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A new heuristic approach to deal with discrete
variables in optimal power flow computations

Florin Capitanescu and Louis Wehenkel,Member, IEEE

Abstract—This paper proposes a new heuristic approach to
deal with discrete variables in an optimal power flow (OPF).
This approach relies on the first order sensitivity of the objective
and inequality constraints with respect to the discrete variables.
The impact of a discrete variable change on the objective
and inequality constraints is aggregated into a merit function.
The proposed approach searches iteratively for better discrete
variable settings as long as the problem solution can be improved.
We provide numerical results with the proposed approach on four
test systems up to 1203 buses and for the OPF problem of active
power loss minimization.

Index Terms—mixed integer nonlinear programming, nonlin-
ear programming, optimal power flow

I. I NTRODUCTION

T HE Optimal Power Flow (OPF) problem [1], [2] is a
non-convex, large-scale, nonlinear programming prob-

lem with both continuous and discrete variables, in brief
a mixed-integer nonlinear programming (MINLP) problem.
MINLP problems belong to the category of very difficult (NP-
complete) optimization problems. The methods for solving
MINLP can be roughly classified into deterministic and non-
deterministic search. The former class includes innovative
approaches and related techniques taken and extended from
mixed integer linear programs (MILP), such as: branch and
bound [3], [4], outer approximation [5], [6], generalized Ben-
ders decomposition [7], [8], interior point cutting plane [9],
and extended cutting plane [10]. The latter class encompasses
global optimization techniques such as: genetic algorithms,
simulated annealing, tabu search, etc. All mentioned MINLP
solution methods share the same drawback that they are non-
polynomial and hence present very poor scalability and pro-
hibitive computational times, especially for large-scaleprob-
lems. Besides, they only guarantee global optimality under
feasible domain convexity assumptions with respect to the
continuous variables.

Obviously, with the presently available computational tools,
the above mentioned MINLP methods are still inappropriate
for large-scale OPF applications, especially in the context of
real-time operation. In fact, due to the time constraints, in the
context of OPF computations in the framework of operational
planning and especially real-time the main aim is to quickly
find a near-optimal feasible solution while adequately handling
the discrete variables.

The efficient handling of discrete variables in the OPF has
been recognized as a challenging problem and has received
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significant attention since the late 80’s [11]–[13]. Meanwhile a
large spectrum of approaches have been proposed to deal with
discrete variables, e.g. simple heuristics [12], [15], penalty
functions within NLP of LP solvers [16]–[18], ordinal op-
timization [19], recursive mixed-integer linear programming
[20], interior point cutting plane [21], global optimization
methods [22]–[25], etc.

The simplest approach for handling discrete variables is
based on the rounding-off strategy [12]. In this technique,
the OPF relaxation is first solved by treating all variables as
continuous. Next, at the optimal solution, the discrete variables
are rounded-off to their nearest discrete value. Finally, the
discrete variables are frozen and the continuous variablesare
determined either by re-running the OPF, or by a classical
power flow program. To reduce the sharp effect of rounding-
off all discrete variables at once, a progressive rounding-off
of discrete variables has been proposed [15]. In this approach
at each iteration only a subset of discrete variables which
are sufficiently close to a discrete value are rounded-off, the
remaining variables (treated as continuous) being then re-
optimized. It is largely agreed that the round-off technique
is generally suitable for discrete variables with small steps
(e.g., load tap changer (LTC) transformer ratio and phase
shifter angle) but requires some caution for discrete variables
with larger steps (e.g., shunt compensation banks, network
switching) [12], [14], [16]. However, the round-off approaches
act “blindly” since they do not look at the discretization effect
on either the objective or the inequality constraints, suffering in
consequence from two drawbacks: (i) the solution feasibility
is not guaranteed while no method to restore feasibility is
proposed, and (ii) the objective value may be unacceptably
deteriorated.

Another class of heuristic approaches consists in handling
discrete variables by means of penalty functions in NLP
solvers such as the active-set Newton method [16] or the
interior point method (IPM) [17]. The former approach uses
several heuristic rules to drive the discrete variables to their
discrete values, while nowadays the Newton method is seen
as slightly less efficient than other NLP methods (e.g., interior
point, sequential quadratic programming, etc.). The latter
approach provides very good results, comparable with the
performances of IPM solution of OPF relaxation. However,
this approach uses very small steps for shunt banks (e.g.,
maximum 6 Mvar), whereas in real-life these steps are often
significantly larger (e.g., up to 30-40 Mvar). Our experience
with this approach shows that the convergence is much slower
when considering larger steps, while sometimes the approach
even experiences convergence problems.
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An interesting approach, very well suited for operational
planning and even real-time applications, is proposed in [19].
It uses first a continuous OPF computation. Then it reduces
the search space of discrete variables by keeping only the
two neighbouring discrete values to the continuous solution.
Finally, the OPF is re-run only for some combinations of dis-
crete values, with an estimated better impact on the objective,
the latter being selected by means of ordinal optimization
theory. However, this approach does not address the problem
of infeasibility caused by the discretization, in as much asthe
search space of discrete variables values is reduced to two
discrete values per variable.

Last but not least the OPF problem has received a particular
attention from the prespective of global optimization methods,
let us quote non-exhaustively: genetic algorithms [22], [23],
simulate annealing [24], tabu search [25], etc., or hybrid
approaches coupling genetic algorithms and local search NLP
solvers [26]. However, these techniques still remain heavyin
terms of CPU times especially for large-scale systems.

In this paper we propose a new heuristic approach for han-
dling efficiently discrete variables in the OPF problem. This
approach relies on first order sensitivity of the objective and of
the inequality constraints with respect to discrete variables. It
looks iteratively for a better configuration of discrete variables
based on their ability to improve the objective function and
remove inequality constraints violation.

The rest of the paper is organized as follows. Section
II recalls the general OPF formulation. Then, Section III
presents the proposed sensitivity-based approach to deal with
discrete variables. Section IV offers numerical results with the
proposed approach and Section V concludes.

II. T HE OPTIMAL POWER FLOW PROBLEM

The classical OPF problem can be written as follows:

min
x,uc,ud

f(x,uc,ud) (1)

s.t. g(x,uc,ud) = 0 (2)

h(x,uc,ud) ≤ 0 (3)

uc ≤ uc ≤ uc, uc ∈ Rnc (4)

ud = [ud1 . . . udi . . . udnd
]T (5)

udi ∈ {u
1
di, . . . , u

j
di, . . . , u

p(i)
di }, ∀i = 1, . . . , nd (6)

wherex is the vector of state variables (i.e., real and imaginary
part of voltage at all buses),uc is an nc dimensional vector
of continuous control variables (e.g., generators active power,
generators voltage (when controllable), load curtailmentcon-
trols, etc.) anduc (resp.uc) is its corresponding vector of
lower (resp. upper) bounds,ud is an nd dimensional vector
of discrete control variables (e.g., LTC transformer ratios,
shunt element reactances, phase shifters angle, etc.) and for
the i-th discrete variableuj

di is its j-th discrete value and
p(i) is its number of discrete positions,f(·) is the objective
function,g(·) andh(·) are vectors of functions which model
equality and inequality constraints. Equality constraints (2)
are essentially the AC bus power flow equations, inequality
constraints (3) refer to operational limits (e.g., branch currents

and voltage magnitudes), inequality constraints (4) referto
physical limits of equipments (e.g., bounds on: generators
active/reactive powers, load curtailment controls, etc.)while
constraints (6) express that discrete variablesud can take only
discrete values.

A given configuration of the discrete variablesus
d is called

feasible if the continuous OPF problem (1-4) in which the
discrete variables are fixed at the values specified by this
configuration (ud = us

d) is feasible. Otherwise, it is called
infeasible.

An enumeration approach applied to the OPF problem (1-6)
requires the solution of

∏nd

i=1 p(i) continuous OPF problems.
Assuming that all discrete variables have the same numberp

of steps, the number of continuous OPF problems to solve is
pnd (e.g., for p = 10 and nd = 20 one has1020 possible
configurations of the discrete variables). Therefore, in large
scale systems with a large number of discrete variables, the
exact solution of the MINLP OPF problem (1-6) is generally
intractable by classical MINLP approaches.

III. T HE PROPOSED SENSITIVITY-BASED APPROACH

A. The underlying idea of the proposed approach

The underlying idea of the proposed approach is to set
values of discrete variables in a greedy fashion by assessing
their ability to improve the objective and to remove inequality
constraints violation. The first approach to come to mind in
order to achieve this goal is based on finite differences. In this
approach each discrete variable is moved to a new discrete
position, a power flow (PF) program is run, and at its solution
the variation of the objective and inequality constraints due
to variable change is computed. Another approach consists in
moving a discrete variables to a new discrete position and
solve an OPF where discrete variables are frozen and only
continuous variables are taken as control variables. If feasible,
the solution of this OPF provides the shift in the objective
due to discrete variable change while satisfying all constraints.
These two approaches are accurate but very time consuming,
especially the one based on OPF. Also, it is difficult to foresee
whether the simultaneous changes in several discrete variables
will be modeled with sufficient accuracy by superposing the
effect of changing one discrete variable at the time.

In order to speed up computations while preserving suffi-
cient accuracy of results we use instead an approach based on
first order analytical sensitivities. Since sensitivitiesvalidity
is ensured only for small variations around the operating
point where they are derived, we restrict the discrete variables
changes to a step (up or down) per iteration.

B. Estimating the impact of discrete variable changes on the
objective function and the inequality constraints

We explain hereafter the sensitivity-based procedure thatwe
use in order to choose control variables settings.

Let (x,uc,ud) describe a virtual operating point of the
system, stemming from an OPF or a PF computation. Let us
denote byji (∀i = 1, . . . , nd) the current position of discrete
variableudi.
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For an equilibrium point of the system there exist in the
literature well known analytical formulas to compute first order
sensitivities of some quantity of interest with respect to control
variables [2], [27]. This computation may be performed at the
solution of an OPF or a PF.

The key information of our approach is the sensitivity of
the objective function and inequality constraints with respect
to discrete variablesud changes, which we denote bySf

ud
and

Sh
ud

. According to [2] these sensitivities take on the form:

Sf
ud

=
∂f

∂ud

− (
∂g

∂ud

)T [(
∂g

∂x
)T ]−1 ∂f

∂x
(7)

Sh
ud

=
∂h

∂ud

−
∂h

∂x
(
∂g

∂x
)−1 ∂g

∂ud

(8)

Note that, if the point where the sensitivities are derived
is an OPF optimum, the terms[(∂g

∂x
)T ]−1 ∂f

∂x
and ∂h

∂x
(∂g

∂x
)−1

involved in (7) and (8) are the Lagrange multipliers vectors
at the optimal solution corresponding to equality constraints
(2) and to inequality constraints (3), respectively; hencethey
are provided as a by-product of the OPF computation [2].
While the former term is very useful and can be used directly
in (7) to speed up sensitivities computation, the latter term
is useless since only those components that correspond to
binding inequality constraints are non-zero.

The incremental computational effort needed to derive the
sensitivities in (7) and (8) is very small, since the power flow
Jacobian∂g

∂x
is already available and factorized at the PF or

OPF solution.
Next for each discrete variableudi (∀i = 1, . . . , nd), one

can therefore estimate linearly the change in the objectiveand
the inequality constraints when movingudi from its current
discrete valueuji

di to its nearest lower value,uji−1
di or to its

nearest higher value,uji+1
di :

∆f+
i =Sf

udi
(uji+1

di − u
ji

di) (9)

∆f−

i =Sf
udi

(uji−1
di − u

ji

di) (10)

∆h+
ki =Shk

udi
(uji+1

di − u
ji

di), ∀k = 1, . . . , nh (11)

∆h−

ki =Shk

udi
(uji−1

di − u
ji

di), ∀k = 1, . . . , nh (12)

wherenh is the dimension of vectorh in (3).
Then we compute the value of the so-called merit function

which combines the variation of the objective function and the
variation of the degree of constraints violation:

η+
i = wf∆f+

i +

nh∑

k=1

wh max[0, hk(x,uc,ud) + ∆h+
ki] (13)

η−

i = wf∆f−

i +

nh∑

k=1

wh max[0, hk(x,uc,ud) + ∆h−

ki] (14)

wherewf ≥ 0 andwh ≥ 0 are weighting factors.
Observe that the terms related to inequality constraints con-

tribute to the merit function only if some inequality constraints
are violated after altering the value of discrete variableudi,
i.e. if hk(x,uc,ud)+∆h+

ki > 0 or hk(x,uc,ud)+∆h−

ki > 0.
The lower the value of the merit function the better the effect
of moving the discrete variable.

Finally, the discrete variableudi is moved to its nearest
discrete value which leads to best overall improvement of
optimality and feasibility, i.e.:

u
ji

di ← u
ji+1
di if η+

i ≤ η−

i or (15)

u
ji

di ← u
ji−1
di if η+

i > η−

i (16)

Notice that in the above procedure we have assumed that
the discrete variables at the current iteration were already
at one of their discrete values. However, depending on the
procedure used to determine discrete variables, (e.g., starting
with a continuous relaxation of the OPF, see below), this is
generally not the case. In the situation where variableu

ji

di does
not have a discrete value,u

ji+1
di andu

ji−1
di from formulas (9-

12) represent its nearest successive upper and lower discrete
values.

On the other hand, if all discrete variables are already at
discrete values, the value of a variable is actually modified
only if it can significantly improve the merit function, i.e., if
either η+

i ≤ ηth or η−

i ≤ ηth. The value of this threshold
ηth can be adapted in order to control the number of discrete
variables allowed to move at a given iteration.

C. Outline of the proposed algorithm

The proposed iterative greedy algorithm is outlined as
follows:

1) Solve the OPF continuous relaxation (discrete variables
are treated as continuous).

2) At the current OPF optimum, compute the sensitivity
of the objective function and inequality constraints with
respect to discrete variables (Sf

ud
andSh

ud
) according to

formulas (7) and (8).
3) For each discrete variableudi(∀i = 1, . . . , nd), compute

the merit function relative to its movement according to
formulas (13) and (14).

• Update all discrete variables which have small
enough merit function (given the thresholdηth) or
which are currently not yet at a discrete value (this
will be the case only at the first iteration), by moving
them to their nearest (upper or lower) discrete value,
according to formulas (15) and (16). Letu⋆

d be the
new values of discrete variables.

• If none of the discrete variable values has been
changed with respect to the previous iteration, a
near-optimal solution has been found and the com-
putation terminates.

4) Run the OPF to optimize continuous variables only
(discrete variables are frozen at their current valueu⋆

d).

• If the OPF objective value change with respect
to either the previous iteration or the continuous
relaxation OPF is smaller than a tolerance, then an
acceptable near-optimal solution has been found and
the computation terminates.

• Otherwise, go to step 2.

NB. To lighten the algorithm comprehension, the case where
the OPF problem posed at step 4) is infeasible is
discussed in Section III-D.
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Observe that, as soon as all discrete variables are at discrete
values, the algorithm stops in one of the following two
situations: (i) if for any discrete variable the merit function
indicates that there is no significant impact by moving the
variable to a new discrete value, or (ii) the OPF objective
variation is deemed negligible.

Note that, unlike most methods existing in the literature,
which search for the optimal value of discrete variables by
considering only two discrete values for each one of them, the
proposed approach allows the movement of discrete variables
(one single discrete step at the time) to positions that best
improve the optimality and feasibility. In other words, the
proposed approach uses a larger discrete search space and
hence has higher chances to find a feasible solution.

Although we formulated the algorithm by assuming that
it searches from scratch, one may adapt it in order to take
advantage of any other suitable approach for choosing an
initial value of discrete variables. Thus, the proposed algorithm
can start from any initial value of the discrete variables
(e.g., stemming from a real-time operating point), and the
sensitivity-based approach may be used as a post-processing
of the round-off approach if the latter leads to an infeasible
OPF or to an unacceptable deterioration of the objective.

One possible drawback of the proposed heuristic is related
to the fact that it treats the different variables independently
of each other and hence their cumulative effects on inequality
constraints may not be properly taken into account. This holds
true especially if discrete variables are related to devices which
are located close to each other in the power system.

Hence, in order to take more explicitly into account the
potential cumulative effect of the changes of several variable
values we propose a simple heuristic technique which can
replace the variable updating scheme at step 3) of the above
algorithm:

1) rank discrete variables in increasing order of the merit
function;

2) pick the top ranked discrete variable which has not been
set yet to a discrete value and set it to its best discrete
value;

3) update the inequality constraints (e.g., the bus voltage
magnitudes) by considering linearly the effect of chang-
ing the value of the top ranked discrete variable;

4) if all discrete variables have been set to a discrete value
stop, otherwise go to step 1.

Another possibility to take into account the cumulative
effect and to overcome linear sensitivities limitation would
consist in setting discrete variables to their discrete values by
using a more progressive approach, e.g., by first updating only
the most “efficient” ones instead of changing all of them at
each iteration. In this case, the sensitivities of those discrete
variables that have not been set yet would be updated by re-
running the OPF with the new values fixed for the remaining
variables.

D. Dealing with continuous OPF infeasibility

As mentioned above, it is possible that during the iterative
search of satisfactory configurations of discrete variables some

of the configurations proposed by our algorithm lead to an OPF
problem (1-4) which is infeasible.

We therefore propose to handle such situations by solving a
minimum degree of constraints violation OPF problem instead
of the original problem. More precisely, if for an established
configuration of the discrete variables the OPF (1-4) which
optimizes continuous variables only is infeasible, we solve
instead the following OPF problem:

min
x,uc,r

1T r (17)

s.t. g(x,uc,ud) = 0 (18)

h(x,uc,ud) ≤ r (19)

uc ≤ uc ≤ uc (20)

r ≥ 0 (21)

in which positive relaxation variables (21) have been intro-
duced in order to relax the inequality constraints (19). The
objective (17) is the minimization of the degree of constraints
violation in the sense of theL1 norm.

The solution of problem (17-21) in the context of the
proposed algorithm is very useful since it provides an optimum
of the relaxed OPF which enables the derivation of sensitivities
(7-8) and hence allows to carry on the algorithm. Incidentally,
the solution of the problem (17-21) yields the degree of
original continuous OPF problem infeasibility. This is a worthy
information especially if the MINLP OPF (1-6) is infeasible
whatever the values taken by discrete variables.

IV. N UMERICAL CASE STUDIES

A. Problem definition and test systems description

We consider the OPF problem of minimizing the active
power losses of the transmission system. We consider con-
tinuous control variables (e.g., slack generator active power,
generators terminal voltage) and discrete control variables
(e.g., controllable transformer ratios and shunt reactances).
The equality constraints comprise the active and reactive
power flows at all buses. The inequality constraints, on the
other hand, concern branch current limits and bounds on volt-
age magnitudes, generator reactive powers, transformer ratios,
and shunt reactance total capacities. Voltage magnitudes are
allowed to vary between 0.95 pu and 1.05 pu at all buses. As
regards discrete variables, we assume for all our test systems
that the ratio of each tap-changer varies between 0.9 pu and
1.1 pu and has 21 discrete positions and therefore has a step
of 0.01 pu, while the steps of the shunt compensation banks
range from 20 to 40 Mvar.

We present detailed results obtained with the proposed
approach in four test systems: a 60-bus system, which is a
modified variant of the Nordic32 system [28], the IEEE300
bus system [29], a 618-bus system, and a modified1 planning
model of the RTE (the French transmission system operator)
system of 1203 buses. A summary of their characteristics is
given in Table I. In this tablen, g, c, b, l, t, o, s, nc, andnd

denote respectively the number of: buses, generators, loads,

1for the sake of dealing with a large number of discrete variables we have
significantly increased the number of LTC transformers and shunt banks
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TABLE I
TEST SYSTEMS SUMMARY

system n g c b l t o s nc nd

Nordic32 60 23 22 81 57 31 4 12 24 16
IEEE300 300 69 198 411 282 129 50 14 70 54
618-bus 618 72 352 1057 810 247 175 25 73 200
1203-bus 1203 177 767 1797 1394 403 203 36 178 239

branches, lines, all transformers, transformers with control-
lable ratio, shunt elements, continuous control variables, and
discrete control variables.

B. Illustration of the proposed approach

Let us illustrate how the proposed approach works by
using the Nordic32 system. We first run the relaxed OPF (all
variables are treated as continuous) and obtain a minimum
power loss of 137.79 MW. Then we compute the sensitivities
at the relaxed OPF optimum and, based on this information,
we determine discrete values for all discrete variables. Then a
new optimization of continuous control variables is performed.
Now the active power loss is of 137.82 MW, i.e., very slightly
higher than with the continuous solution. Since the obtained
deterioration with respect to the continuous case is extremely
small one can conclude that the convergence has been reached.
As a matter of fact, checking the values of sensitivities at this
optimal point reveals that there is no further benefit (i.e.,no
significant impact on the objective) to change any discrete
variable to another discrete value.

Table II presents the values of active power loss obtained
at the operating points computed on our four test systems by
three different approaches: continuous relaxation (whereall
variables are treated as continuous), the classical round-off
strategy, and the proposed sensitivity-based approach. Note
that in all tests the sensitivity-based approach outperforms the
round-off approach in terms of both objective quality, since it
always leads to smaller losses, and robustness, since always
leads to feasible solutions contrary to the round-off approach
which leads to an infeasible continuous OPF for the IEEE300
system. On the other hand, the proposed sensitivity-based
approach requires additional computational efforts with respect
to the round-off technique, due to the sensitivities computation.
This task is however extremely fast compared to the solution
of the OPF itself.

One can also observe that, even when the number of discrete
controls is rather large (e.g., for the 618-bus and 1203-bus
systems), the discrete optimum reached is very close to thatof
the continuous approach. This effect is due to the rather small
sensitivity of the objective function with respect to discrete
controls changes for these test systems. As a consequence,
the sensitivity-based approach has reached convergence inall
cases in a single iteration.

C. Analytical sensitivities validation by finite differences

Table III shows the objective function change due to the
movement of one discrete control at the time, determined by
two approaches: finite differences based on a power flow com-
putation and predictions by using our analytical sensitivities.

TABLE II
ACTIVE POWER LOSSES(MW) BY THREE APPROACHES

system continuous round-off sensitivity

Nordic32 137.79 137.92 137.82
IEEE300 386.60 infeasible 388.06
618-bus 844.25 846.46 845.41
1203-bus 2050.58 2054.15 2051.67

TABLE III
OBJECTIVE FUNCTION CHANGE COMPUTED BY FINITE DIFFERENCES AND

BY ANALYTICAL SENSITIVITIES FOR VARIOUS DISCRETE CONTROL

CHANGES(ONE CONTROL VARIABLE CHANGE AT THE TIME): RESULTS

USING THE 1203-BUS SYSTEM

LTC number shunt number
3 10 83 132 191 3 6 17 21 34

real objective change (MW) by finite differences
0.16 0.18 -0.02 0.17 0.31 -0.23 -0.46 -0.72 -0.84 -0.32
-0.12 -0.16 0.04 -0.15 -0.23 0.24 0.53 0.75 0.92 0.45

predicted objective change (MW) by analytical sensitivities
0.16 0.20 -0.06 0.18 0.37 -0.24 -0.52 -0.74 -0.89 -0.39

The approach by finite differences shows the objective shift
when moving each control with one discrete step either up or
down. The discrete step for any LTC ratio has been taken of
0.01 pu and for any shunt of 30 MVar, respectively. For this
comparison we use a non-optimized base case of the 1203-bus
system.

We observe from Table III that the objective function change
computed by both approaches is generally sufficiently close
so as to validate the analytical sensitivities. Clearly small
mismatches are expected due to the well known nonlinear
local effect of reactive power flow. Observe also that for some
controls (e.g., LTC 191 and shunt 34) increasing and decreas-
ing with the same amount the current value of a discrete
variable leads to rather different values. This mismatch isalso
attributable to the non-linearity introduced by generators which
lose or regain their ability to control voltage subsequently to
the action of other “reactive” power control devices (e.g.,LTC
ratio, shunt reactance, etc.). For instance, at the base case 15
generators have reached their maximum reactive power limit
(these constraints are binding at the continuous OPF solution)
but when injecting (resp. retrieving) some reactive power into
the network, all these generators come back under voltage
control (resp. a few other generators also lose their ability to
control voltage).

Table IV provides on the other hand, for different pairs of
weights wf and wh, the objective function change and the
overall bus voltage limit violations, obtained by the same two
approaches, using the modified settings of the discrete controls
suggested by our approach. The sensitivity-based approach
estimates linearly the effect of simultaneously moving several
control variables on the objective function and on the violated
limits. The finite differences approach implements simultane-
ously the same changes of the values of the discrete variables
as the sensitivity-based approach and, at the converged PF
solution, computes the resulting variation of the objective
function and the sum of all bus voltage limit violations.

Let us observe that there is a very good agreement among
the two approaches concerning the overall bus voltage limit
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TABLE IV
OBJECTIVE FUNCTION AND OVERALL BUS VOLTAGE LIMIT VIOLATION

CHANGES COMPUTED BYPFAND PREDICTED BY ANALYTICAL
SENSITIVITIES FOR SIMULTANEOUS CONTROL MOVEMENTS DETERMINED

BY USING VARIOUS VALUES OF WEIGHTSwf AND wh : RESULTS USING

THE 1203-BUS SYSTEM

wf > 0 wf = 1 wf = 1 wf = 1 wf = 1 wf = 1 wf = 0

wh = 0 wh = 1 wh = 10 wh = 50 wh = 100 wh = 200 wh > 0

real objective variation (MW) computed by PF
-19.78 -19.77 -17.08 -13.93 -10.01 -7.24 0.47

predicted objective variation (MW) by analytical sensitivities
-27.83 -27.73 -23.76 -20.28 -15.35 -11.98 0.10

real overall bus voltage limits violation (pu) computed by PF
1.381 1.145 0.266 0.083 0.028 0.008 0.000

predicted overall bus voltage limits violation (pu) by analytical sensitivities
1.221 1.028 0.255 0.082 0.028 0.008 0.000

violations. On the other hand, the sensitivity-based approach
tends to overestimate the change of the objective function by
about40 − 50%. Since the sensitivities have been validated
when moving controls one at the time, this mismatch is
attributable to the large number of discrete variables which
move (around 200 in average) and, to a lesser extent, to the
fact that the slack generator compensating the losses variation
is located outside the optimized system. In these conditions
the mismatch between sensitivity-based and finite differences
approaches seems reasonable.

Note also that, at the PF solution obtained after discrete
variables changes, the larger the weight relative to the objective
function, the larger the objective improvement but the higher
the overall voltage limit violations.

D. Sensitivity of the OPF result with respect to the weights
on objective and violated inequality constraints

We now provide some results on the sensitivity of the OPF
output with respect to the weights of the objective function
and violated inequality constraints,wf and wh, involved in
the merit function formulas (13) and (14). Without loss of
generality we use the 1203-bus system for this example and
consider as base case the OPF continuous relaxation optimum.

Let us first explain how the meaning of these pairs of
weights can be interpreted. For instance the pairwf = 1 and
wh = 10 means that a discrete variable is allowed to move to
a new discrete position if this leads to an overall voltage limit
violation of 0.01 pu and the active power losses diminish by
more than 0.1 MW, and if the merit function corresponding to
this movement is smaller than its value corresponding to the
movement of the variable in the opposite direction.

Table V provides, for different pairs of weightswf andwh,
the active power losses at the OPF solution and the active
power losses and the sum of bus voltage limit violations at
the PF solution obtained after the update of discrete values.

We first notice that the optimum value of power losses is
rather stable over a quite large range of weight values, i.e.
wf = 1 and wh ∈ [50 200], which shows the robustness
of the proposed approach. Furthermore, the value of active
losses obtained with the proposed approach is smaller than
with the round-off approach (see Table II) for an even larger
range of weights. The results show also that putting a too

TABLE V
SENSITIVITY OF ACTIVE POWER LOSSES WITH RESPECT TO THE CHOICE

OF WEIGHTSwf AND wh : RESULTS USING THE1203-BUS SYSTEM

wf > 0 wf = 1 wf = 1 wf = 1 wf = 1 wf = 1 wf = 0

wh = 0 wh = 1 wh = 10 wh = 50 wh = 100 wh = 200 wh > 0

active power losses (MW) at the OPF solution
2066.17 2065.75 2055.03 2051.75 2051.67 2051.65 2052.26

active power losses (MW) at the PF solution
2043.65 2043.76 2048.11 2051.00 2051.69 2052.13 2053.60

sum of bus voltage limit violations at the PF solution (pu)
1.955 1.867 0.171 0.018 0.010 0.005 0.003

strong emphasis on the objective function improvement (e.g.,
the extreme case wherewf > 0 and wh = 0, and where
wf = wh = 1) leads actually to a rather poor value of the
objective function. In contrast, the extreme case where the
impact of discretization on the objective function is not atall
taken into account (wf = 0 andwh > 0) leads nevertheless to
a rather good value of the power losses, although it is slightly
suboptimal.

Finally we observe that, at the PF solution obtained after
discrete variables are updated, the larger the weight relative
to the objective function improvement, the smaller the active
power losses and the higher the overall voltage limit violations.

E. Starting from different discrete variables settings

We now use the 1203-bus system and initialize the discrete
variables in the sensitivity-based approach by means of the
round-off approach applied at the continuous OPF relaxation
optimum. Then we apply the proposed approach and the merit
functions indicate that 80 discrete controls (out of 239) should
be moved. We move them to their suggested values and next
we re-run the OPF with continuous variables only and observe
that it leads to a losses value of 2053.20 MW of losses,
i.e., 0.95 MW less than with the round-off approach (see
Table II). The analysis of the merit functions at this OPF
solution indicates that no major benefit would be expected
by changing the discrete variables values and hence the
computations terminate. Thus, when using this initialization,
although the losses are improved with 0.95 MW with respect
to the round-off approach, they are 1.53 MW higher than
when using first a continuous OPF relaxation (see Table II).
Furthermore, we have observed that even by changing the
relative values of weightswf and wh, the last sub-optimum
(2053.20 MW) is not improved significantly. We conclude that
when discrete variables approach very closely their optimum
values the information provided by the merit function may be
less efficient.

Let us now start from a non-optimized base case of the
1203-bus system and with given values for discrete controls.
Figure 1 plots the evolution of active power losses when using
this starting point in the sensitivity-based approach. Onecan
observe that the sensitivity-based procedure takes 4 iterations
to converge and that the losses decrease is less and less
significant with the increase of the iteration number. However,
the final value of losses (2056.30 MW) is slightly larger than
with the round-off approach (i.e., 2054.15 MW) and even more
suboptimal with respect to the case reported in Table II where
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Fig. 1. Evolution of active power losses when starting from anon-optimized
base case: results obtained using the 1203-bus system

the discrete variables are initialized by running the continuous
relaxation OPF version (i.e., 2051.67 MW). An analysis of the
converged solution of the sensitivity-based procedure reveals
that the two initializations (continuous relaxation and non-
optimized base case) have led to different settings for most
discrete variables. One can conclude that depending on the
starting point the sensitivity-based method may be “trapped”
in a less interesting near-optimum, or the number of iterations
to “unblock” the method may be very large due to fact that
the discrete variables are allowed to move only one step at the
time so as to preserve the validity of sensitivities.

On the other hand, in contrast with the round-off approach,
the sensitivity-based approach has the ability to improve losses
for a given operation point (stemming for instance from real-
time) and to easily limit the number of controls allowed to
move so as to improve the objective.

These two examples clearly show that it is better to initialize
discrete variables starting from a relaxed OPF solution.

F. Dealing with infeasible discrete variables configurations

We now show how the proposed approach copes with
infeasible situations which appear owing to inadequate discrete
variable settings, but for which the original MINLP OPF
problem is feasible. We illustrate such a case on the IEEE300
system. The active power losses at the relaxed OPF solution
are of 386.60 MW (see Table II). Then, after rounding-off
the discrete variables, we notice that the subsequent OPF
that optimizes continuous variables is infeasible. In contrast,
after setting discrete variables by the sensitivity approach,
the subsequent OPF converges to a solution where the power
losses are of 388.06 MW, i.e., slightly larger than in the relaxed
approach. This illustrates the fact that in some cases the simple
heuristic behind the round-off approach may lead to infeasible
discrete variable configurations, even if the original MINLP
problem is feasible.

Now we show how our approach can provide a solution
starting from an infeasible configuration of discrete variables.
To this end, we first initialize discrete variables to the val-
ues provided by the round-off approach. Then we solve the

minimum infeasibility degree problem (17-21) which provides
a feasible solution where two minimum voltage limits have
been relaxed with 0.02 pu and 0.01 pu, respectively. Next
sensitivities are derived at this optimum and discrete variables
are moved to new discrete values according to the rules of
the sensitivity-based approach. Finally, by re-running the OPF
with continuous variables only the problem is feasible and the
losses are of 389.79 MW.

V. CONCLUSIONS

This paper has proposed a new heuristic approach to deal
with discrete variables in an OPF. The proposed approach
relies on first order sensitivities of the objective function and
of the inequality constraints with respect to discrete variables,
that may be computed efficiently at the solution of a PF
or an OPF software. In our approach, these sensitivities are
combined in a merit function to determine the direction of
movement of a discrete variable. An iterative algorithm is
proposed to greedily move the discrete variables to their
nearest upper or lower bound at each iteration. This algorithm
may be started from scratch, or it may be used as a post-
processor to other methods, so as to improve the value of
the objective function or to find a feasible configuration of the
discrete variables. Nevertheless, much better results in terms of
objective quality and computational speed have been obtained
when starting from a continuous relaxation OPF solution.

The validation of the approach on four test system has
shown that the proposed sensitivity-based approach outper-
forms the classical round-off approach for all test systems
in terms of both numerical robustness and objective quality.
The main features of the sensitivity-based approach are: (i)
it can pass through infeasible points, using them just as a
basis to enable sensitivities computation and hence carrying
on the procedure, (ii) it can start from any configuration
of the discrete variables values, and (iii) it restricts at each
iteration the movement of each discrete variable to one of its
neighbouring discrete positions, so as to preserve the validity
of sensitivity information.

A slight drawback of the method is that it depends on the
choice of the weights relative to the objective improvementand
violated inequality constraints, involved in the merit functions.
However, the numerical results have shown that the quality of
the final optimum is very good for a rather large range of these
weights.

The proposed approach leads to an increase of the computa-
tional effort with respect to the round-off technique. However,
this increase is most of the times negligible.

One direction of future work is to build a MILP problem
in order to set the discrete variables instead of the heuristic
technique used in the paper. The MILP will be fed with the
sensitivity of the objective and inequality constraints with
respect to discrete variables changes.

Another direction of work is to compare whether computing
sensitivities by means of an OPF program would provide better
results than the sensitivities derived at the power flow solution.



8

ACKNOWLEDGMENTS

We thank RTE (the French transmission system operator)
for allowing us to use and publish results with their data.

This paper presents research results of the Belgian Net-
work DYSCO, funded by the Interuniversity Attraction Poles
Programme, initiated by the Belgian State, Science Policy
Office. Florin Capitanescu and Louis Wehenkel acknowledge
their funding by the FP7 EC project PEGASE. The scientific
responsibility rests with the authors.

REFERENCES
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