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 
Abstract-- This paper presents a new algorithm for protection 

of power transformer by using Optimal Radial Basis Function 
Neural Network (ORBFNN). ORBFNN based technique is 
applied by amalgamating the conventional differential protection 
scheme of power transformer and internal faults are precisely 
discriminated from inrush condition. The proposed method 
neither depend on any threshold nor the presence of harmonic 
contain in differential current. The RBFNN is designed by using 
Particle Swarm Optimization (PSO) technique. The proposed 
RBFNN model has faster learning and detecting capability than 
the conventional neural networks. A comparison in the 
performance of the proposed ORBFNN and more commonly 
reported Feed Forward Back Propagation Neural Network 
(FFBPNN), in literature, is made. The simulations of different 
faults, over-excitation, and switching conditions on three 
different power transformers are performed by using 
PSCAD/EMTDC software and presented algorithm is evaluated 
by using MATLAB. The test results show that the new algorithm 
is quick and accurate. 
 

Index Terms-- RBFNN, Artificial neural network, Power 
transformer protection, FFBPNN, Differential relaying, PSO, 
Protective relaying. 

I.  INTRODUCTION 

transformer is one of the important element among other 
components of power system. Electrical protective 
relaying of power transformer is usually based on a 

percentage differential relaying technique in which transient 
magnetizing inrush and fault must be distinguished because 
relays are prone to mal-operation in presence of inrush 
currents, which result from transients in transformer magnetic 
flux [1-2]. To over come from this problem, initially 
researchers were proposed three techniques i.e. (i) by 
introducing time delay in the differential relay  (ii) To 
desensitize the relay for a given time, to override the inrush 
current (iii) adding a voltage signal to restrain or to supervise 
the differential relay. And latter on, to enhance the reliability 
of differential protection, researchers were utilized voltage 
signals, current signals and differential power [3] in three 
different methods that can be categorized as (a) Harmonic 
Restraint (HR), (b) Waveform Identification (WI) and (c) 
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Other methods [4]. The HR is based on the fact that the 
second harmonic (sometimes the fifth) component of the 
magnetizing inrush current is considerably larger than in a 
typical fault current. The literature reveals that the first 
method, based on harmonic restraint, has been used 
extensively [5-8]. The HR based method sometime fails to 
prevent false tripping of relays because high second harmonic 
component are generated during internal faults and low 
second harmonic component generated during magnetizing 
inrush having modern core material of power transformer [9-
12]. Therefore, the detection of second/fifth harmonic can not 
be taken as a sufficient index to discriminate between the 
magnetizing inrush and fault condition of power transformer. 
The second method consists of distinguishing magnetizing 
inrush and over-excitation condition from internal fault 
condition on the basis of waveform identification. This 
method was carried out by utilizing the differential current 
peaks, dead angle and the length of time intervals during 
which the differential current is near to zero [13-17]. In case 
of third method, multi-criteria aggregation technique based on 
fuzzy logic, differential power method, correlation analysis 
based techniques etc. were employed. However, for such 
approaches, there are no recommended criteria for setting the 
internal parameters of a relay. Another disadvantage of these 
methods includes the need to use voltage transformers and 
increased protective algorithm calculation cost. 

The development of Artificial Neural Network (ANN) 
provides opportunity to improve and remove the drawback of 
conventional differential relaying to researchers. Since 1994 
to 2007, mostly Feed Forward Back Propagation Neural 
Network (FFBPNN) approach is reported for discriminating 
different operating conditions of power transformer. In 1994, 
L.G. Preze et al. proposed an algorithm based on Multilayer 
Feed Forward Neural Network (MFFNN) to discriminate 
between magnetizing inrush and internal fault condition [12]. 
In 1995, P. Bastard et al. presented multilayer perceptions for 
power transformer differential relaying [18]. Similarly, up to 
2007, many other researchers consider Multilayer Feed 
Forward Neural Network (MFFNN) for power transformer 
protection by considering different parameter like differential 
current, power, voltage and flux etc. [4, 19-23]. 

In recent time Radial Basis Function Neural Networks 
(RBFNNs), due to several important advantages over 
traditional multilayer perceptions, have become very popular 
[24-25]. These advantages include: 
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 Locality of radial basis function and feature 
clustering algorithms and independent tuning of 
RBFNN parameters. 

 Sufficiency of one layer of non-linear elements for 
establishing arbitrary input-output mapping. 

 Solution of clustering problem can be performed 
independently from the weights in output layers. 

 RBFNN output in scarcely trained areas of input 
space is not random, but depends on the density of 
the pairs in training data set. 

These properties lead to potentially quicker learning in 
comparison to multilayer perceptions trained by back 
propagation [26]. 

This paper introduces a simple decision making method 
based on the Optimal Radial Basis Function Neural Network 
(ORBFNN) for discriminating internal faults from inrush 
currents. This algorithm has been developed by considering 
different behaviors of the differential currents under fault and 
inrush conditions. A comparison between the performance of 
ORBFNN and FFBPNN is presented in distinguishing 
between magnetizing inrush and internal fault condition of 
power transformer. Generally, training of RBFNN includes K-
means clustering for calculation of centers, r-nearest neighbor 
heuristic for width or smoothing factor and subsequent 
training of output layer weights by least square techniques 
[27-29]. However, in this work optimal width or smoothing 
factor is obtained by using Particle Swarm Optimization 
(PSO) technique because smoothing factor is very important 
for RBFNN in pattern recognition and classification problems. 
 

II.  RADIAL BASIS FUNCTION NEURAL NETWORK 

Radial Basis Function (RBF) is one of the member of feed 
forward neural network family with an input layer used as 
sensory unit (Sensing Unit) containing n neurons through 

which input vector 
n

x R is fed to a single hidden layer 
containing q(t) RBF-type hidden neurons (at t iteration) and 
an output layer, containing L neurons. In RBFNN model, the 
activation function of hidden unit is determined by using the 
radial distance between the input vector and prototype vector. 
Generally, Euclidean norm is used to measure the radial 
distance. The network is designed to perform a nonlinear 
mapping from input space to the hidden space, followed by a 
linear mapping from the hidden space to the output space. The 
performances of RBFNN critically depend on the choice of 
the centers and width factor. The centers in RBFNN should be 
selected to minimize the total distance between the data and 
the centers so that the centers can properly represent the data. 
A simple and widely adopted square error cost function is 
used for network training. The square error E(t) at iteration t is 
computed in standard way: 
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Where dk(t) is the desired output and yk(t) is the output of 
neuron k given by: 
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connecting the RBF hidden neurons with the output neurons 
and Φ(t) is the output of the hidden layer. Each hidden 
neurons represents a single RBF and computes a kernel 
function of x using any one of the function given in section 
IV. But in this paper Gaussian kernel function is considered as 
activation function, as suggested in [30]. The activation 
function is given as follows: 
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Where, cj = [cj1, cj2, ---------- cjn] and σj = [σj1, σj2, -------, σjn] are the 
center and width factor of the jth hidden neuron, respectively. 

The schematic diagram of three layered radial basis function 
neural network is shown below in Fig.1. 
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Fig. 1.  Typical radial basis function neural network architecture 

III.  PARTICLE SWARM OPTIMIZATION TECHNIQUE 

PSO is a population based stochastic optimization technique 
developed by Eberhart and Kennedy in 1995 [31], inspired by 
social behavior of birds flocking or fish schooling. The main 
advantages of PSO algorithm are simple concept, easy 
implementation, robustness to control parameters and 
computational efficiency when compared with mathematical 
algorithm and other heuristic optimization techniques. PSO is 
designed and proved to be very effective in solving real 
valued global optimization problems [32]. Moreover, it does 
not require gradient information of the objective function 
under consideration, but only its values, and it uses only 
primitive mathematical operators. 

In PSO, population is called swarm and individuals (i.e. the 
points) are called particles. Each particle moves with an 
adaptable velocity within search space and retains in a 
memory the best position it ever encountered. This best 
position is shared with other particles in the swarm after each 
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iteration. Two variants of the PSO algorithm were developed 
[33]. One with a global neighborhood, and other with a local 
neighborhood. According to the global variant, each particle 
moves towards its best previous position and towards the best 
particle in the whole swarm, whereas according to the local 
variant, each particle moves towards its best previous position 
and towards the best particle in its restricted neighborhood 
[33]. In general, the global variant of PSO exhibits faster 
convergence rates, although, in some cases it may reduce the 
swarm’s diversity very fast, thereby getting trapped in local 
minimizers. On other hand, the local variant, especially when 
the neighborhood size is small, exhibits superior exploration 
capabilities at the cost of slower convergence. 

Assuming an n-dimensional search space, the position and 
velocity of individual i are represented as the vector 

 1 2 3 = , , ...i i i i inZ z z z z  and  1 2 3 = , , ...i i i i inV v v v v  respectively 

in PSO algorithm. 
Let the best previous position 

 1 2 3 = , , ...i i i i inBP bp bp bp bp and  1 2 3 = , , ...i i i i inGB gb gb gb gb , 

respectively be the best position of individual i and its 
neighbor’s best position so far. The updated velocity of 
individual i is modified by using following equations: 
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Where, 
 =k

iV Velocity of individual i at instant k  

w = Weight parameter 
1, 2c c = Two positive constants called cognitive and social 
1, 2r r = Random number between 0 and 1 

k
iZ = Position of individual i at iteration k 

k
iBP = Best position of individual i until iteration k 
k
iGB = Best position of the group until iteration k 

 
Performance of each particle is measured according to a 

pre-defined fitness function which is problem dependant. The 
inertia weight w  is employed to control the impact of 
previous history of velocities on the current velocity. A large 
inertia weight w  facilitates global exploration (searching new 
areas) while a smaller inertia weight tends to facilitate local 
exploration to fine-tune the current search area. The inertia 
weight w  can be set to the following (6) [34]: 
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Where, 

maxw = 0.9, minw = 0.4 

maxiter  = Maximum iteration number 

iter = Current iteration number 
 
A pseudo-code of PSO to obtain optimal smoothing factor 

of RBFNN is given as following: 

 
FOR each Particle 
Initialize Particle 
End 
Do  
FOR each Particle 
Compute fitness function   1k

if   by the leave-one-

out misclassification proportion on training 
exemplar pattern set. 
If fitness value is better than the best fitness (BP) in 
history 
Set current value as the new BP 
END 
Choose the Particle with the best fitness as the GB 
FOR each Particle 
Compute its velocity 
Update its position (i.e. smoothing factor   if   

END 
WHILE maximum iterations or stop criteria are not 
attained. 

 
Leave-One-Out (LOO) error estimation is an important 

statistical tool for assessing generalization performance [35]. 
In the PSO method, a swarm of particle (i.e. smoothing 
parameter σ) is initialized randomly in [0 1]n, n denotes the 
dimension of optimization problem. The LOO 
misclassification proportion on the training set is computed 
and this value is used as the fitness value i.e. f( i ). In LOO 

method, RBFNN is trained using all but one of patterns from 
the training set. The executed pattern is subsequently used to 
assess the classification ability of the network. This process is 
repeated excluding a different pattern of the training set each 
time, until all patterns of this set are executed once. This 
adaptation process is terminated when maximum number of 
iteration is reached.  

IV.  DESIGNING AND TRAINING OF RBFNN 

The basic topology of RBFNN consist of an input layer, one 
hidden layer and output layer as shown in Fig.(1). Hidden 
layer of RBFNN utilizes kernel functions, distributed in 
different neighborhoods of the input space, whose responses 
are essentially local in nature. Generally, the number of 
neurons in hidden layer is fixed heuristically. The sigmoid 
type of activation function used in multilayer feed forward 
networks to train with back-propagation, does not yield the 
approximating capabilities for RBF networks. The following 
activation functions Φ (v) are popular for RBFNN as reported 
in [30]: 

i. Gaussian Function 

  Φ (v) = exp (- v2/2σ2) 

ii. Thin SP line Function 

  Φ (v) = v log v1/2 

iii. Multiquadric Function 

  Φ (v) = (v2 + σ 2)1/2 
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iv. Inverse Multiquadric Function 

   Φ (v) = (v2 + σ 2)-1/2   

Where, 

v = | | x - cj || 

x = input vector and cj   is jth center 

σ = width factor or smoothing factor (real constant) 

|| || = Euclidean norm 

 
In general, training of a neural network is a nonlinear 

optimization problem. FFBPNN and RBFNN both require 
iterative training before using it for classification between 
inrush and internal fault patterns of power transformer. But 
the RBFNN training procedure differs from the FFBPNN. 
FFBPNN is trained by supervised techniques: the set of 
weights are computed by solving a non-linear constrained 
equation set.  On the contrary the training of RBFNN can be 
split into an unsupervised part and a supervised part. The 
unsupervised part is straight forward and relatively fast. 
Meanwhile its supervised part consists of solving a linear 
problem therefore it is also fast. Thus the training procedure 
of RBFNN is relatively less time and resources consuming. 
The training procedure of RBFNN can be clearly understood 
from the Fig. 2. 

Output space 

Nonlinear transformation Linear transformation 
Input Output

        Hidden unit space 
(of high enough dimension) Input space 

 

Fig. 2.  Training procedure of radial basis function neural network 

The design and training of an RBFNN consist of the 
following three steps: 

i. Determining the centers 

ii. Determining the widths 

iii. Determining the weights 

The first two parameters of RBFNN are determined by 
unsupervised learning methods and using training data only. 
The centers are determined by using K-means clustering 
techniques. The width or smoothing factor can be determined 
by two methods, i.e. given as fixed center method and Moody 
and Darken method. The fixed center method is given as: 

M

d

2
max  (7) 

Where, M is the number of centers and d max is the maximum 
distance between chosen centers. Moody and Darken [36], 
proposed width factor σj by r- nearest neighbor heuristic: 
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Where, ci are nearest of centers cj and a suggested value for r 
is 2 neighbor. 

However, in this paper, RBFNN is deigned by considering 
K-means clustering and optimal width factor. The purpose of 
selecting K-mean is to get accurate centers. Clustering is used 
to improve the generalization process. The optimal smoothing 
factors are obtained by using PSO technique. The combination 
of these two techniques will improve the classification 
capability of RBFNN. The weights are calculated by a 
supervised, single-shot process using pseudo inverse matrices 
or Singular Value Decomposition (SVD) method. 

V.  SIMULATION AND TRAINING CASES 

Five conditions are encountered during the operation of a 
transformer. These are: 

 Normal condition 

 Magnetizing inrush condition/ Sympathetic inrush 
condition 

 Over-excitation condition  

 Internal fault condition 

 External fault condition 
 
In the normal condition rated or less current flows through 

the transformer. In this condition normalized differential 
current is almost zero (only no load component of current). 
Whenever, there is large and sudden change in the input 
terminal voltage of transformer, either due to switching-in or 
due to recovery from external fault getting, a large current is 
drawn by the transformer from the supply. This results in core 
of transformer getting saturated. This phenomenon is known 
as magnetizing inrush, or in other words, inrush can be 
described by a condition of large differential current occurring 
when either the transformer is just switched on or the system 
recovers from an external fault. Magnetizing inrush can also 
occur in an already energized transformer when a nearby 
transformer is energized. A common situation of sympathetic 
inrush is encountered when a transformer is energized in 
parallel with another transformer already in service. The 
phenomenon which causes inrush current to flow in a 
previously energized transformer is known as the ‘sympathetic 
inrush’. As the paralleled transformer is being energized by 
closing the breaker, an inrush current is established in the 
primary of this transformer and this inrush current has DC 
component. The DC component of the inrush current can also 
saturate the already energized transformer, resulting in an 
apparent inrush current. This transient current, when added to 
the current of already energized transformer, results in an 
asymmetrical current that is very low in harmonics. This 
would be the current flowing in the supply circuit to both 
transformers. Sympathetic inrush current may not have 
sufficient amount of the second harmonic in it to prevent the 
relay from tripping. Sympathetic inrush current depends on 
same factors on which switching-in and recovery from fault 
magnetizing inrush current depends. 
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Among the various faults in transformer, phase-to-ground 
fault occurs most frequently. For protective device operation 
view point, phase-to-ground fault, may be further classified as 
following on the basis of fault current: 

i. Heavy faults 

ii. Medium level fault and 

iii. Low level fault 

In all the cases, the abnormality nature is almost same but 
the magnitude of currents resulting due to that are quite 
different. If the level of fault can be detected and accordingly 
protective action is taken than the major damage to the 
protected element can be prevented. 

Three-phase transformers of 315 MVA, 400/220 kV, 
200MVA, 220/110 kV and 160 MVA, 132/220 kV are 
modelled using PSCAD/EMTDC software [37]. The 
parameters used for the modeling of these transformers 
through PSCAD/EMTDC were obtained from M. P. State 
Electricity Board, Jabalpur, India. Since the magnitude and the 
wave-shape of inrush current depend on the switching-in 
angle, remanent flux in the core and the loading condition, the 
inrush condition is simulated with different switching-in 
angles and remanent flux varying from 0 % to 80 % of the 
peak flux linkages generated at rated voltage with no load and 
full load condition of transformer. The training signals are 
obtained by varying the switching-in angle from 0 to 360 
degrees in step of 30 degrees, while testing signals are 
obtained by varying switching angle in step of 15 degrees. As 
transformers are not expected to be subjected to more than 
15% over-voltage hence, the over-excitation condition is 
simulated by applying 115% of the rated voltage at full load. 
For internal faults, training and testing data is obtained by 
simulating phase-to-phase fault from 1% to 99% of power 
transformer winding turns. Phase-to-ground faults are also 
simulated at different locations such as 5%, 10%, 15%, and up 
to 50% from the neutral end of the winding as well as at 
transformer bushing. Some typical signals so acquired by 
simulating various operating conditions of transformer are 
shown in Figs. 3-6. 
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Fig. 3.  Typical differential current waveform under normal operation 
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Fig. 4. Typical magnetizing inrush current waveform 
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Fig. 5. Typical phase-to-ground fault current waveform 
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Fig. 6. Typical differential current waveform for over-excitation 

 
Digital relays decide their operation on parameters of 

sampled measured quantity (differential current, in this case). 
The sampling rate and the data window size are chosen 
depending upon the algorithm being used. Since ORBFNN is 
based on waveform identification method, therefore, to 
recognize the wave-shape a window of one cycle duration is 
suitable and it is used in this work. The simulation is 
performed at the rate of 12 samples per cycle of 50 Hz A.C. 
supply in view of reported experience on different digital 
relay designs [38]. The developed protection algorithms were 
implemented in MATLAB. 

VI.  IMPLEMENTATION OF OPTIMAL RBFNN 

The differential current is taken as input of neural network. 
It is represented in discrete form, as a set of 12 uniformly 
distributed samples obtained over a data window of one cycle 
that is called a ‘pattern’. The sliding data window, consisting 
of one most recent and other of previous window, is fed to the 
neural network. 
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In proposed ORBFNN architecture, three layer structures 
are used. In first layer 12 neurons, in the hidden layer 11 
neurons and in output layer one neuron is considered. The 
numbers of neuron of input layer are decided based on the 
dimension of the feature space i.e. 12 samples per cycle. Trial 
and error method is used to find out the optimal number of 
neurons in the hidden layer of the presented ORBFNN model. 
It can be seen, from Fig. 7, that as the number of neurons in 
hidden layer increase, the error decreases, but after certain 
number of neurons, the error increases again and the minimum 
error is obtained at 11 neurons in the hidden layer. Therefore, 
this number of neurons in the hidden layer is optimal for this 
application. At the output, as binary decision (to trip or not) is 
required, only single output is sufficient and therefore, the 
output layer consists of just one neuron. 

 

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22

Number of Hidden Layer Neurons 

E
rr

o
r 

(%
)

 
 

Fig. 7.  The effect of hidden layer neurons on error 
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Fig. 8.  Flow Chart Proposed Algorithm 
 

In present work, optimal smoothing factor which is crucial 
for the classification accuracy of RBFNN is obtained by PSO. 
The local variant of PSO algorithm is used, as it exhibit better 
performance, compared to the global variant, due to its 
enhanced exploration capability. According to pseudocode 

given in section-III, PSO algorithm is initialized randomly 
with swarm of 20 particles. The typical range for the number 
of particles ranges from 20 to 40. The values of cognitive and 
social are taken as 2. The maximum number of iteration was 
set to 100 and inertia weight w  is initially set at 0.9. In order 
to reduce this weight over the iterations, allowing the 
algorithm to exploit some specific areas, (6) is used. The 
particles are constrained in the range of 0 to 1, since 
smoothing factor lies in this range for the normalized data. 
The LOO strategy is applied for minimizing misclassification 
error on the training set, while misclassification error on the 
validation set is monitored after each iteration of the 
algorithm. The signal was sampled at the rate of 12 samples 
per cycle (over a data window of one cycle). 

In training, inrush condition is indicated by zero (0) and 
fault condition is indicated by one (1). Out of 2356 sets of 
data 2178 sets are used for training of RBFNN with optimal 
smoothing factor which is already obtained by PSO and 
remaining 178 sets are used to test the trained network’s 
generalization ability. The training and testing sets contain 
internal fault and magnetizing inrush/sympathetic inrush 
condition only as these two conditions are very difficult to 
discriminate as compare to other operating conditions like 
external fault condition, over-excitation and normal condition. 
From protection point of view, only these two conditions are 
necessary to identify as the relay has to give trip signal in case 
of internal fault condition only whereas in other conditions it 
should not operate. The discrimination between external fault 
and normal operating condition is made by comparing two 
consecutive peaks of operating signal. The over-excitation 
condition is determined by comparing voltage-to-frequency 
ratio with the rated voltage-to-frequency ratio. If these 
condition do not exist then magnetizing inrush and internal 
fault condition is checked by ORBFNN. The ORBFNN gives 
tripping signal if internal fault condition is found. The flow 
chart (Fig.8) clearly indicates these steps for discriminating 
different operating conditions of power transformer. For 
different conditions of the test set, fault current magnitude, 
remanent flux, load condition and switching-in angle were 
changed to investigate the effects of these factors on the 
performance of the ORBFNN model. The wave-shape of 
magnetizing inrush current changed with variation of 
switching-in instant of transformer which is varied between 0 
to 360 degrees. Due to remanence flux, the magnitude of 
magnetizing inrush current may rise up to 2 to 8 times of 
magnetizing inrush current without remanence effect although 
the wave-shape remains same. It is found that the ORBFNN 
classifier based relay is stable even with such high magnitude 
of magnetizing inrush current caused by remanence flux 
whereas the conventional harmonic based relay may mal-
operate due to such high magnitude magnetizing inrush 
current. 

 

No.of False Positive No.of False Negative
Classification Error (in %)    100

Total Number of  Test Cases


 

 
 

Classification Accuracy (in %) = 100 – Classification Error (in %)  (9) 
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Table I  

IMPROVEMENT IN CLASSIFICATION ACCURACY (IN %) WITH ORBFNN AND 

FFBPNN 

Tested transformer ratings 

315 MVA 200 MVA 160 MVA 
Training 

transformer 
ratings 

FFBP 
NN 

ORBF 
NN 

FFBP 
NN 

ORBF 
NN 

FFBP 
NN 

ORBF 
NN 

315 MVA 99.31 100 95.50 97.29 98.87 99.32 

200 MVA 96.62 97.97 99.43 100 97.18 98.64 

160 MVA 98.80 99.32 96.62 98.64 99.43 100 

 
Table II  

NUMBER OF POST DISTURBANCE SAMPLES REQUIRED FOR DECISION  
BY FFBPNN AND ORBFNN BASED RELAYS 

Cases 
Number  

of samples required 
(Actual) 

Maximum Number 
 of samples required 

(Logical) 

 FFBPNN ORBFNN FFBPNN ORBFNN 

Magnetizing 
inrush (00) 

11 07 12 12 

Internal fault 
(Light phase-to-
ground fault at 

2%) 

10 06 12 12 

 
The FFBPNN model has 12 input neurons in the first layer, 

11 neurons in hidden layer and one neuron at output layer. 
The hidden layer and output layer neurons uses bi-directional 
sigmoid activation function. Similar type of FFBPNN 
structure is selected so that comparative performance study 
can be made for the same cases as considered for ORBFNN. 

After extensive experimentation on ORBFNN and FFBPNN 
architectures, the performance results are shown in Table-I 
and Table-II. The training procedure of ORBFNN is relatively 
less time and resources consuming in comparison of FFBPNN 
as explained in section IV. Moreover, in case of FFBPNN at 
least four parameters are to be tuned whereas in case of 
ORBFNN single parameter is to be tuned. 

The classification accuracy is calculated by using (9). Out 
of 178 test patterns, 89 test sets were inrush patterns and 
remaining 89 test sets were internal fault patterns. The inrush 
test patterns consists of sympathetic inrush patterns and 
magnetizing inrush patterns at different switching-in angles, 
remanent flux, and loading conditions while internal fault test 
patterns are made up of phase-to-ground fault and phase-to-
phase fault at different locations. Table-I shows the 
classification accuracy tested with three different ratings of 
power transformers. From Table-I, it is observed that when 
the transformer of same rating are trained and tested, then 
higher classification accuracy is obtained (approximately 100 
%), but if it is tested with different rating of transformer then 
minimum 95.50 % accuracy is achieved.  From Table 1, it is 
clear that the classification capability of ORBFNN is better 
than the FFBPNN. Table-II presents the number of post 
disturbance samples required for decision making by the 
proposed ORBFNN and FFBPNN based transformer 

differential protection algorithm. In light internal fault cases, 
FFBPNN requires 10 samples after the fault occurrence that 
means about 16.67 ms are required for the fault detection 
while ORBFNN takes 6 samples i.e.  10.00 ms. However, it is 
observed that the relay operation is independent from the 
harmonics present in the operating signal and therefore no 
filtering is required in this method.  It is found that the 
ORBFNN classifier based relay is stable even with high 
magnitude of magnetizing inrush current caused by remanence 
flux. The proposed ORBFNN model is successfully tested 
using relaying signals obtained by modeling the power 
transformers on PSCAD/EMTDCTM and simulating various 
operating conditions. 

The proposed algorithm can be implemented in real time 
with FPGA (Field Programmable Gate Arrays) concurrent 
hardware. It is also immune from the different harmonics 
contained in the operating signals which makes it simpler and 
robust than conventional digital filtering algorithms. 

VII.  CONCLUSION 

This article presents a novel approach for discriminating 
between transformer internal fault and magnetizing inrush 
condition based on Optimal Radial Basis Function Neural 
Network (ORBFNN). The proposed algorithm is 
amalgamation of conventional transformer differential 
protection scheme and waveform identification scheme. The 
ORBFNN is feasible and efficient in solving classification 
problems, and a differential relay can be considered as a 
classifier. The optimal smoothing factor that is very important 
for radial basis function neural network is obtained by Particle 
Swarm Optimization (PSO) technique. The performance of 
the proposed ORBFNN is compared with one of the 
conventional neural network i.e. Feed Forward Back 
Propagation Neural Network (FFBPNN). From the results, it 
is evident that the ORBFNN has better pattern classification 
and generalization ability than the FFBPNN. Moreover, the 
ORBFNN is faster than FFBPNN and does not depend on the 
thresholds like Harmonic Restraint (HR) method. In the 
proposed method, stability of differential relay is ensured 
during the magnetizing inrush, sympathetic inrush, over-
excitation and external fault conditions. The presented 
ORBFNN algorithm is quite accurate especially in case of 
modern power transformers that use high-permeability, low-
coercion core materials. 
The real time implementation of differential relay using the 
proposed algorithm with ORBFNN as the core classifier 
would essentially require ORBFNN processors. To the best of 
auther’s knowledge, no ORBFNN processors specifically 
developed for relaying have been reported so far. This may be 
an attractive topic of research for those indulge in design and 
development of processors. 
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