the second harmonic
frequency was within the supported frequency range of the
3D grid. Echoes received at the sensor were recorded for four
source pressures: 100 kPa, 500 kPa, 1MPa, and 1.5 MPa to
assess different scenarios of acoustic nonlinear development.
One hundred realizations for each media were simulated in
order to smooth out the power spectra for the spectral log
difference method.

The AC of medium X was determined using the spectral
log difference method in two cases: (1) medium Y (more
attenuating) as reference phantom and (2) medium Z (less
attenuating) as reference phantom. The −6-dB bandwidth of
the power spectra was used as the analysis bandwidth for
estimation of the ACs.

C. Experimental phantoms

For the physical experiments, three tissue-mimicking
phantoms, labelled A, B and C having estimated ACS values
of 0.6, 0.9, and 0.2 dB/cm/MHz, respectively, and B/A ≈
6.6 for each phantom [7] were scanned using a single-
element spherically focused transducer (f/2) having a 0.5”
diameter and 5-MHz nominal frequency (ISR054, NdtXducer
LLC, USA). The phantoms were scanned using six excitation
levels (see Table I) from a high-power pulsing apparatus
(RAM-5000, Ritec, USA). The input signal applied to the
transducer was a 1-cycle sinusoidal at 5-MHz.

The AC of the phantom A was determined using the
spectral log difference method in two cases: (1) phantom
B as reference phantom and (2) phantom C as reference
phantom. The analysis bandwidths for estimation of the ACs
was chosen following the same −6-dB criterion as in the
simulation part.

TABLE I: Summary of peak positive pressure and peak
negative pressure values associated with the settings used
in the experiments, measured using a needle hydrophone at
the focus of the transducer.

Peak positive
pressure (MPa)

Peak negative
pressure (MPa)

Excitation level 1 7.58 2.78
Excitation level 2 9.10 3.38
Excitation level 3 10.22 3.83
Excitation level 4 11.02 4.21
Excitation level 5 11.54 4.52
Excitation level 6 12.10 4.74

III. RESULTS

A. Computer simulation

Figure 1(a) shows the normalized averaged power spectra
of backscattered echoes for media X (sample) and Y (ref-
erence) from the gated proximal and distal windows (20 λ
axial length) centered at 12 and 24 mm depth, respectively.
For the transducer geometry used in the computer simulation,
the Rayleigh gain was πa2

λ ≈ 11.6. Therefore, the maximum
Gol’dberg numbers considering peak pressures at the focal
length were between ΓX ∈ [1.35, 20], ΓY ∈ [0.9, 13.5], and
ΓZ ∈ [4, 61], over the source pressures range. Therefore,
a strong second harmonic (centered around 7 MHz) was
observed when using the largest source pressure. Similar be-
havior was observed for media X (sample) and Z (reference)
Fig. 1(b) shows the strongest 2nd harmonic development
for the lower attenuating medium Z as expected from the
Gol’dberg number calculation.

The attenuation coefficient estimate of medium X using
the references Y (high attenuating) and Z (low attenuating)
are shown in Fig. 2(a) and 2(b), respectively. We used an
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(a) Sample X (B/A = 6.6 and ACS = 0.6 dB/cm/MHz).
Reference Y (B/A = 6.6 and ACS = 0.9 dB/cm/MHz)

(b) Sample X (B/A = 6.6 and ACS = 0.6 dB/cm/MHz).
Reference Z (B/A = 6.6 and ACS = 0.2 dB/cm/MHz)

Fig. 1: Top. Power spectra from gated proximal and distal
windows, respectively, using 100 kPa (blue), 200 kPa (or-
ange), 1 MPa (yellow) and 1.5 MPa (purple) source pressures
(−6-dB level in dashed). Second harmonic is stronger in
the distal window located in focal region. Higher second
harmonic levels are produced at the largest source pressure
1.5 MPa. Both computer phantoms were simulated with
the same nonlinearity parameter B/A. Hence, the stronger
level of nonlinearity observed in the power spectra of the
sample is due to the lower attenuation (0.6 dB/cm/MHz)
compared with the reference (0.9 dB/cm/MHz). The low
attenuating phantom is more sensitive to larger acoustic
pressures. Bottom. Reference attenuation was lower (0.2
dB/cm/MHz) than that in the sample; hence, the stronger
level of nonlinearity observed in the power spectra of the
reference, although being simulated with the same B/A.

analysis bandwidth from 2.4 to 4.2 MHz (roughly 50%
bandwidth). At low source pressures, the estimated ACS
were consistent but for the highest pressure the ACS was
+20% larger with a tendency to increase. When using the
reference Z, however, the trend of the ACS decreased with
larger source pressures decreasing by −20% and −40% at 1

MPa and 1.5 MPa source pressures, respectively. Thus, the
deviation was strongly pronounced when the low attenuating
phantom was used as reference.
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(a) Medium X - reference Y
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(b) Medium X - reference Z

Fig. 2: Attenuation coefficient slope of medium X, when
using medium Y (top) and Z (bottom) as the reference.
The ground truth attenuation coefficient set in simulations
is depicted in dashed. The medium Z is low attenuating,
hence, more sensitive to acoustic nonlinear effects.

B. Experimental phantoms

The AC estimates of phantom A using the references
B (high attenuating) and C (low attenuating) are shown in
Figures 3(a) and 3(b), respectively. It was observed that more
consistent AC estimates were obtained when using references
with higher attenuation coefficients, i.e., phantoms A and
B, whereas more inconsistency was observed when using
phantom C as the reference. Similar to the simulations, in
this case, the Gol’dberg numbers for the phantoms A, B and
C were in the range ΓA ∈ [8.8, 14], ΓB ∈ [5.9, 9.4], and
ΓC ∈ [26.4, 42.1], respectively. Therefore, more nonlinear
distortion of the fundamental band was expected in the
phantom C, leading to more bias in AC estimates.

IV. DISCUSSION

The presence of nonlinear distortion can be quantified
through the Gol’dberg number, which is proportional to
the ratio of the nonlinearity coefficient and attenuation. In
computer simulations we confirmed that both the nonlinearity
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(a) Phantom A - reference phantom B
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(b) Phantom A - reference phantom C

Fig. 3: ACS of phantom A, when using phantom B (top) and
C (bottom) as the references. The ground truth AC using a
through transmission technique is depicted in dashed. The
phantom C had lower attenuation and, hence, was more
sensitive to acoustic nonlinear effects.

parameter and the acoustic attenuation of the medium affect
the generation of the 2nd harmonic. Thus, spectral methods
for AC estimation that use the fundamental band might
provide biased AC estimates when non negligible energy is
transferred out of the fundamental band.

In the physical experiments, we hypothesized that because
the B/A values were approximately the same for each
phantom, the effects of nonlinear distortion would be more
pronounced in phantom C, which had much lower attenua-
tion. Specifically, increased excess attenuation due to transfer
of energy from the fundamental to the harmonics would be
observed more in phantom C. Figure 3(a) shows the AC slope
estimated for phantom A versus excitation level when using
phantom B as a reference. The ACS estimate varied from
0.57 dB/cm/MHz at level one to 0.67 dB/cm/MHz at the
level six, increasing quasi-monotonically. In contrast, when
using phantom C as reference (Fig. 3(b)) the estimated ACS
of phantom A decreased monotonically from 0.57 to 0.43
dB/cm/MHz as the excitation levels increased from level
one to six. In the experiment, using references with different
attenuation coefficients as the sample resulted in increased
bias of AC estimates due to nonlinear distortion. This is
because higher frequencies are more rapidly transferred to

higher harmonics resulting in a sloping effect over distance in
the backscattered power spectra for lower attenuating media.
When using a more attenuating reference phantom, and
assuming low nonlinear distortion at the proximal window,
the slope of the distal window in the sample is more
attenuated than in the reference. Thus, by the negative sign
in Eq. 3, an apparent increase in ACS can explained. The
opposite (decreasing ACs over excitation levels) occurs when
the reference phantom has lower attenuation than the sample.
However, the effect is strong because the nonlinear effects
are enhanced in low attenuating media.

In conclusion, the study findings suggest that the ACS
estimates can be biased when large acoustic pressures are
employed in the spectral log difference method. To prevent
biases, tradeoffs between the attenuation of the reference
material, B/A and needs for signal strength should be
considered.
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