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Abstract—Chaotic behavior in power systems has been studied 

in relatively simple and theoretical system models, where some 
particular assumptions are made to represent the system as a set 
of ordinary differential equations (ODE), using “special” 
nonlinear system analysis tools. In this paper, chaotic behavior 
on the IEEE 14-bus benchmark system, using a transient stability 
model and its associated differential-algebraic equations (DAE), 
is demonstrated and studied based on classical time-domain 
simulations, without the use of specialized software or simplifying 
assumptions. The dynamic behavior of the test system is studied 
for normal operating conditions and for a single contingency 
case, and the onset of chaos is verified through a Fourier analysis 
and Lyapunov exponents. The addition of a power system 
stabilizer (PSS) to the system is shown to remove the observed 
chaotic behavior. 
 

Index Terms—Chaos, crisis, Hopf bifurcations, period 
doubling, voltage collapse, power system stabilizer. 

I.  INTRODUCTION 
HAOTIC phenomena in relatively simple power system 
models has been observed and studied for the past two 

decades.  For example, in [1]-[3], chaotic behavior of a simple 
3-bus power system is studied in detail, where the single 
system load is represented with a dynamic model to 
characterize the system using ordinary differential equations 
(ODE).  In [4], on the other hand, a larger 9-bus test system is 
studied using an ODE model (with dynamic loads), illustrating 
the interactions of chaotic motions and system dynamic 
components; transmission system controllers are then used to 
prevent or eliminate chaotic oscillations.  In these papers, 
basically two routes that lead to chaos are observed, i.e. 
cascading period doubling bifurcations (PDB) and torus 
bifurcations (TB). 

The current paper presents and discusses the chaotic 
behavior observed on the IEEE 14-bus benchmark system [5], 
which is modeled based on “standard” differential algebraic 
equations (DAE) utilized in transient stability studies. With the 
help of time domain simulations using a standard power system 
analysis program (PSAT [6]), the associated transient-stability 
model is shown to have a period-doubling path to chaos. 
                                                           

This work was supported by the Chinese Scholarship Council (CSC) and 
NSERC, Canada. 

X. Li is with the School of Hydropower and Information Engineering, 
Huazhong University of Science and Technology, Wuhan, Hubei 430074 P.R. 
China (e-mail: lixianqi@gmail.com). 

C. A. Cañizares is with the Department of Electrical and Computer 
Engineering, University of Waterloo, Waterloo, ON, Canada, N2L3G1 (e-
mail: ccanizar@uwtaerloo.ca). 

Furthermore, the chaotic attractor is shown to disappear 
through a blue-sky bifurcation phenomenon.  

The main objectives of the current paper are: Present and 
discuss with enough detail chaotic behavior observed in a DAE 
power system model used in stability studies of power systems; 
analyze the observed chaotic and dynamic behavior using 
standard power system analysis tools, without using specialized 
tools that have been designed for ODE system models; and 
discuss in some detail interesting and not previously reported 
dynamic and chaotic behavior of a IEEE test system widely 
used by researchers studying stability issues in power systems. 

It should be mentioned that this paper is of a theoretical 
nature, like all previous publications discussing chaos in power 
system models (e.g. [1]-[4]), since in real systems, as soon as 
sustained oscillations of any kind appear, load, generator 
and/or line protections act to try to eliminate these undesirable 
system conditions. Hence, some of the bifurcation and chaotic 
phenomena presented and discussed here cannot be observed in 
reality.  

II.  BIFURCATIONS AND CHAOS 
Period-doubling cascading is one of the most well-known 

routes to chaos, and consists of an infinite sequence of PDBs 
leading to chaos.  In this case, a gradual doubling, at specific 
parameter values or PDB points, of the period of the 
oscillations triggered by an initial Hopf bifurcation (HB) 
eventually lead to the oscillation period becoming effectively 
infinity, thus resulting in a chaotic attractor [7]. 

Another important phenomenon in chaos, relevant to the 
current paper, is chaotic crises, where the nature of the chaotic 
dynamics changes abruptly as system parameters vary quasi-
statically due to a collision between a chaotic attractor and 
coexisting unstable fixed points or periodic orbits [3].  A crisis 
involving the sudden destruction of a strange attractor through 
a collision with a saddle point, an unstable periodic orbit, or its 
associated stable manifold is known as a boundary crisis.  In 
this context, blue sky bifurcations (BSBs) of periodic orbits are 
of particular interest to this paper; these bifurcations are 
characterized by the sudden disappearance of a limit cycle 
through a collision with a saddle equilibrium point.  

The study of chaotic behavior in nonlinear systems is 
typically carried out using a combination of analyses 
techniques [7]. For a system with a single quasi-static varying 
parameter (co-dimension one bifurcation problems), these 
studies typically start by analyzing the changes in system 
equilibria as the parameter changes. From these analyses, 
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diagrams of relevant system variables with respect to the 
varying parameter can be obtained; these diagrams are 
typically referred to as bifurcation diagrams. These plots in 
power systems are known as PV or “nose” curves, illustrating 
the presence of saddle-node and limit-induced bifurcations 
(also referred to maximum loading points) in typical DAE 
models, and are obtained with the help of continuation power 
flow (CPF) techniques [8].  

Eigenvalue studies are typically used to determine whether 
the equilibrium points in the bifurcation diagrams are stable or 
unstable. Thus, this allows for the determination of the onset of 
HBs, which are associated with a conjugate pair of eigenvalues 
crossing the imaginary axis in the complex plane as the single 
parameter changes. These HB points have been associated in 
power systems with the onset of undesirable oscillations (e.g. 
interarea oscillations) [9]. 

The bifurcation of periodic orbits to determine, for 
example, PDB points, can be studied using a variety of branch 
tracing methods as discussed in [7].  Since these techniques 
have been developed and implemented mostly for relatively 
small ODE systems, their use in large DAE power system 
models is an issue [10]. However, time-domain simulations 
with respect to a varying parameter can be used to 
approximately study these types of bifurcations, as 
demonstrated in this paper, since it is relatively easy to 
approximately determine the points at which, for example, the 
frequency of an oscillation doubles, if the variations in the 
parameter are closely monitored and controlled. 

The onset of a chaos through the appearance of a strange 
attractor in the time-domain trajectories can be verified though 
the use of Fourier analysis and/or Lyapunov exponents [7]. 
Thus, Fast Fourier Transforms (FFT) applied to these time 

trajectories (time series) allow to determine the frequency 
spectrum of these signals, with a wide spectrum indicating the 
onset of chaos. Furthermore, Lyapunov exponents, which 
evaluate the sensitivity of the system to initial conditions by 
estimating the exponential divergence of nearby orbits when at 
least one of these exponents becomes positive, can also be 
approximately computed from the time series as explained in 
[7] and [11]. 

III.  RESULTS 
All results presented in this paper are obtained for the IEEE 

14-bus benchmark system, which is described in detail in [5]. 
The system consists of five synchronous machines, three of 
which are synchronous compensators used only for reactive 
power support, represented with subtransient models and with 
IEEE type-1 exciters. There are 11 loads in the system, totaling 
259 MW and 81.3 Mvar, represented as constant power loads 
(PQ loads). Each machine is equipped with an Automatic 
Voltage Regulator (AVR). The single-line diagram of this 
system is illustrated in Fig. 1. 

Following classical stability/security analysis of power 
systems, two types of system operating conditions of the test 
system are studied here: normal/base and contingency 
operation, where a “critical” transmission line is removed (Line 
2-4). The usual PV curves (bifurcation diagram) depicted in 
Fig. 2 for both system conditions were obtained by uniformly 
increasing the system load at all buses, assuming constant 
power factors; thus, the single bifurcation parameter used here 
is directly correlated to the total system load. Observe that the 
voltage magnitudes at this and other “remote” load buses fall 
below the standard 0.95 p.u. value passed certain loadings 
levels; this can be resolved by adding compensation at these 
buses, which would change the corresponding PV curves and 
the loading levels at which the different bifurcations shown 
appear. However, and given the theoretical nature of the 
discussions presented here, static compensation is not consider 
here, since in principle this will not change the nature of the 
bifurcation and chaotic phenomena presented here, affecting 
only the voltage and loading values at which the bifurcation 
appear. 

Fig. 1. EEE 14-bus benchmark system 

Fig. 2. PV curves (bifurcation diagrams) at Bus 14 for the 14-bus IEEE 
benchmark system. 
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As illustrated in Fig. 2, an initial HB is observed for both 
system conditions at 360 MW and 347 MW of total loading, 
respectively; as a result of these HBs, corresponding stable 
limit cycles of approximately 1 Hz can be observed. A series of 
PDBs are then detected as the system load is increased, with 
the first one appearing at 373 MW of loading for the “base” 
system, and 357 MW for the “contingency” system. Figure 3 
depicts the time trajectory of the voltage at the “remote” load 
Bus 14 (V14) for the base system at one of these PDBs for the 
base system; although this is an algebraic variable, since the 
system time trajectories are “invertible” (the algebraic 
equations’ Jacobian is invertible along these trajectories), the 
algebraic variables are directly associated with the state 
variables [13]. 

The PDBs eventually lead to the appearance of chaos for 
both system conditions, as shown in the time trajectory 
depicted in Fig. 4. This behavior can also be illustrated through 
the strange attractor shown in Fig. 5(a), which is very similar to 
the attractors shown in [1]-[4]. The corresponding Fast Fourier 
Transform (FFT) is shown in Fig. 5(b), which proves the 
presence of chaos, since strange attractors are characterized by 
a relatively wide frequency spectrum as the one depicted here, 
which would be considered wide in the context of transient 
stability studies. 

From the time series shown in Fig. 4, the largest Lyapunov 
exponents were also calculated to confirm the onset of chaos 
using the techniques described briefly in Section II. Thus, the 
largest Lyapunov exponent is a negative value (-5.0061e-004) 
at 414.40 MW loading for the base system, while this exponent 
becomes positive (0.0149) at 430.717 MW loading, thus 
confirming the presence of chaotic behavior for the latter 
loading conditions. For the contingency case, the largest 

Lyapunov exponent is -0.0112 at 362.6 MW loading, and 
0.0038 at 372.96 MW loading. 

A boundary crisis through a BSB is observed at 
approximately 430.98 MW loading for the base system, and 
about 390.57 MW loading for the contingency system.  Figure 
6, which is similar to comparable time-domain profiles 
depicted for the 3-bus ODE system model in [3], illustrates the 
boundary crisis effect on the voltage at Bus 14 for the base 
system.  

To study the effect of opening Line 2-4 on the benchmark 
system, the line was tripped at 2 s of operation of the base 
system.  In this case, the system presented a different time-
domain behavior that the one expected from the 
aforementioned studies for the contingency case, i.e. different 
equilibrium points and limit cycles (oscillations) were obtained 
in this case. Thus, the new PV curve (bifurcation diagram) 
depicted in Fig. 7 was obtained through a series of time domain 
simulations. Observe the differences in the voltage and loading 
values shown in this figure for the line trip event with respect 
to those shown in Fig. 2 for the contingency case; for example, 
the BSB for the contingency system occurs at about 390.57 
MW, whereas for the line-trip system it is observed at 
approximately 415.73 MW, and the maximum “power-flow” 
loading point, which corresponds to a saddle-node bifurcation, 
is observed at approximately 394 MW loading for the 

Fig. 5. Chaos results: (a) chaotic attractor projection for the base system at 
430 MW loading (rotor speeds ω1 and ω2 of the main generators at Buses 1 
and 2), and (b) Fast Fourier Transform (FFT) analysis of ω2. 

 
Fig. 6. Boundary crisis for the base system at 430.98 MW loading. 
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Fig 3. PDB for the base system at 414.40 MW loading. 

 
Fig. 4. Chaotic behavior for the base system at 430.717 MW loading. 
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contingency system, whereas this occurs at about 433 MW 
loading for the line-trip case. 

The difference between Figs. 2 and 7 is due to the fact that 
in power systems, unlike other nonlinear systems, power flow 
models, which are simplified models of the dynamic system to 
represent typical operating strategies, are used to determine 
equilibrium points of the associated dynamic models. 
Therefore, when there are changes in the system, such as the 
line trip (contingency) discussed here, the corresponding power 
flow solution or operating point and the actual equilibrium 
point of the dynamic system model differ during time domain 
simulations, due mainly to the generators’ voltage regulators 
(AVRs) droops, thus making the reference voltage (associated 
with the equilibrium point of the dynamic model) different 
from the terminal voltage (obtained from the power flow 
solution).  This is clearly illustrated in Fig. 8, which depict the 
terminal voltages at Bus 2 (Generator 2) and the corresponding 
AVR reference voltages for both the system with Line 2-4 
removed and the system with this line tripped during the 
simulation; these differences between terminal and reference 
voltages in the system generators are the main reason for the 
differences between Figs. 2 and 7.   

A PSS was added to Generator 1 to remove the HBs in all 
cases, as discussed in [12], resulting in the removal of all 
chaotic phenomena.  It is interesting to note that the equilibria 
depicted in Fig. 7 were obtained via time-domain simulations 
of a line trip on the base system with a PSS. 

It is well known in stability studies that load models 
significantly affect the dynamic behavior of power systems 
[15]. Thus, the presented oscillations, bifurcation and chaotic 
phenomena will be affected by the load models used. For 

example, for a simple impedance load model, the presented 
phenomena do not appear. On the other hand, for the recovery 
dynamic load model proposed in [16], similar oscillations and 
transient behavior were observed for various values of the 
exponents used to represent the voltage dependency. Observe 
that although loads are not typically modeled as sole constant 
power in practice, but rather as part of, for example, a ZIP load 
model, these models are typically used in stability studies to 
model stressed system conditions and form the basis of certain 
stability analysis techniques (e.g. [17], [18]).  

IV.  CONCLUSIONS 
The appearance of a chaotic attractor on a standard DAE 

model of the 14-bus IEEE benchmark system was discussed in 
detail in this paper. Using standard power system analysis tools 
and time-domain simulations, a series of PDBs was shown to 
lead to chaos in this case, and the sudden disappearance of the 
chaotic attractor through a BSB phenomenon was 
demonstrated.  The onset of chaos was verified through FFT 
analyses of the time series obtained from the time domain 
simulations, as well as the computation of the largest Lyapunov 
exponents from these time trajectories. A PSS controller was 
used to remove the HBs and thus eliminate chaos.  

It is important to highlight the fact that all results were 
obtained without the need of specialized nonlinear system 
analysis tools and without making any particular modeling 
assumptions or simplifications. This is not the case in all 
previous publications reporting on chaotic observations in 
simplified ODE power system models, which have made use of 
standard analysis tools for the study of bifurcations and chaos 
in nonlinear dynamic systems. Finally, even though chaos 
studies are of a theoretical nature in power systems, since in 
practice system protections do not allow the presence of 
undesirable sustained oscillations, bifurcation and chaotic 
studies do yield insights into the dynamic behavior and 
characteristics of power systems, thus allowing improving their 
design, control and operation. 
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