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Abstract—Recently, the electric power utilities worldwide have
been moving toward the utilization of renewable energy resources
because of their sustainability, environmental friendliness, and as
promising low-cost energies for the future electricity production.
Although a number of appealing advantages are expected, a large
penetration of generation from renewable energy resources may
cause some undesirable impact on system security and reliability
due to the uncertainty of their generation output. Therefore, the
power system analysis should be able to cope with and examine
the influences resulting from the presence of this sector. In this
paper, the influences on the TTC are investigated via the risk and
monetary loss. The uncertainty of the forecast demand and the
generation output from renewable energy resources is integrated
into the calculation by a probabilistic method, Monte Carlo
simulation. Furthermore, a partition technique for the Monte
Carlo simulation is proposed for the speed enhancement.

Index Terms—Renewable energy resources, total transfer ca-
pability.

I. INTRODUCTION

IN recent years, a rapid penetration of generation from
renewable energy resources, e.g. wind and solar energies,

has been witnessed around the world. The main incentives
of this rapid growth are due to rising environmental concerns,
and cost escalation associated with conventional energies used
for electricity production. In addition, a significant amount
of installed capacity can also be expected within the near
future. For instance, Japan Renewable Energy Policy Platform
(JREPP) was launched with the projected 18% electricity sub-
stitution by solar power in 2050 [1]. Although the application
of wind and photovoltaic (PV) technologies offers a great
appeal and several advantages, a large penetration may cause
unfavorable influences on the system security and reliability
[2]. Consequently, this poses a need for an extensive research
on evaluating the impact of this rapidly growing sector to
ensure a secure and reliable system operation.

This paper primarily concentrates on the TTC calculation
of an electric power system with wind and photovoltaic (PV)
power generations. Several literatures on the transfer capability
calculation with wind power generation have been reported in
[3], [4], [5]. As is known, wind and PV power generations
have highly fluctuating generation outputs. These outputs are
uncertain and vary on hourly or daily basis depending on
the weather condition or wind speed. With this regard, a
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probabilistic approach, rather than a deterministic approach,
is more appropriate in recognizing and coping with such a
stochastic nature of these outputs.

An endeavor has been made to develop the models repre-
senting the renewable energy resources for the power system
analysis. The wind power generation system can be repre-
sented simply by a PQ model [3], [6] or by an RX model
with the use of a steady-state model of an induction generator
[4]. In contrast, the PV power generation system is commonly
represented by a PQ model [7]. This paper proposes the PX
model for the wind power generation system, which is simple
to be incorporated into the TTC calculation. In addition, a
partitioned Monte Carlo simulation, a modified version of a
typical Monte Carlo simulation with some partition technique,
is presented to improve the computational speed.

This paper is organized in the following sequences. In
Section II, the risk-based TTC calculation and the MTC
calculation by OPF are explained. In Section III, the wind
power generation system modeling is presented. In Section
IV, the photovoltaic (PV) power generation system modeling
is described. Section V summarizes the proposed partitioned
Monte Carlo simulation, monetary loss calculation, and the
overall procedures of the proposed TTC calculation. Numer-
ical examples and results of the proposed method applied to
the modified IEEE 30-bus system are presented in Section VI.
Finally, the conclusions are provided in Section VII.

II. TTC CALCULATION

A. TTC Definition and MTC Calculation
According to NERC, TTC was defined as the maximum of

power that can be transferred in a reliable manner between a
pair of defined source and sink locations in the interconnected
system while meeting all of a specific set of defined pre- and
post- contingency system conditions [8].

Generally, to find the TTC, another closely related term,
Maximum Transfer Capability (MTC), has to be determined
for a given set of various system scenarios. The MTC repre-
sents the maximum transferable electric power under a given
system scenario. A number of methods have been developed
for the MTC calculation; Repeated Power Flow (RPF) [9],
Continuation Power Flow (CPF) [10], Two-step method [11],
and Optimal Power Flow (OPF) [12]. The first three methods
are based on solving a power flow problem, while the last is
based on solving an optimization problem. This paper employs
the OPF to solve for the MTC. The formulation of the OPF
is summarized in the following.

Consider an area-to-area TTC in which the power is trans-
ferred from a source area to a sink area as depicted in Fig. 1.
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Fig. 1. Representation of an area-to-area TTC.

This additional transfer is then delivered to the sink buses in
the sink area, which is represented by a scalar λ. Therefore,
maximizing the transfer is equivalent to maximizing the λ.

The constraints in the OPF are composed of equality con-
straints which account for the power balance equations, and
inequality constraints which account for the system security
limits. Typically, the system security limits which restricts the
ability of a system to transfer electric power are as follows.

1) Voltage magnitude limit
2) Generation capacity limit
3) Transmission line thermal limit
4) Transient stability limit
5) Voltage stability limit

In this paper, the transient stability limit is taken into account
by a widely used static criterion, the bus voltage angle limit,
i.e. −45◦ ≤ δ ≤ 45◦. For the sake of simplicity, the voltage
stability limit is not considered. With the additional electric
power transferred to the sink buses, the active and reactive
demands at the sink buses are modified as follows:

PDi = P 0
Di + λcos(ψ0

i ) (1)

QDi = Q0
Di + λsin(ψ0

i ) (2)

where PDi, QDi are active and reactive demands at the sink
bus i; P 0

Di, Q
0
Di are base-case active and reactive demands

at the sink bus i; λ is a load parameter; ψ0
i is the base-case

power factor angle of the sink bus i. The optimization problem
can be formulated in a general form as:

max λ
s.t.
G(x, λ) = 0
H(x, λ) ≤ 0

 (3)

where x is a vector of system control and state variables,
G(x, λ) are a set of equality constraints, and H(x, λ) are a
set of inequality constraints respectively. Once the maximum
λ is solved, the MTC is computed from

MTC =
NSink∑

i=1

(
P 0

Di + λmaxcos(ψ0
i )
)

(4)

where NSink is the number of sink buses.

B. Risk-Based TTC Selection

The selection of the TTC is based on the risk concept
proposed in [13], [14]. To apply the risk concept, the prob-
ability density function or PDF of the MTC is required. In

Fig. 2. PDF of the MTC with the specified risk and corresponding TTC.

this paper, it is obtained from the Monte Carlo simulation.
According to the PDF of the MTC, the risk refers to the
accumulated probability of the cases whose MTC’s are smaller
than the selected TTC as depicted in Fig. 2. It should be
noted that the risk here is mainly associated with the additional
transfer power above the base-case condition not the base-case
condition itself. Although the system has sufficient generation
capacity, it sometimes cannot deliver the electric power to the
sink locations at the promised volume, i.e. TTC, due to the
outages. Such circumstance is the risk considered in this paper.

III. WIND POWER GENERATION SYSTEM MODELING

The conversion of mechanical power of the wind turbine
into electrical power is usually accomplished by an induction
generator. In many literatures, the induction generator is com-
monly modeled as a PQ bus. The active power generation is
assumed to be known with a given power factor from which
the reactive power is calculated. The accuracy can be improved
by taking into account the steady-state model of an induction
generator shown in Fig. 3 [15].

In this paper, the PX model of an induction generator is
proposed in which the generated active power is known by
means of the forecasting process, and the consumed reactive
power is calculated as a function of the induction generator’s
parameters, terminal voltage, and rotor slip.

In Fig. 3, Pe is the electrical active power injected to the
system; Pm is the mechanical input power from the wind
turbine; V is the terminal voltage; Rs, Rr are the stator and
rotor resistances; Xs, Xr are the stator and rotor reactances;
Xm is the magnetizing reactance; s is the slip. Simplifying
the model in Fig. 3, gives an equivalent model in Fig. 4.

The equivalent resistance and reactance are written in terms
of the slip as follows:

Fig. 3. Steady-state model of an induction generator.
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Fig. 4. Equivalent model of an induction generator.

Req(s) =

RrX
2
m

s
R2

r

s
+ (Xm +Xr)2

(5)

Xeq(s) =

R2
rXm

s
+XmXr(Xm +Xr)

R2
r

s
+ (Xm +Xr)2

(6)

Let R(s) = Rs + Req(s) and X(s) = Xs + Xeq(s), the
active power generated and the reactive power consumed by
the induction generator can be written as:

PIG(V, s) =
V 2

R2(s) +X2(s)
R(s) (7)

QIG(V, s) =
V 2

R2(s) +X2(s)
X(s) (8)

Note that, the active power term in (7) is negative since the
rotor slip is negative. In other words, it can be conceived as
negative load.

Incorporating this PX model into the power flow calculation
introduces a new state variable, i.e. the rotor slip. Therefore,
another equation is required to enforce PIG to its specified
value. The power balance equations of bus i connected to the
wind power generation system are modified as follows:

fPi = FPi(δ, V )− (P spec
IGi − PDi) = 0 (9)

fQi = FQi(δ, V )− (−QDi −QIGi(Vi, si)) = 0 (10)

where

FPi(δ, V ) =
N∑

j=1

ViVj(Gij cos δij +Bij sin δij)

FQi(δ, V ) =
N∑

j=1

ViVj(Gij sin δij −Bij cos δij)

Here Gij and Bij are the real and imaginary parts of the ijth

element in the admittance matrix; Vi and Vj are the voltage
magnitudes at bus i and j respectively; δij is the voltage angle
difference between bus i and j; N is the number of buses.
To enforce PIGi to its specified value P spec

IGi , the following
equation is added.

fPIGi(Vi, si) = −PIGi(Vi, si)− P spec
IGi = 0 (11)

Then, the augmented power flow problem can be formulated
as follows:

∂fP

∂δ

∂fP

∂V

∂fP

∂s
∂fQ

∂δ

∂fQ

∂V

∂fQ

∂s
∂fPIG

∂δ

∂fPIG

∂V

∂fPIG

∂s


∆δ

∆V
∆s

 =

 ∆fP

∆fQ

∆fPIG

 (12)

The power flow calculation is performed prior to the OPF
calculation at each given system scenario sampled from the
Monte Carlo simulation to adjust the generation according to
the system parameters’ change from the base-case condition.

With the proposed PX model, the induction generator can
be incorporated into the power flow analysis. Furthermore,
this PX model can also be easily incorporated into the OPF.
The OPF formulation for the MTC calculation with induction
generators is similar to (3) but with a new set of equality
constraints to account for (11). In addition, using the PX
model, the reactive power can be computed directly. On the
contrary, the PQ model computes the reactive power simply
from the specified power factor which may not be kept at
all time due to the capacitor’s capacity limit. This reactive
power demand of the induction generator generally causes
the terminal voltage to drop, hence restricting the transfer
capability. As a result, an inaccurate model accounting for
the reactive power results in inaccurate TTC value.

IV. PV POWER GENERATION SYSTEM MODELING

The photovoltaic (PV) power technology uses semiconduc-
tor cells to convert solar energy to electrical energy. In the
past, the PV applications have been limited to remote locations
not connected to the utility grid or isolated regions. With the
declining price and improvements in manufacturing, this sector
is expected to grow and play a significant role in the future
electricity production. The United States, Japan, India, China,
and other countries have launched new programs to expand
the installed capacity within the near future [16].

As is known, the generation output of the PV system
strongly depends on the weather condition, sunny or overcast.
Therefore, the output of the PV system is very uncertain. A
considerable deviation from the forecast value is possible in
an actual interested time interval. Normally, if the radiation
intensity is known, the generation output of the PV power
generation system can be predicted. Nonetheless, the accurate
prediction of radiation intensity for a day in advance is
relatively difficult.

In this paper, the PV power generation system is modeled
as a PQ bus operating at a unity power factor. The deviation of
its generation output from the scheduled value is represented
through the normal probability distribution.

V. PROPOSED METHOD

A. Partitioned Monte Carlo Simulation

The probabilistic method used in this paper is a well known
Monte Carlo simulation. The Monte Carlo simulation is a
statistical assessment based on a sampling technique using
a random number. This technique has been well reported
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Fig. 5. Classification of the system cases.

in many TTC literatures. A full Monte Carlo simulation
usually requires a sufficiently large sample size to ensure the
convergence; as a result, it is time-consuming. In this paper,
a partitioned Monte Carlo simulation is proposed. Referring
to the risk-based TTC selection described in Section II, it can
be seen that not all the system cases cause the risk. If there
is no outage, the system is less likely to cause the risk, i.e.,
the system can transfer a large amount of electric power. On
the other hand, if an outage occurs, the system configuration
changes due to the corrective actions; consequently, the system
may lose its ability to transfer electric power. In other words,
the MTC’s of the outage cases are generally smaller than
those of the no-outage cases. In brief, to obtain the risk-based
TTC, it is not necessary to compute the MTC of all system
cases, only those leading to the risk are sufficient. Based on
this concept, the system cases will be partitioned into 2 main
groups; risk-related and merely-risk-related cases respectively.

The criteria for classifying the system cases are based on
the following characteristics. In general, the ability of a system
to transfer electric power is degraded when there occurs an
outage or the system demand is large. Consequently, the risk-
related cases mainly consist of the outage cases and the system
cases in which the total sampled demand is larger than the total
base-case demand. Considering only the above partitioned
cases, a significant number of the OPF calculations in the
Monte Carlo simulation can be avoided; as a result, greatly
saving the computational time.

The classification of the system cases can be illustrated by
the diagram as shown in Fig. 5. In Fig. 5, P̃tot is the total
sampled demand; P0,tot is the total base-case demand; A is a
set of outage cases with P̃tot > P0,tot; B is a set of outage
cases with P̃tot ≤ P0,tot; C is a set of no-outage cases with
P̃tot > P0,tot; and D is a set of no-outage cases with P̃tot ≤
P0,tot. The distribution of the MTC’s from each set is depicted
in Fig. 6.

Shown in Fig. 6, the risk area is composed of the MTC’s
mostly from a set A denoted by a black cross, a set B denoted
by a black square, and a set C denoted by a gray cross. It is
interesting to note that for a system with a large number of
outage cases, only a set A∪B may be sufficient to cover the
risk area within a certain degree of accuracy.

Importantly, the readers should note that the main objective
of the proposed partitioned Monte Carlo simulation is to
save the computational time by performing only the necessary

Fig. 6. Distribution of the MTC’s from each partitioned set in the risk area.

calculations. Therefore, the proposed partitioned Monte Carlo
simulation is just an approximation with some knowledge to
avoid the unnecessary calculations. Inevitably, some precision
may be traded off for the reduction of the computational time.

B. Monetary Loss Evaluation

As mentioned in Section II, the risk occurs when the actual
amount of the transfer is smaller than the specified one. This
circumstance results in interrupted energy to end-users. The
monetary impact from the interruption can be described by
an interrupted energy cost [17]. The risk function can be
expressed as follows:

R(x) =
TTC∑

x=−∞
IEAR(TTC − x)f(x)∆x (13)

where IEAR is an interrupted energy assessment rate (in
$/MWh); x is the actual amount of the transferable electric
power; f(x) is the PDF of the MTC. It should be noted that
the risk function in (13) depends on the probabilistic nature
of the transferred power.

C. Proposed TTC Calculation

This subsection summarizes the overall procedures of the
proposed TTC calculation by a partitioned Monte Carlo
simulation. It comprises three main parts; (1) sampling and
partitioning, (2) Monte Carlo simulation, and (3) TTC se-
lection and monetary loss calculation. The procedures of the
proposed method are summarized in Fig 7. The parameters to
be sampled in the Monte Carlo simulation are as follows.

1) System case:
The system case can be sampled using a state sampling
technique [18]. The availability of the system component
is assumed a two-state Markov model with the failure
and repair transition rates. These data are obtained from
the historical reliability data, normally well collected by
the utilities.

2) System demand:
The system demand in the TTC calculation is the
forecast demand. In this paper, the forecast demand is
assumed to have a normal distribution with a specified
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standard deviation. As a result, the demand can be
sampled from

x = µx + σxZ (14)

where x is the sampled demand; µx is the forecast
demand; σx is the standard deviation of the demand;
Z is a normal distributed random number.

3) Generation outputs from renewable energy resources:
Similarly, the generation outputs from renewable energy
resources are modeled as the forecast value plus some
error specified in terms of the standard deviation. As a
result, they can also be sampled using (14).

VI. NUMERICAL EXAMPLES

A. Studied System

The modified IEEE 30-bus system has been used for the
demonstration with the single-line diagram shown in Fig.
8. The system consists of 6 conventional generators with
the total generation capacity of 335 MW, 17 wind power
generation units located at buses#3, 4, 7, 8, 11, 17, 19, and
26 (some buses have multiple units); 9 PV power generation
units located at buses#14, 15, 16, 18, 19, 20, 23, 29, and 30.
The system is divided into 2 areas; source and sink areas.
The forecast generation outputs from wind and PV power
generation systems are 1.0, 1.2 MW and 4 MW respectively
with the total of 54 MW. For wind power generation systems,
the reactive power is compensated from a 400 kVAr capacitor
bank connected at the system site. The total system demand
is 189.2 MW.

B. Parameter Set-Up

As is known, Monte Carlo simulation creates a fluctuating
convergence process. The error bound decreases as the number
of samples increases. The commonly used stopping criteria for
the Monte Carlo simulation are the coefficient of variation and
the number of samples. In this paper, the number of samples
of 5000 is used as the stopping criterion which is found to be
sufficient for the convergence of simulation process.

The contingencies considered here are only three-phase
faults on transmission lines up to N-2 contingencies. The
FOR of each transmission line is 0.01. The total base-case
generation output from the wind power generation systems is
18 MW and that from the PV power generation systems is
36 MW.The base-case demand in the sink area is 56.2 MW.
For the monetary loss evaluation, the IEAR is 500$/MWh.
All calculations are run on a Pentium IV 3.4 GHz 1 GB RAM
personal computer using a program developed in the MATLAB
environment.

C. Study Cases

In this paper, two aspects are of interest. The first one is
the impact of the uncertainty of the forecast demand and
generation outputs from renewable energy resources. The
other is the reduction of the computational time by using the
partitioned Monte Carlo simulation. Seven comparative study
cases are conducted, each of which is with the different degree

Fig. 7. Flowchart of the proposed method.

TABLE I
SUMMARY OF THE STUDY CASES

Case σPD(%) σPW (%) σPPV (%)

1 0 0 0
2a 0 30 30
2b 0 40 40
2c 0 50 50
3a 10 30 30
3b 10 40 40
3c 10 50 50

of uncertainty. The summary of the study cases are listed in
Table I.

In Table I, σPD, σPW , σPPV are the standard deviations of
the forecast demand, forecast generation output from a wind
power generation system, and forecast generation output from
a PV power generation system respectively. These standard
deviations are defined in percent of their forecast values. Case
1 is the base-case TTC without any uncertainty of the forecast
parameters except that of the system state. Case 2a, 2b, and 2c
consider only the forecast generation output uncertainty. The
uncertainty degree increases from 30% to 50%. Similarly, Case
3a, 3b, and 3c consider both forecast generation output and
forecast demand uncertainty. The impacts of the uncertainty
of the forecast demand and generation outputs from renewable
energy resources will be expressed in terms of risk and
monetary loss as discussed in Section V.
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Fig. 8. Modified IEEE 30-bus system with wind and PV power generations.

D. Simulation Results

Due to the limit of the space, depicted in Fig. 9, only the
PDF’s of the MTC of Case 1 and Case 3c are presented for
the illustration and discussion. It can be seen from Fig. 9 that
without the uncertainty, except those from some outage cases,
almost all MTC’s lie at the base-case value of 142.6 MW.
The TTC selected at the 10% risk is found to be 130.8 MW
as indicated by a dashed line. In contrast, when considering
the uncertainty of the forecast parameters, the shape of the
PDF significantly changes, reflecting a stochastic nature of the
MTC. The TTC selected at the 10% risk is found to be 127.4
MW, 3.4 MW smaller than that of Case 1. The results of the
other cases also follow this characteristic. According to the
results, it can be inferred that the presence of the uncertainty
results in the smaller TTC.

Tabulated in Table II are the TTC’s and monetary losses
of all 7 study cases. They are also plotted in Fig. 10. It is
found that the TTC tends to decrease as the uncertainty degree
increases. To give an example, the TTC decreases from 130.8
MW to 128.0 MW as the uncertainty degree of the forecast
generation outputs from renewable energy resources increases
from 0% (Case 1) to 50% (Case 2c). In addition, the impact of
the forecast demand uncertainty can be observed by comparing
the TTC’s of Case 2a, 2b, and 2c with those of Case 3a, 3b,
and 3c respectively. The uncertainty of the forecast demand
further reduces the TTC as the results prove.

The next point to be discussed is the interpretation of the
risk and the monetary loss. The results listed in Table II show
that the monetary loss depends on the value of the TTC. The

TABLE II
SUMMARY OF THE TTC’S AND MONETARY LOSSES AT 10% RISK

Case TTC (MW) Monetary loss ($/hr)
1 130.8 2036
2a 129.4 1987
2b 128.8 1974
2c 128.0 1954
3a 128.8 1957
3b 128.3 1949
3c 127.4 1931

TABLE III
SUMMARY OF THE ACTUAL RISKS AND MONETARY LOSSES

Case Actual risk (%) Actual monetary loss ($/hr)
2a 10.72 2060
2b 10.96 2082
2c 11.30 2104
3a 10.90 2063
3b 11.34 2087
3c 11.84 2115

larger the TTC, the larger the monetary loss. Interestingly,
the monetary loss can be used to evaluate the impact of the
uncertainty. Suppose that the system operator or the transmis-
sion system provider simply neglects such uncertainty. The
TTC at 10% risk will be set to 130.8 MW (the TTC of Case
1). Nonetheless, when considering the uncertainty, the selected
TTC at 130.8 MW results in the actual risk higher than 10%.
The actual monetary loss also becomes larger than supposed.
Consider Case 3c as an example, when the TTC is set to
130.8 MW, the risk and monetary loss increase to 11.84%
and 2115$/hr respectively. This is analogous to moving the
dashed line in the bottom plot of Fig. 9 slightly to the right.
This phenomenon is depicted in Fig. 11 together with the data
listed in Table III.

Another important aspect which can be observed from the
obtained results is that the impact of the uncertainty is more
clearly seen at the high risk level than at the low risk level. The
top plot of Fig. 12 depicts the TTC’s at 3 different risk levels;
10%, 15%, and 20%. They all decrease as the uncertainty
degree increases as discussed previously. Setting the TTC of

Fig. 9. PDF’s of the MTC.
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Fig. 10. TTC’s selected at 10% risk and associated monetary losses.

Fig. 11. Actual risks and monetary losses.

TABLE IV
SUMMARY OF THE TTC’S AT DIFFERENT RISK LEVELS

Case TTC (MW)
10% 15% 20%

1 130.8 138.3 142.0
2a 129.4 136.6 138.7
2b 128.8 135.5 137.5
2c 128.0 134.5 136.3
3a 128.8 135.8 137.7
3b 128.3 134.7 136.7
3c 127.4 133.6 135.7

Case 1 as a benchmark for comparison, the reduction of the
TTC due to the uncertainty is evaluated by the difference
between the TTC of the interested case and that of Case 1.
The TTC reductions of all 6 cases at 3 different risk levels
are shown in the bottom plot of Fig. 12. The plot shows that
among 3 different risk levels, the TTC reduction at 20% risk
is the most negative. This can be explained from the PDF
of MTC where the TTC is selected. Referring to the PDF of
the MTC of Case 3c in Fig. 9, when the risk is high, the
dashed line moves further to the right where a number of
MTC samples are densely located. Note that some of these

Fig. 12. TTC’s and TTC reductions at 3 different risk levels.

Fig. 13. Classification of the system cases.

MTC samples used to lie at the base-case value or its vicinity
(the PDF of the MTC of Case 1). When the uncertainty
is introduced, they begin to scatter. These scattering MTC
samples can fall into the risk area if the specified risk is high.
Consequently, the accumulated probability or the area of these
MTC samples causes the TTC to become smaller.

E. Performance and Accuracy of the Partition Technique

This subsection examines the performance and accuracy of
the proposed partitioned Monte Carlo simulation. The main
contribution of this technique is the speed enhancement. The
simulation using a different partitioned set results in different
computational time. The more samples evaluated, the longer
the computational time required.

From the total samples of 5000, 1457 are outage cases, and
2515 are the cases with the total sampled demand larger than
the total base-case demand. The system cases are partitioned
as shown in Fig. 13.

For an illustration of the TTC calculation with the parti-
tioned Monte Carlo simulation, take Case 2c and Case 3c
as an example. The risk is specified at 10%. The TTC and
the computational time calculated using the full sample set,
i.e. A ∪ B ∪ C ∪ D, and the partitioned sets, i.e. A ∪ B
and A ∪ B ∪ C are summarized in Table V and VI. Since
the TTC values obtained from the two partitioned sets have
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TABLE V
RESULTS OF CASE 2C WITH DIFFERENT EVALUATED SETS

Evaluated set TTC (MW) CPU time (hr) Error (%)
A ∪B ∪ C ∪D 127.9976 1.6917 −
A ∪B 128.0816 0.7866 0.0656
A ∪B ∪ C 128.0789 1.2229 0.0635

TABLE VI
RESULTS OF CASE 3C WITH DIFFERENT EVALUATED SETS

Evaluated set TTC (MW) CPU time (hr) Error (%)
A ∪B ∪ C ∪D 127.4358 1.7058 −
A ∪B 127.5407 0.7881 0.0823
A ∪B ∪ C 127.5372 1.2360 0.0796

TABLE VII
COMPARISON OF THE ACCURACY AT DIFFERENT RISK LEVELS

Risk (%) TTCA∪B∪C∪D (MW) TTCA∪B (MW) Error (%)
10 127.4358 127.5407 0.0823
15 133.5647 135.0400 1.1046
20 135.6788 138.5467 2.1137

only a slight difference, they are written in 4 decimals here
for a clear comparison of their associated errors. Results
from Table V and VI show that the computational time is
significantly reduced with the use of the partitioned set. For
instance, when using a set A∪B, the computational time can
be reduced as much as 50%. Nevertheless, there is some error
since some of the MTC’s within the risk region belongs to
some other partitioned sets, e.g. a set C or D. As a result,
the TTC calculated using the partitioned set is slightly larger
than the actual value. To improve the accuracy, more samples
should be evaluated. With the inclusion of a set C, the error
reduces; however, requires longer computational time.

Interestingly, if the specified risk is low, using only a
partitioned set A ∪B may be sufficient to obtain an accurate
result. This is due to the fact that, at low risk level, the risk
region mainly consists of the MTC’s from the partitioned set
A ∪ B. On the other hand, if the specified risk is high, the
error increases. To examine this phenomenon, the comparison
of the error of Case 3c using a partitoned set A∪B at different
risk levels is summarized in Table VII.

VII. CONCLUSIONS

Through the use of Monte Carlo simulation and the pro-
posed modeling of the generation from renewable energy
resources, wind and PV power generation systems, the impact
of the uncertainty on the TTC can be examined through
the risk-based TTC values and associated monetary losses.
Although the Monte Carlo simulation is powerful in recog-
nizing and coping with uncertainty, it is time-consuming. The
computational speed can be improved by using the proposed
partition technique, making it still an attractive tool for the
TTC calculation.

APPENDIX

The induction generator parameters are: Rated power = 1.7
MW, Rs = 0.048 p.u., Rr = 0.0018 p.u., Xs = 0.0075 p.u.,
Xr = 0.12 p.u., and Xm = 3.8 p.u..
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