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Abstract—Compression of medical ultrasound images is 

necessary in order to meet storage and transmission 

requirements. Moreover, de-speckling is essential for 

diagnostic applications. We propose an algorithm for 

simultaneous compression and de-speckling of ultrasound 

images, based on optimization of quantization parameters 

applied on the coefficients of the coding transform. The 

optimization is applied in the rate-fidelity space, such that 

for a given target compression ratio, an optimal fidelity is 

obtained with respect to an a-priori known de-speckled 

image. The algorithm was tested on a set of fetal images. 

Results show that the reconstructed images better 

resemble the de-speckled images, compared to those 

obtained using standard quantization. 

 
Keywords—Image compression, quantization, de-speckling, 

fidelity, fetal ultrasound images.  

I. INTRODUCTION  

 The ever growing use of medical ultrasound images for 
diagnostics poses challenges in terms of storage, transmission, 
processing and image enhancement [1]. Image quality in 
ultrasound B-mode has significantly improved during the last 
years, however, images are inherently noised with granular-
patterned speckle noise, which is produced by interfering 
echoes backscattered from the object heterogeneities. Speckle 
noise impairs the image contrast and obscures image details, 
and interferes with CAD (computer aided detection), image 
segmentation and registration [2].  

 A variety of methods for image de-speckling have been 
studied in recent years [3]. Recently, non-local patch and 
Bayesian-based algorithms, namely the Non-Local-Means 
method (NLM) have been proposed for speckle reduction [4]. 
These algorithms yield improved results in terms of speckle 
de-noising and edge preservation. Furthermore, previous 
techniques for ultrasound image compression have been 
suggested [5,6], and it was demonstrated that compression 
ratios of 20:1 to 40:1 are attainable with fair image quality. 

 We propose a method that yields compressed images, 
whilst effectively reducing speckles and preserving the edges. 
The proposed method enables to operate under the constraint 
of a given target bit-rate. Our algorithm is based on a rate-
fidelity optimization of the quantization parameters in 
Wavelet transform coding. The fidelity of the reconstructed 
image is measured with respect to an a-priori known de-
speckled image. This a-priori image may be obtained by 
applying any previously tested de-speckling algorithm; in this 

work, we demonstrate the method for the case where the de-
speckling is applied using the NLM method. 

II. METHODS 

The optimization algorithm used in this work is based on 

the scheme proposed in [7], where a fidelity measure of the 

decoded (de-compressed) image with respect to the a-priori 

de-speckled image is maximized for the given target bit-rate.  

A. Fidelity Measure 

We propose a fidelity measure that is a combination of the 

SSIM (Structural Similarity) and EP (Edge Preserve) 

measures. The well-known SSIM is a metric that is 

considered to reflect the similarity between two images, as 

perceived by the human visual system [8]. Previous work has 

shown that SSIM is more sensitive than Peak-Signal-to-

Noise-Ration (PSNR) to degradations resulting from 

transform-based compression [9]. 

Regarding the EP metric, it is a measure of the ability of 

the speckle reduction method to preserve edges in the image 

[10]. It is defined as: 

𝐸𝑃(𝑓, 𝑓) =
Γ(∆𝑆𝑓−∆𝑆𝑓

̅̅ ̅̅ ̅,∆𝑆�̂�−∆𝑆�̂�
̅̅ ̅̅ ̅)

√Γ(∆𝑆𝑓−∆𝑆𝑓̅̅ ̅̅ ̅,∆𝑆𝑓−∆𝑆𝑓̅̅ ̅̅ ̅)∙Γ(∆𝑆�̂�−∆𝑆�̂�
̅̅ ̅̅ ̅,∆𝑆�̂�−∆𝑆�̂�

̅̅ ̅̅ ̅)
                (1) 

where ∆𝑆𝑓 , ∆𝑆�̂�  are the approximations of the Laplacian 

operator on the original and filtered images, respectively, and 

the inner product Γ(∙,∙) is defined as 

Γ(𝑡1, 𝑡2) ≜ ∑ 𝑡1(𝑖, 𝑗) ∙ 𝑡2(𝑖, 𝑗)(𝑖,𝑗)∈𝐼𝑚                                      (2) 

where 𝑖, 𝑗 is the pixel's position in the image. ∆𝑆𝑓
̅̅ ̅̅ ̅, ∆𝑆�̂�

̅̅ ̅̅ ̅ are the 

mean values of ∆𝑆𝑓 , ∆𝑆�̂� , respectively, calculated over the 

entire images. The closer the 𝐸𝑃 measure is to 1, the better is 

the ability of the de-speckling method to preserve the image 

edges. 

We define the Fidelity Index (FI) for our optimization as: 

𝐹𝐼 = 𝑆𝑆𝐼𝑀(𝑓, 𝑓𝑆𝑅) + 𝜆𝐸𝑃(𝑓, 𝑓)                                           (3)                

where 𝑓 ,  𝑓𝑆𝑅 ,  �̂�  are the original, speckled reduced and 

reconstructed images, respectively; and  𝜆  is a positive  

constant. As discussed above, the speckle suppressed image 

𝑓𝑆𝑅 may be obtained using any de-speckling algorithm. In this 

work, we chose to apply the NLM method.  

B. Proposed Algorithm 

The basic idea of the optimization algorithm is to start with 

an initial quantization vector, which corresponds to a certain 

point in the rate-fidelity domain. Then, for each iteration, one 

entry of the vector is updated such that the ratio between the 
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Figure 1 – From left to right: Original fetal image, NLM de-speckled, reconstructed after JPEG-2000 coding, and reconstructed after proposed 

method. Top row – Fetal #1; Bottom row – Fetal #2.   
 

 increase (decrease) in FI to the decrease (increase) in the 

compression ratio (CR) is maximized (minimized). This FI-

CR ratio is actually the slope in the rate-fidelity domain. The 

algorithm converges when the target compression ratio is 

reached. 

We summarize the steps of the algorithm: 

Input: Target compression ratio, denoted 𝐶𝑅𝑡𝑟𝑔𝑡. 

           Source (input) image 𝑓𝑠𝑟𝑐, to be optimally coded. 

           Target image 𝑓𝑡𝑟𝑔𝑡 (𝑓𝑡𝑟𝑔𝑡   is the de-speckled version of 

𝑓𝑠𝑟𝑐). 

           Quantization multiplicative update step 𝑠 > 1. 

Output: Quantization vector 𝑞. 

Step 1: Initialize the 3𝑁𝐿 + 1 entries of quantization vector 𝑞 

(𝑁𝐿 is the number of Wavelet decomposition levels). 

Step 2: Calculate the compression ratio and the reconstructed 

image 𝑓 using the current vector 𝑞, and denote it by 𝐶𝑅𝑐𝑢𝑟𝑟.  

Step 3: Calculate the current fidelity index:  

𝐹𝐼𝑐𝑢𝑟𝑟 = 𝑆𝑆𝐼𝑀(𝑓, 𝑓𝑡𝑟𝑔𝑡) + 𝜆𝐸𝑃(𝑓, 𝑓𝑠𝑟𝑐 )                               (4) 

Step 4.1: If 𝐶𝑅𝑐𝑢𝑟𝑟 ≤ 𝐶𝑅𝑡𝑟𝑔𝑡, then for each 𝑖 = 1, … , 3𝑁𝐿 +

1, define: 

∆𝑖𝐹𝐼 ≜ 𝐹𝐼𝑖,𝑛𝑒𝑥𝑡 − 𝐹𝐼𝑐𝑢𝑟𝑟                                                       (5a)                                                

and 

∆𝑖𝐶𝑅 ≜ 𝐶𝑅𝑖,𝑛𝑒𝑥𝑡 − 𝐶𝑅𝑐𝑢𝑟𝑟                                                    (5b)                     

where 𝐹𝐼𝑖,𝑛𝑒𝑥𝑡  , 𝐶𝑅𝑖,𝑛𝑒𝑥𝑡   are the fidelity index and 

compression ratio, respectively, obtained when the i-th entry 

in the vector, 𝑞(𝑖), is replaced with 𝑠 ∙ 𝑞(𝑖). 

Then, find the index 𝑖𝑚𝑎𝑥  which satisfies: 

𝑖𝑚𝑎𝑥 = 𝐴𝑟𝑔 max
𝑖

{
∆𝑖𝐹𝐼

∆𝑖𝐶𝑅
}                                                           (6) 

and update the table's 𝑖𝑚𝑎𝑥-th entry according to 

𝑞(𝑖𝑚𝑎𝑥) → 𝑠 ∙ 𝑞(𝑖𝑚𝑎𝑥)                                                             (7) 

Step 4.2: If 𝐶𝑅𝑐𝑢𝑟𝑟 ≥ 𝐶𝑅𝑡𝑎𝑟𝑔𝑒𝑡, then for each 𝑖 = 1, … , 𝑁𝐿 +

1, define: 

∆𝑖𝐹𝐼 ≜ 𝐹𝐼𝑖,𝑛𝑒𝑥𝑡 − 𝐹𝐼𝑐𝑢𝑟𝑟                                                        (8a) 

and 

∆𝑖𝐶𝑅 ≜ 𝐶𝑅𝑖,𝑛𝑒𝑥𝑡 − 𝐶𝑅𝑐𝑢𝑟𝑟                                                   (8b) 

where  𝐹𝐼𝑖,𝑛𝑒𝑥𝑡 , 𝐶𝑅𝑖,𝑛𝑒𝑥𝑡   are the fidelity index and 

compression ratio, respectively, obtained when the 𝑖-th entry 

in the table, 𝑞(𝑖), is replaced with 𝑞(𝑖)/𝑠. 

Then, find the index 𝑖𝑚𝑖𝑛  which satisfies: 

𝑖𝑚𝑖𝑛 = Argmin
𝑖

{
∆𝑖𝐹𝐼

∆𝑖𝐶𝑅
}                                                          (9) 

and update the table 𝑖𝑚𝑖𝑛-th entry according to 

𝑞(𝑖𝑚𝑖𝑛) → 𝑞(𝑖𝑚𝑖𝑛)/𝑠.                                                         (10) 

Step 5: Repeat steps 2, 3 and 4 until |𝐶𝑅𝑐𝑢𝑟𝑟 − 𝐶𝑅𝑡𝑟𝑔𝑡| < 𝜀, 

where 𝜀 is a pre-determined tolerance. 

 

III. RESULTS AND DISCUSSION 

We tested the proposed method on fetal images. Our 

algorithm's performance was compared with the JPEG-2000 

scheme for the same bit-rate. The performance was evaluated 

in terms of the SSIM and PSNR metrics of the reconstructed 

images with respect to the de-speckled image.  

The results are presented in Fig. 1, where the optimization 

was applied over the FI as in Eq. (3), with 𝜆 = 0.3. From a 

qualitative point of view, our method yields de-noised images 

which are similar to the de-speckled image, while the JPEG-

2000 reconstructions better resemble the original image. The 

resulting fidelity metrics and bit-rates are summarized in 
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Table 1, where it is shown that our method achieves higher 

values of fidelity with respect to the de-speckled images. 

 
 Bit-rate 

(bpp) 
SSIM  
JPEG2000 

SSIM 
Proposed 

PSNR  
JPEG2000 

(dB) 

PSNR  
Proposed 

(dB) 

Fetal 
#1 

0.35 0.55 0.58 31.9 32.7 

Fetal 

#2 

0.29 0.71 0.73 33.9 35.1 

Table 1 - Bit-rates, SSIM and PSNR for fetal images using JPEG-

2000 and the proposed method. 

 

IV. CONCLUSIONS 

In this work an algorithm for simultaneous compression and 

de-speckling of ultrasound medical images was proposed. 

The algorithm is based on finding the optimal quantization 

parameters for Wavelet image coding, such that the 

reconstructed image best resembles a target de-specked 

image. Results on real clinical fetal images demonstrate the 

ability of the method to achieve de-speckled images with bit-

rates comparable to existing methods. 
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