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A new heuristic approach to deal with discrete
variables in optimal power flow computations

Florin Capitanescu and Louis Wehenkiglember, IEEE

Abstract—This paper proposes a new heuristic approach to significant attention since the late 80’s [11]-[13]. Meaii&/a
deal with discrete variables in an optimal power flow (OPF). |arge spectrum of approaches have been proposed to deal with
This approach relies on the first order sensitivity of the obgctive discrete variables, e.g. simple heuristics [12], [15], aign

and inequality constraints with respect to the discrete vaiables. - - :
The impact of a discrete variable change on the objective functions within NLP of LP solvers [16]-[18], ordinal op-

and inequality constraints is aggregated into a merit funcion. timization [19], recursive mixed-integer linear programm
The proposed approach searches iteratively for better disete [20], interior point cutting plane [21], global optimizati
variable settings as long as the problem solution can be impred. methods [22]-[25], etc.
We provide numerical results with the proposed approach on(ﬁur_ The simplest approach for handling discrete variables is
test systems up to 1203 buses and for the OPF problem of active . . .
power loss minimization. based on the rpunqlmg-off strategy [12]..In this tephmque,
the OPF relaxation is first solved by treating all variables a
continuous. Next, at the optimal solution, the discretéaides
are rounded-off to their nearest discrete value. Finalg t
discrete variables are frozen and the continuous variatrkes
determined either by re-running the OPF, or by a classical
HE Optimal Power Flow (OPF) problem [1], [2] is apower flow program. To reduce the sharp effect of rounding-
non-convex, large-scale, nonlinear programming probff all discrete variables at once, a progressive roundifig-
lem with both continuous and discrete variables, in brieff discrete variables has been proposed [15]. In this aphroa
a mixed-integer nonlinear programming (MINLP) problemat each iteration only a subset of discrete variables which
MINLP problems belong to the category of very difficult (NP-are sufficiently close to a discrete value are rounded-bé, t
complete) optimization problems. The methods for solvingmaining variables (treated as continuous) being then re-
MINLP can be roughly classified into deterministic and noreptimized. It is largely agreed that the round-off techmiqu
deterministic search. The former class includes innogatiis generally suitable for discrete variables with smallpste
approaches and related techniques taken and extended f(ery., load tap changer (LTC) transformer ratio and phase
mixed integer linear programs (MILP), such as: branch arshifter angle) but requires some caution for discrete bée@
bound [3], [4], outer approximation [5], [6], generalize@! with larger steps (e.g., shunt compensation banks, network
ders decomposition [7], [8], interior point cutting plan®],[ switching) [12], [14], [16]. However, the round-off appaees
and extended cutting plane [10]. The latter class encorepasact “blindly” since they do not look at the discretizatiorfiest
global optimization techniques such as: genetic algosthrmon either the objective or the inequality constraints, esfig in
simulated annealing, tabu search, etc. All mentioned MINLEbnsequence from two drawbacks: (i) the solution feagjbili
solution methods share the same drawback that they are nignnot guaranteed while no method to restore feasibility is
polynomial and hence present very poor scalability and prproposed, and (ii) the objective value may be unacceptably
hibitive computational times, especially for large-scpieb- deteriorated.
lems. Besides, they only guarantee global optimality underAnother class of heuristic approaches consists in handling
feasible domain convexity assumptions with respect to tlscrete variables by means of penalty functions in NLP
continuous variables. solvers such as the active-set Newton method [16] or the
Obviously, with the presently available computational$po interior point method (IPM) [17]. The former approach uses
the above mentioned MINLP methods are still inappropriag@veral heuristic rules to drive the discrete variableshtrt
for large-scale OPF applications, especially in the cantéx discrete values, while nowadays the Newton method is seen
real-time operation. In fact, due to the time constraimishe as slightly less efficient than other NLP methods (e.g. riote
context of OPF computations in the framework of operationpbint, sequential quadratic programming, etc.). The datte
planning and especially real-time the main aim is to quicklgpproach provides very good results, comparable with the
find a near-optimal feasible solution while adequately fiagd performances of IPM solution of OPF relaxation. However,
the discrete variables. this approach uses very small steps for shunt banks (e.g.,
The efficient handling of discrete variables in the OPF hasaximum 6 Mvar), whereas in real-life these steps are often
been recognized as a challenging problem and has receiggghificantly larger (e.g., up to 30-40 Mvar). Our experienc
_ _ o with this approach shows that the convergence is much slower
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I. INTRODUCTION



An interesting approach, very well suited for operationa@nd voltage magnitudes), inequality constraints (4) reder
planning and even real-time applications, is proposed @}.[1 physical limits of equipments (e.g., bounds on: generators
It uses first a continuous OPF computation. Then it reducastive/reactive powers, load curtailment controls, ethjle
the search space of discrete variables by keeping only tnstraints (6) express that discrete varialbigsan take only
two neighbouring discrete values to the continuous satutiodiscrete values.

Finally, the OPF is re-run only for some combinations of dis- A given configuration of the discrete variablag is called
crete values, with an estimated better impact on the obfectifeasible if the continuous OPF problem (1-4) in which the
the latter being selected by means of ordinal optimizatiafiscrete variables are fixed at the values specified by this
theory. However, this approach does not address the probleomfiguration (1; = u3) is feasible. Otherwise, it is called
of infeasibility caused by the discretization, in as muchihes infeasible.

search space of discrete variables values is reduced to twén enumeration approach applied to the OPF problem (1-6)
discrete values per variable. requires the solution of [, p(i) continuous OPF problems.

Last but not least the OPF problem has received a particufssuming that all discrete variables have the same number
attention from the prespective of global optimization noeth, of steps, the number of continuous OPF problems to solve is
let us quote non-exhaustively: genetic algorithms [22B][2 p™ (e.g., forp = 10 andngy = 20 one has10?° possible
simulate annealing [24], tabu search [25], etc., or hybrbnfigurations of the discrete variables). Therefore, igda
approaches coupling genetic algorithms and local seardh N&cale systems with a large number of discrete variables, the
solvers [26]. However, these techniques still remain hdavy exact solution of the MINLP OPF problem (1-6) is generally

terms of CPU times especially for large-scale systems. intractable by classical MINLP approaches.
In this paper we propose a new heuristic approach for han-
dling efficiently discrete variables in the OPF problem.sThi ||| T e PROPOSED SENSITIVITYBASED APPROACH

approach relies on first order sensitivity of the objectind af o

the inequality constraints with respect to discrete vagmblt A The underlying idea of the proposed approach

looks iteratively for a better configuration of discreteigtes ~ The underlying idea of the proposed approach is to set

based on their ability to improve the objective function andalues of discrete variables in a greedy fashion by assgssin

remove inequality constraints violation. their ability to improve the objective and to remove inedyal
The rest of the paper is organized as follows. Secti@onstraints violation. The first approach to come to mind in

Il recalls the general OPF formulation. Then, Section librder to achieve this goal is based on finite differenceshis t

presents the proposed sensitivity-based approach to déwel vapproach each discrete variable is moved to a new discrete

discrete variables. Section IV offers numerical result$wlie position, a power flow (PF) program is run, and at its solution

proposed approach and Section V concludes. the variation of the objective and inequality constrainte d
to variable change is computed. Another approach consists i
Il. THE OPTIMAL POWER FLOW PROBLEM moving a discrete variables to a new discrete position and

) ) solve an OPF where discrete variables are frozen and only
The classical OPF problem can be written as follows:  .ontinuous variables are taken as control variables. Kilée,

min f(x, ug, ug) 1) the solution of this OPF provides the shift in the objective

X,Uc,Uq due to discrete variable change while satisfying all caists.
s.t.g(x,u.,uy) =0 (2) These two approaches are accurate but very time consuming,
h(x, u,, ug) < 0 (3) especially the one based on OPF. Also, it is difficult to feees

whether the simultaneous changes in several discreteblesia

- e
D L . ) will be modeled with sufficient accuracy by superposing the
g = [Ud1 - - Udi - - - Udn,] (5) effect of changing one discrete variable at the time.

ug; € {ul;, ... 7%@ o ﬂbggi)}’ Vi=1,....,ng (6) In order to speed up computations while preserving suffi-

cient accuracy of results we use instead an approach based on
wherex is the vector of state variables (i.e., real and imaginafyst order analytical sensitivities. Since sensitivitieaidity
part of voltage at all busesjs. is ann. dimensional vector js ensured only for small variations around the operating
of continuous control variables (e.g., generators actes, point where they are derived, we restrict the discrete b
generators voltage (when controllable), load curtailment- changes to a step (up or down) per iteration.
trols, etc.) andu, (resp.u.) is its corresponding vector of
lower (resp. upper) boundsy; is ann, dimensional vector
of diséreté3 corr)wrt)rol) variablgg (e.g., IfTC transformer rsatioB' .Es'Fimating Fhe impact O_f discre_te variablg changes on the
shunt element reactances, phase shifters angle, etc.)oandpiective function and the inequality constraints
the i-th discrete variable/, is its j-th discrete value and We explain hereafter the sensitivity-based procedureviieat
p(2) is its number of discrete positiong(-) is the objective use in order to choose control variables settings.
function, g(-) andh(-) are vectors of functions which model Let (x,u.,uy) describe a virtual operating point of the
equality and inequality constraints. Equality consti®) system, stemming from an OPF or a PF computation. Let us
are essentially the AC bus power flow equations, inequaliienote byj; (Vi = 1,...,n4) the current position of discrete
constraints (3) refer to operational limits (e.g., branahrents variablew;.



For an equilibrium point of the system there exist in the Finally, the discrete variable,;; is moved to its nearest
literature well known analytical formulas to compute firsler discrete value which leads to best overall improvement of
sensitivities of some quantity of interest with respectdatcol optimality and feasibility, i.e.:

variables [2], [27]. This computation may be performed at th Jitl i _
solution of an OPF or a PF. g g : it n;” <m; or (15)
The key information of our approach is the sensitivity of whi — it gt > (16)

the objective function and inequality constraints withpesst
to discrete variablea,; changes, which we denote S)ﬁ and
Sh According to [2] these sensitivities take on the form:

Notice that in the above procedure we have assumed that
the discrete variables at the current iteration were ajread
at one of their discrete values. However, depending on the

f of og 7. 0g i, 0f procedure used to determine discrete variables, (e.gtinsta
Su, = duy (3—ud 3_X) ] Ix (7) with a continuous relaxation of the OPF, see below), this is
generally not the case. In the situation where variatjjedoes
n _ 0h 3_11(3_% 1 08 (8) nothave a discrete value’;t' andu’; " from formulas (9-
Y guy  Ox Ox’ Ouy 12) represent its nearest successive upper and lower t@iscre

Note that, if the point where the sensitivities are denve\éalueS
is an OPF optimum, the terni28)7]-12L and ah(ag) On the other hand, if all discrete variables are already at
! ox

involved in (7) and (8) are the Lagrangé( multlpherasx vectofliscrete values, the value of a variable is actually modified
only if it can significantly improve the merit function, i,af

at the optimal solution corresponding to equality conatsi . X
P P 9 d y either n;~ < ny, or n; < m. The value of this threshold

(2) and to inequality constraints (3), respectively; hetiwy
are provided as a by-product of the OPF computation [J]t" can be adapted in order to control the number of discrete
ariables allowed to move at a given iteration.

While the former term is very useful and can be used direct
in (7) to speed up sensitivities computation, the lattemter
is useless since only those components that correspondCtoOutline of the proposed algorithm

binding inequality constraints are non-zero. The proposed iterative greedy algorithm is outlined as
The incremental computational effort needed to derive thgliows:

sensmvmegs in (7) and (8) is very small, since the powewflo 1y gqye the OPF continuous relaxation (discrete variables
Jacoblana is already available and factorized at the PF or are treated as continuous).

OPF solution. ) ) , 2) At the current OPF optimum, compute the sensitivity
Next for each discrete variable; (Vi = 1,...,n4), one of the objective function and inequality constraints with
can _therefo_re estlmate_ linearly the ch_ange in th_e objeetine respect to discrete variabIeSqu and Sﬁ ) according to
the inequality constraints when moving; from {ts currgnt formulas (7) and (8). d
discrete valuguh to |ts+qearest lower vaIue; or to its 3) For each discrete variable; (Vi = 1, ..., n4), compute
nearest higher valum“ - the merit function relative to its movement according to
Af* si (%ZH udz) ©) formulas (13) and_ (14). . .
f o Update all discrete variables which have small
i =St g =) (10) enough merit function (given the threshajg,) or
Ah‘,; =Sl (uf;fl ul),  Yk=1,...,n,  (11) which are currently not yet at a discrete value (this
Ahz, _532 (Udz _ usz) Vk=1,...,n, (12) will be the case only at the first iteration), by moving
them to their nearest (upper or lower) discrete value,
wheren,, is the dimension of vectd in (3). according to formulas (15) and (16). Lef;, be the
Then we compute the value of the so-called merit function new values of discrete variables.
which combines the variation of the objective function ainel t « If none of the discrete variable values has been
variation of the degree of constraints violation: changed with respect to the previous iteration, a
. near—pptimal _solution has been found and the com-
it =wiAfT+ Z wy, max|0, hg (X, ue, uq) + AhJ] (13) putation termmatets' _ _ _
=1 4) Run the OPF to optimize continuous variables only
nh (discrete variables are frozen at their current vaigje
ny = wiAfT 4+ whmax(0, by (X, ue, ug) + Al (14) « If the OPF objective value change with respect
k=1 to either the previous iteration or the continuous
wherew; > 0 andw,, > 0 are weighting factors. relaxation OPF is smaller than a tolerance, then an
Observe that the terms related to inequality constraints co acceptable near-optimal solution has been found and
tribute to the merit function only if some inequality corsshts the computation terminates.
are violated after altering the value of discrete variaibjg « Otherwise, go to step 2.

i.e. if he(x,ue, uy) +Ahzi > 0 or hy(x,uc,uq) +Ah,; > 0. NB. To lighten the algorithm comprehension, the case where
The lower the value of the merit function the better the dffec the OPF problem posed at step 4) is infeasible is
of moving the discrete variable. discussed in Section IlI-D.



Observe that, as soon as all discrete variables are at @isc the configurations proposed by our algorithm lead to an OPF
values, the algorithm stops in one of the following twgroblem (1-4) which is infeasible.
situations: (i) if for any discrete variable the merit fuioct We therefore propose to handle such situations by solving a
indicates that there is no significant impact by moving thainimum degree of constraints violation OPF problem ingtea
variable to a new discrete value, or (ii) the OPF objectivef the original problem. More precisely, if for an estabésh
variation is deemed negligible. configuration of the discrete variables the OPF (1-4) which
Note that, unlike most methods existing in the literatur@ptimizes continuous variables only is infeasible, we solv
which search for the optimal value of discrete variables bgstead the following OPF problem:
considering only two discrete values for each one of them, th . T
proposed approach allows the movement of discrete vagable Join 17r 17)

(one single discrete step at the time) to positions that best stg(x, ug, ug) = 0 (18)
improve the optimality and feasibility. In other words, the
- h(x, ue, ug) < r (19)
proposed approach uses a larger discrete search space and .
hence has higher chances to find a feasible solution. u, <u < U (20)
Although we formulated the algorithm by assuming that r>0 (21)

it searches from scratch, one may adapt it in order to take

advantage of any other suitable approach for choosing anhic_h positive relaxation \_/ariable_s (21) hav_e been intro
initial value of discrete variables. Thus, the proposedwigm dgf:ed_ in order t‘;‘ relax the mequ;;nh:ly ((:jonstram]tcs (19). The
can start from any initial value of the discrete variableQPi€ctive (17) is the minimization of the degree of consiisi

(e.g., stemming from a real-time operating point), and tﬁ’émat'on in the sense of thé, norm.

sensitivity-based approach may be used as a post-progessinThe solution of problem (17-21) in the context of the

of the round-off approach if the latter leads to an infe%ibprc’pose(j algorithm is very useful since it Pro‘,"des an opnm
OPF or to an unacceptable deterioration of the objective. of the relaxed OPF which enables the derivation of sensé#/i

One possible drawback of the proposed heuristic is relat%d8) ard_hencfe aAIows t(;)lcarry on the algcl)(;lthr?]. Iné:ldéyltal .
to the fact that it treats the different variables indepenige € solution of the problem (17-21) yields the degree o
of each other and hence their cumulative effects on inet;rual?”g'naI c;ontmuous_ OP'_: problem infeasibility. Th!s IS amhy
constraints may not be properly taken into account. Thislstnol'nfor'ﬁn""t'On especially if the M”_\“‘P OPF (1'6) is infeasible
true especially if discrete variables are related to dewdeich whatever the values taken by discrete variables.
are located close to each other in the power system.

Hence, in order to take more explicitly into account the IV. NUMERICAL CASE STUDIES
potential cumulative effect of the changes of several Wia A. Problem definition and test systems description
values we propose a simple heuristic technique which can .

replace the variable updating scheme at step 3) of the above consider the OPF prpbl_em of minimizing the_ active
algorithm: power losses of the transmission system. We consider con-

] ] o ) tinuous control variables (e.g., slack generator activegsp
1) rank discrete variables in increasing order of the megknerators terminal voltage) and discrete control vagibl
function; _ _ _ (e.g., controllable transformer ratios and shunt reaeshc
2) pick the top ranked discrete variable which has not begfe equality constraints comprise the active and reactive
set yet to a discrete value and set it to its best discreig\ver flows at all buses. The inequality constraints, on the
value; . _ . other hand, concern branch current limits and bounds on volt
3) update the inequality constraints (e.g., the bus voltagge magnitudes, generator reactive powers, transforries ra
magnitudes) by considering linearly the effect of changgng shunt reactance total capacities. Voltage magnitudes a
ing the value of the top ranked discrete variable;  gjiowed to vary between 0.95 pu and 1.05 pu at all buses. As
4) if all discrete variables have been set to a discrete Vall‘é’gards discrete variables, we assume for all our testragste
stop, otherwise go to step 1. that the ratio of each tap-changer varies between 0.9 pu and
Another possibility to take into account the cumulative. 1 pu and has 21 discrete positions and therefore has a step
effect and to overcome linear sensitivities limitation Wbu of 0.01 pu, while the steps of the shunt compensation banks
consist in setting discrete variables to their discreteeslby range from 20 to 40 Mvar.
using a more progressive approach, e.g., by first updatityg on We present detailed results obtained with the proposed
the most “efficient” ones instead of changing all of them afpproach in four test systems: a 60-bus system, which is a
each iteration. In this case, the sensitivities of thoserdie modified variant of the Nordic32 system [28], the IEEE300
variables that have not been set yet would be updated by pgrs system [29], a 618-bus system, and a modifigenning
running the OPF with the new values fixed for the remainingiodel of the RTE (the French transmission system operator)

variables. system of 1203 buses. A summary of their characteristics is
given in Table 1. In this tabler, g, ¢, b, [, t, 0, s, ne, andny
D. Dealing with continuous OPF infeasibility denote respectively the number of: buses, generatorss,load

As mentior‘ed above, it .iS pos_sible th"f‘t during the iteratiVesso the sake of dealing with a large number of discrete véeiive have
search of satisfactory configurations of discrete vargbtame significantly increased the number of LTC transformers amths banks



TABLE | TABLE Il

TEST SYSTEMS SUMMARY ACTIVE POWER LOSSE{MW) BY THREE APPROACHES
[system [ n [ g [ c [ b [ T Jt]o]s] ne|nda] [ system [ continuous| round-off | sensitivity |
Nordic32|| 60 | 23 | 22| 81 | 57 | 31| 4 |12]] 24| 16 Nordic32 137.79 137.92 137.82
IEEE300|| 300 | 69 | 198| 411 | 282 | 129| 50 | 14 || 70 | 54 [EEE300 386.60 infeasible 388.06
618-bus || 618 | 72 | 352| 1057| 810 | 247| 175| 25| 73 | 200 618-bus 844.25 846.46 845.41
1203-bus|| 1203| 177 | 767 | 1797 | 1394 | 403| 203 | 36 || 178 239 1203-bus 2050.58 2054.15 2051.67
TABLE Il

branchesy |ines’ all transformerS, transformers with robnt OBJECTIVE FUNCTION CHANGE COMPUTED BY FINITE DIFFERENCES AN

. . . BY ANALYTICAL SENSITIVITIES FOR VARIOUS DISCRETE CONTROL
lable ratio, shunt elements’ continuous control Varlam CHANGES(ONE CONTROL VARIABLE CHANGE AT THE TIME): RESULTS

discrete control variables. USING THE 1203-BUS SYSTEM
. LTC number shunt number
B. lllustration of the proposed approach 3 [ 10 [ 83 [182[191] 3 [ 6 [ 17 | 21 [ 34
Let us illustrate how the proposed approach works Hy real objective change (MW) by finite differences
: i ; 11016 | 0.18 [ -0.02] 0.17 ] 0.31 ] -0.23] -0.46] -0.72] -0.84] -0.32
using the Nordic32 system. We first run the relaxed OPF (cl|_%.12 016! 004l 015! 023! 09| 0531 0.75 | 0.92 | 08

variables are treated as continuous) and obtain a minimuss . —— . —

e predicted objective change (MW) by analytical sensitgti
power loss of 137.79 MW. Then we compute the sensitiviti S0.16 [ 0.20 [ -0.06] 0.18 [ 0.37 [ -0.24] -0.52] -0.74] -0.89] -0.39
at the relaxed OPF optimum and, based on this information,
we determine discrete values for all discrete variablegnTdn

new optimization of continuous control variables is pemed. The approach by finite differences shows the objective shift
Now the active power loss is of 137.82 MW, i.e., very slightlyyhen moving each control with one discrete step either up or
higher than with the continuous solution. Since the ob®ing,.n. The discrete step for any LTC ratio has been taken of
deterioration with respect to the continuous case is exhemg g1 pu and for any shunt of 30 MVar, respectively. For this

small one can conclude that the convergence has been reac@@ﬁ]parison we use a non-optimized base case of the 1203-bus
As a matter of fact, checking the values of sensitivitieshat t system.
o.ptlr_r;_al point reveals thhat th;z_re IS no furtrr:er benefit grm We observe from Table Il that the objective function change
signi icant impact on the objective) to change any 'Scref:%mputed by both approaches is generally sufficiently close
variable to another discrete value. . . SO as to validate the analytical sensitivities. Clearly lkma
Table i pr_esents_ the values of active power loss Obta'nﬁ‘ﬂsmatches are expected due to the well known nonlinear
at the operating points computed on our four test systems By effect of reactive power flow. Observe also that for som
three different approaches: continuous relaxation (wladre controls (e.g., LTC 191 and shunt 34) increasing and decreas

variables are treated as continuous), the classical ron’fnd-lng with the same amount the current value of a discrete

stratggy, and the propc_)s_e_d sensitivity-based approacte N@ariable leads to rather different values. This mismatciiss
that in all tests the sensitivity-based approach outpersdhe attributable to the non-linearity introduced by generatehich

round-off approach in terms of both objective quality, SIit ,se o regain their ability to control voltage subsequetdl
always Ieads. to small_er losses, and robustness, since salwm\é action of other “reactive” power control devices (elg.C
Iea_ds to feasible s.olutlor)s contre}ry to the round-off appio ratio, shunt reactance, etc.). For instance, at the baseldas
which leads tohan m;easrllbledconhtlnuous OP'; for th?_ lEEES%%nerators have reached their maximum reactive power limit
system. On the other hand, the proposed sensitivity- as(ﬂ‘?ese constraints are binding at the continuous OPF saluti
approach requires ad_dmonal computatlonal_e_ff_orts MPBCt but when injecting (resp. retrieving) some reactive powéo i

to the round-offtechnique, due to the sensitivities corapoi. o nenyork, all these generators come back under voltage

This task is _however extremely fast compared to the SO'““%ntrol (resp. a few other generators also lose their it
of the OPF itself. control voltage).

One can also observe that, even when the number of discret?abIe IV provides on the other hand, for different pairs of

conttrols |sthratg.er Iatrge (t‘?-g-’ for thre] 21.8-bus alnd 1t20f:?1-b Rights wy and wy, the objective function change and the
systems), the discrete optimum reached is very close ta atoveraII bus voltage limit violations, obtained by the sanve t

the cp_n_tlnuous apprqach. This effect IS due to the rath_erl Sm:fpproaches, using the modified settings of the discretealent
sensitivity of the objective function with respect to disier

controls changes for these test systems. As a consequeagﬁgeswd by our approach. The sensitivity-based approach

o mates linearly the effect of simultaneously movingesal/
the sensﬂwﬂy-bas_ed approach has reached convergerate "tontrol variables on the objective function and on the vexa
cases in a single iteration.

limits. The finite differences approach implements sirmdta

ously the same changes of the values of the discrete vasiable

C. Analytical sensitivities validation by finite differezsc as the Sensitivity_based approach and’ at the Converged PF
Table 1l shows the objective function change due to thgolution, computes the resulting variation of the objetiv

movement of one discrete control at the time, determined fynction and the sum of all bus voltage limit violations.

two approaches: finite differences based on a power flow com-Let us observe that there is a very good agreement among

putation and predictions by using our analytical sensiégi the two approaches concerning the overall bus voltage limit




TABLE IV TABLE V
OBJECTIVE FUNCTION AND OVERALL BUS VOLTAGE LIMIT VIOLATION SENSITIVITY OF ACTIVE POWER LOSSES WITH RESPECT TO THE CHOICE
CHANGES COMPUTED BYPFAND PREDICTED BY ANALYTICAL OF WEIGHTSw ¢ AND wp,: RESULTS USING THEL203-BUS SYSTEM
SENSITIVITIES FOR SIMULTANEOUS CONTROL MOVEMENTS DETERMED

BY USING VARIOUS VALUES OF WEIGHTS’u)f AND wp, . RESULTS USING wy >0 wy = 1 wp = 1 wy = 1 wy = 1 wy = 1 wy = 0
THE 1203 8US SYSTEM wh = 0| wy, = 1|wp, = 10 |wy, = 50| wp, = 100 | wy, = 200 |wp > 0
o So0lu =lw=1lu=1Tw =11 w =1 wr =0 active power losses (MW) at the OPF solution
wh 2 0lws = 1|w; = 10|wy, = 50| wy, = 100|wy, = 200| 1w, > 0 2066.17] 2065.75 2055.03] 2051.75] 2051.67 | 2051.65 [2052.26
real objective variation (MW) computed by PF active power losses (MW) at the PF solution
T978] 19.77] -17.08 | 1393 | 1001 | 724 | 047 2043 65 2043.76] 204811 2051.00] 205169 | 2052.13 [2053:60
predicted objective variation (MW) by analytical sensites sum of bus voltage limit violations at the PF solution (pu)
27.83] 27.73] -23.76 | 20.28 | -1535 | -11.98 | 0.10 1955] 1.867 [ 0171 | 0.018 [ 0010 | 0.005 | 0.003

real overall bus voltage limits violation (pu) computed by P
1381 1.145] 0.266 | 0.083 | 0.028 | 0.008 | 0.000 _ o o
predicted overall bus voltage limits violation (pu) by anilal sensitivities ~ Strong emphasis on the objective function improvement (e.g

1221] 1.028] 0255 | 0082 | 0.028 [ 0008 | 0.000 | the extreme case where; > 0 andw;, = 0, and where
wy = wp, = 1) leads actually to a rather poor value of the
o o objective function. In contrast, the extreme case where the
violations. On the other hand, the sensitivity-based a@H10 jmpact of discretization on the objective function is notdit
tends to overestimate the change of the objective function Rken into accounti{; = 0 andwy, > 0) leads nevertheless to
about40 — 50%. Since the sensitivities have been validateg (5ther good value of the power losses, although it is $fight
when moving controls one at the time, this mismatch §Jboptimal.
attributable to the large number of discrete variables twhic Finally we observe that, at the PF solution obtained after
move (around 200 in average) and, to a lesser extent, 10 Higcrete variables are updated, the larger the weightivelat
fact that the slack generator compensating the lossedivariatg the objective function improvement, the smaller thevacti

is located outside the optimized system. In these conditiofjgyer losses and the higher the overall voltage limit vioke.
the mismatch between sensitivity-based and finite diffegsn

approaches seems reasonable. E. Starting from different discrete variables settings
Note also that, at the PF solution obtained after discrete 9 o g .
variables changes, the larger the weight relative to theatise We now use the 1203-bus system and initialize the discrete

function, the larger the objective improvement but the B-rghvariables in the sensitivity-based approach by means of the
the overall voltage limit violations. round-off approach applied at the continuous OPF relaratio

optimum. Then we apply the proposed approach and the merit
o ) _functions indicate that 80 discrete controls (out of 233tk

D. Sensitivity of the OPF result with respect to the weighis, moved. We move them to their suggested values and next
on objective and violated inequality constraints we re-run the OPF with continuous variables only and observe

We now provide some results on the sensitivity of the ORRat it leads to a losses value of 2053.20 MW of losses,
output with respect to the weights of the objective functione., 0.95 MW less than with the round-off approach (see
and violated inequality constraints;y and wy,, involved in Table Il). The analysis of the merit functions at this OPF
the merit function formulas (13) and (14). Without loss o$olution indicates that no major benefit would be expected
generality we use the 1203-bus system for this example amgl changing the discrete variables values and hence the
consider as base case the OPF continuous relaxation optimaomputations terminate. Thus, when using this initialorat

Let us first explain how the meaning of these pairs aflthough the losses are improved with 0.95 MW with respect
weights can be interpreted. For instance the pgir=1 and to the round-off approach, they are 1.53 MW higher than
wp, = 10 means that a discrete variable is allowed to move tehen using first a continuous OPF relaxation (see Table II).
a new discrete position if this leads to an overall voltaggtli Furthermore, we have observed that even by changing the
violation of 0.01 pu and the active power losses diminish glative values of weightsy; and wy,, the last sub-optimum
more than 0.1 MW, and if the merit function corresponding t2053.20 MW) is not improved significantly. We conclude that
this movement is smaller than its value corresponding to tinen discrete variables approach very closely their optimu
movement of the variable in the opposite direction. values the information provided by the merit function may be

Table V provides, for different pairs of weights; andw,,, less efficient.
the active power losses at the OPF solution and the activeLet us now start from a non-optimized base case of the
power losses and the sum of bus voltage limit violations &203-bus system and with given values for discrete controls
the PF solution obtained after the update of discrete value§igure 1 plots the evolution of active power losses whengisin

We first notice that the optimum value of power losses ihis starting point in the sensitivity-based approach. Cae
rather stable over a quite large range of weight values, i@serve that the sensitivity-based procedure takes 4idasa
wy = 1 and wy, € [50 200], which shows the robustnessto converge and that the losses decrease is less and less
of the proposed approach. Furthermore, the value of actsignificant with the increase of the iteration number. Hogvev
losses obtained with the proposed approach is smaller thhe final value of losses (2056.30 MW) is slightly larger than
with the round-off approach (see Table Il) for an even largevrith the round-off approach (i.e., 2054.15 MW) and even more
range of weights. The results show also that putting a tesoboptimal with respect to the case reported in Table Il @her




2072 minimum infeasibility degree problem (17-21) which prossd
a feasible solution where two minimum voltage limits have
been relaxed with 0.02 pu and 0.01 pu, respectively. Next

2070

§ 2068 sensitivities are derived at this optimum and discreteaideis
2 2066 are moved to new discrete values according to the rules of
§ the sensitivity-based approach. Finally, by re-runnirgg@PF
o 2084 with continuous variables only the problem is feasible dred t
§_ 2062 losses are of 389.79 MW.
<)
2 2060
%
2058 V. CONCLUSIONS
2056 — . -
1 2 3 4 This paper has proposed a new heuristic approach to deal
iteration number with discrete variables in an OPF. The proposed approach

relies on first order sensitivities of the objective funatiand

Fig. 1. Evolution of active power losses when starting fromoa-optimized of the inequality constraints with respect to discreteafalgs,

base case: results obtained using the 1203-bus system that may be Computed efficiently at the solution of a PF
or an OPF software. In our approach, these sensitivities are

the discrete variables are initialized by running the qarus €OmPined in a merit function to determine the direction of
relaxation OPF version (i.e., 2051.67 MW). An analysis & tHovement of a discrete variable. An iterative algorithm is
converged solution of the sensitivity-based procedureatsy ProPosed to greedily move the discrete variables to their
that the two initializations (continuous relaxation andnno N€arest upper or lower bound at each iteration. This alguorit
optimized base case) have led to different settings for m¢@gy be started from scratch, or it may be used as a post-
discrete variables. One can conclude that depending on Jf@CeSsor to other methods, so as to improve the value of

starting point the sensitivity-based method may be “tralppethe objectiv_e function or to find a feasible configurati(_)nhﬂt
in a less interesting near-optimum, or the number of itersti discrete variables. Nevertheless, much better resulésting of

to “unblock” the method may be very large due to fact thé:tbjective q.uality and computational spee_d have been _ozhiain
the discrete variables are allowed to move only one stepeat Mhen starting from a continuous relaxation OPF solution.
time so as to preserve the validity of sensitivities. The validation of the approach on four test system has
On the other hand, in contrast with the round-off approacdhown that the proposed sensitivity-based approach outper
the sensitivity-based approach has the ability to improgsds forms the classical round-off approach for all test systems
for a given operation point (stemming for instance from tealn terms of both numerical robustness and objective quality
time) and to easily limit the number of controls allowed td he main features of the sensitivity-based approach aye: (i
move so as to improve the objective. it can pass through infeasible points, using them just as a
These two examples clearly show that it is better to initili basis to enable sensitivities computation and hence cayryi

discrete variables starting from a relaxed OPF solution. ~ on the procedure, (ii) it can start from any configuration
of the discrete variables values, and (iii) it restricts atle

F. Dealing with infeasible discrete variables configuraiio iteration the movement of each discrete variable to onesof it
ighbouring discrete positions, so as to preserve thditali
sensitivity information.

= A slight drawback of the method is that it depends on the

We now show how the proposed approach copes wi(tr)\?e
infeasible situations which appear owing to inadequatereie
variable settings, but for which the original MINLP OP i X . L
problem is feasible. We illustrate such a case on the IEEE30! ice of the weights relative to the objective improverastt

system. The active power losses at the relaxed OPF solutjt ﬂlated inequality cqnstralnts, involved in the merit ﬁlmns:
are of 386.60 MW (see Table II). Then, after rounding-o owever, the numerical results have shown that the quality o

the discrete variables, we notice that the subsequent OPE final optimum is very good for a rather large range of these
that optimizes continuous variables is infeasible. In rastt weights. )

after setting discrete variables by the sensitivity apphoa 1N€ proposed approach leads to an increase of the computa-
the subsequent OPF converges to a solution where the pofiial effort with respect to the round-off technique. Hoee
losses are of 388.06 MW, i.e., slightly larger than in thexet this increase is most of the times negligible.

approach. This illustrates the fact that in some casesthglsi ~ One direction of future work is to build a MILP problem
heuristic behind the round-off approach may lead to infdasi in order to set the discrete variables instead of the hewrist
discrete variable configurations, even if the original MRL technique used in the paper. The MILP will be fed with the

problem is feasible. sensitivity of the objective and inequality constraintsthwi
Now we show how our approach can provide a solutioi¢spect to discrete variables changes.
starting from an infeasible configuration of discrete Viales. Another direction of work is to compare whether computing

To this end, we first initialize discrete variables to the-vabkensitivities by means of an OPF program would provide bette
ues provided by the round-off approach. Then we solve thesults than the sensitivities derived at the power flowtsmiu
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