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Abstract – In this study, the aim is to detect an induction 
motor’s winding faults by using independent component 
analysis (ICA). Many laboratory experiments have been done 
on an induction motor to check the performance of the 
proposed method.  The phase currents of the induction motor 
are used in the fault detection algorithm. The algorithm is 
implemente d by using MATLAB. The proposed method is 
compared to FFT solution to see its ability to distinguish fault 
currents. It has been observed that the proposed method based 
on ICA can efficiently be used to detect induction motors 
winding faults. 
12345 
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I. INTRODUCTION 

Nowadays, induction motors are widely used in industry 
due to their low cost and mechanical stability. They former 
the critical components of the production processes. Faults 
cause time and product losses to the production processes. If 
the faults can not be determined in the complex systems 
their early stage, they may cause much money and man 
losses. Turn faults in the stator winding of an induction 
machine leads to an asymmetry between the three phases, 
causing undesirable motor behavior. This insulation 
breakdown in the stator winding corresponds to nearly 40% 
of the total motor failures. [1]. 

Generally speaking, there are three types of fault in the 
induction motors: stator, rotor and bearing fault. Any fault in 
the rotor causes high temperature, vibration and torque 
changes in the motor. Mechanical fault detection methods 
are needed to determine rotor faults. These methods are 
based on detecting and analyzing of the rotor and stator 
currents [2], [3]. The main problem in the three phase 
induction motors is to detect incipient faults [4], [5]. Hence, 
incipient fault detection and diagnosis (FDD) problem have 
been investigated in literature more.  

In this study, the main aim is to detect induction motor 
faults in real time to use motor current information. This 
method can also be called current signal processing (CSP). 
CSP is also used to detect broken bar faults and non-uniform 
air gap faults [7]. CSP methods are generally based on fast 
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Fourier transform (FFT). Lately, Wavelet based methods are 
used to solve FDD problems [6], [8]. 
Principal component analysis (PCA) and ICA used to solve 
FDD problems is called statistical method. These methods 
can be used to solve FDD problems in real time to lessen the 
data length. In literature, one can see several different 
implementations of the PCA and ICA [9], [10], [11]. 
 

II. APPLYING ICA to FAULT DETECTION 
ALGORITHM 

2.1 ICA Background 
ICA decomposes mixed input data into a set of independent 
components (ICs) without any information about the 
distribution of the sources, i.e. blind separation of sources. 
Whereas Principal Component Analysis (PCA) uses second 
order spatiotemporal correlation information for data 
decomposition, ICA uses higher-order statistics. 
 

ICA can simply be defined by using a statistical “latent 
variables” model. Assume that we observe n linear mixtures 

nxx ,...,1  of n independent components  
 

njnjjj sasasax +++= ...2211  for all j.         (1) 

 
We assume that each mixture jx  as well as each 

independent component ks  is a random variable, instead of 

a proper time signal. The observed values )(tx j , e.g., the 

microphone signals in the cocktail party problem, are then a 
sample of this random variable. Without loss of generality, 
we can assume that both the mixture variables and the 
independent components have zero mean: If this is not true, 
then the observable variables ix  can always be centered by 
subtracting the sample mean, which makes the model zero-
mean. It is convenient to use vector-matrix notation instead 
of the sums like in the previous equation. Let us denote by x 
the random vector whose elements are the mixtures 

nxx ,...,1 and likewise by s the random vector with 

elements nss ,...,1 . Let us denote by A the matrix with 

elements ija . Generally, bold lower case letters indicate 

vectors and bold upper-case letters denote matrices. All 
vectors are understood as column vectors; thus Tx , or the 
transpose of x, is a row vector. Using this vector-matrix 
notation, the above mixing model is written as  
 

Asx = .             (2) 
 
Sometimes we need the columns of matrix A; denoting them 
by ja  the model can also be written as 
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The statistical model in Eq. 2 is called independent 

component analysis, or ICA model. The ICA model is a 
generative model, which means that it describes how the 
observed data are generated by a process of mixing the 
components is . The independent components are latent 
variables, meaning that they cannot be directly observed. 
Also the mixing matrix is assumed to be unknown. All we 
observe is the random vector x, and we must estimate both 
A and s using it. This must be done under as general 
assumptions as possible. 
 

The starting point for ICA is the very simple 
assumption that the components is  are statistically 
independent. We must also assume that the independent 
component must have nongaussian distributions. However, 
in the basic model we do not assume these distributions 
known (if they are known, the problem is considerably 
simplified.) For simplicity, we are also assuming that the 
unknown mixing matrix is square. Then, after estimating the 
matrix A, we can compute its inverse, say W, and obtain the 
independent component simply by: 
 

Wxs =             (4) 
 

ICA is very closely related to the method called blind 
source separation (BSS) or blind signal separation. A 
“source” means here an original signal, i.e. independent 
component, like the speaker in a cocktail party problem. 
“Blind” means that we no very little, if anything, on the 
mixing matrix, and make little assumptions on the source 
signals. ICA is one method, perhaps the most widely used, 
for performing blind source separation. In many 
applications, it would be more realistic to assume that there 
is some noise in the measurements, which would mean 
adding a noise term in the model. For simplicity, we omit 
any noise terms, since the estimation of the noise-free model 
is difficult enough in itself, and seems to be sufficient for 
many applications [14], [15].   

 
In literature, several different implementations of ICA 

can be seen. For example, Fast ICA is an efficient method to 
estimate ICs in time series. It is observed that, this method is 
10-100 times faster than the other methods that are used to 
reduce data dimension [12], [13]. 
 
2.2 Fault Detection with ICA 
In this study, ICs that are obtained with fast ICA have been 
used in the fault algorithm to detect induction motors 
incipient faults. The fault detection algorithm proposed 
based on ICA is as:  
 

1. Obtain s (i.e., ICs) and A matrices by using Eq. 2 
and x matrix that is constructed by using motor 
current when the motor woks healthy condition.  

2. Calculate W matrix by utilizing the relationship 
between W and A matrices as 1−= AW .  

3. Estimate Es by using W matrix and mx  matrix that 
is a measurement matrix constructed by using 
motor current when the motor woks real time.  

4. Calculate residual with Euclidian norm as:  
22

mE WxWxssR −=−=           (5) 

5. Determine a threshold value to decide fault. If the 
calculated residual exceeds this value, which means 
that any incipient faults occurs in the motors. 

 
III. EXPERIMENTAL STUDIES 

A custom-built 1 kVA, four poles, 50 Hz asynchronous 
motor is used for laboratory experiments. Different tap 
windings are extracted to perform internal fault studies. A 
number of internal fault are performed to the see accuracy of 
the proposed fault detection system. Fig. 1 shows the real 
time laboratory experiments.  

 
Figure 1. Laboratory test pad 

 
A fault switch and an electromechanical relay are used 

for creating internal faults in stator windings. The fault time 
instant is selected arbitrarily. A fault resistance of Ω5.1  is 
used for limiting the circulating current between the turns. 
Each phase of the induction motor has tap windings between 
the turns 20-40-60 and 80. This resistance is connected in 
series to the short-circuited turns. True rms values of the 
stator currents are form in 80x3 matrix type and used for 
ICA computation. The sampling frequency is set to 4000 Hz 
which yields to 80 samples for a period. It is observed that 
80 samples are quite enough for ICA computation to detect 
stator winding faults.  
 

Real-time current samples are then acquired and 
recorded by using data acquisition card (NI-DAQ PCI 
16MIO-E). Matlab ™ is used for required calculations. 

 
Fig. 2 shows the acquired instantaneous three phase 

currents and calculated true rms values for phase A, B and C 
during normal condition.  

 
Figure 2. Instantaneous and rms stator currents during normal conditions 

 
The first row the instantaneous stator currents while the 

second row shows the calculated true rms values during no-
fault condition. Fig. 3 shows the calculated ICA components 
during normal condition. To make it clear visually, only one 
period data is drawn in Fig. 3.   
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Figure 3. The calculated ICA components of the stator currents during 

normal condition 
 

Fig. 4 shows the phase currents and calculated true rms 
values during an internal fault in Phase A winding between 
the turns 60 – 80. The fault is created between the 0.66 sec. 
and 0.76 sec.  

 
Similarly, Fig. 5 shows the calculated ICA components 

for this particular internal fault study. The error vector is 
calculated by using Eq. 4. 

 

 
Figure 4. An internal fault condition in Phase A 

 
Since a fault resistance of 1.5 Ω is used for limiting the 

short-circuited current, this is also assumed as high 
impedance fault. As seen in Fig. 4 the phase currents do not 
change significantly and it is hard to decide whether there is 
an internal fault.  

 
The following Fig. 5 and Fig. 6 show the calculated 

error vector during normal condition and faulty condition. 
As seen clearly from Fig. 5 and Fig. 6 the magnitude of the 
error vector during internal fault condition is much bigger 
than it during no fault condition. A pre-specified threshold 
value is defined to distinguish fault currents.   

 
Figure 5. The calculated error vector under normal condition 

 
Figure 6. The calculated error vector during an internal fault in Phase A 

 
It is clearly seen in Fig. 6 that the proposed algorithm is 

able to detect the fault current in a half period.  
 

The classical approach used in the industrial 
environment for the detection of broken rotor bars, bearing 
faults or turn faults in induction machines is based on the 
analysis of the stator currents in steady state using harmonic 
components. In this work, the proposed fault detection 
algorithm is compared to FFT to see its performance to 
distinguish fault currents. The following Fig. 7 shows the 
rms values of the stator currents and harmonic components 
of the Phase A current. Harmonic components consist of the 
ratio of DC / first, second / first, third / first and fifth / first 
components. Similarly, Fig. 8 and Fig. 9 are obtained for 
Phase B and Phase C currents, respectively. 

 
Figure 7. FFT solution for the Phase A current during an internal fault  
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Figure 8. FFT solution for the Phase B current during an internal fault  

 
Figure 9. FFT solution for the Phase C current during an internal fault  

 
As seen from the Fig. 7, Fig. 8, and Fig. 9 the harmonic 

components do not give the significant information. Even if 
the harmonic components occur in fault region in Fig. 9, 
these peaks can often occur in power system due to some 
transient phenomena events. However, the proposed 
algorithm distinguishes the fault currents from rated currents 
effectively as seen in Fig.6.  
 

IV. CONCLUSION 
In this study, a new fault detection method based on ICA 
has been proposed and implemented to detect induction 
motors incipient faults. Many different incipient faults are 
created on the three phase 1KVA induction motor to test the 
performance of the fault detection algorithm. It is observed 
that the proposed method successfully detects induction 
motors incipient faults. The proposed method is then 
compared to FFT solution to see its ability to distinguish 
fault currents. 
 

As a future work, we are planning to use ICA with 
Neural Networks to diagnose faults correctly (i.e, to give 
priority and degree about fault types).  
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