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Abstract-- This paper presents the Static Synchronous 

Compensator’s (StatCom) voltage regulation by a B-spline neural 
network. The fact that the electric grid is a non-stationary 
system, with varying parameters and configurations, adaptive 
control schemes may be advisable. Thereby the control technique 
must guarantee its performance on an actual operating 
environment where the StatCom is embedded. The B-spline 
neural net (B-SNN) is a convenient tool to execute the power 
system voltage adaptive control, with the possibility of carrying 
out such tasks on-line and taking into account non-linearities. 
The proposed controller presents a simple structure, 
adaptability, fast response, and robustness. The simplicity and 
performance of such control are exhibited. The applicability of 
the proposition is tested on a lab prototype. 
 

Index Terms – FACTS, StatCom, Neural Networks. 

I.  INTRODUCTION 
ower systems are highly nonlinear, with time varying 
configurations and parameters [1-3]. Thus, PI controllers 

based on power system’s linearized model cannot guarantee a 
satisfactory performance under wide operating conditions. 
Thus, in this paper the use of a control, adjustable under 
different circumstances, is suggested. 
Currently, most of the nonlinear control-based methods are 
intricate and their realization is complex. Additionally, the 
computational requirements of memory and processing speed 
may be overwhelming. 

StatCom requires an adaptive control law which considers 
the nonlinear nature of the plant and adapts to variations on 
the environment for regulating the bus voltage magnitude. The 
aim of this paper is the utilization of an adaptive B-spline 
neural network controller. Such one is proposed because of it 
has a relatively simple and robust design, representing a 
commitment between the complexity of a conventional 
nonlinear controller and its performance.  

II.  B-SPLINE NEURAL NETWORKS: A SUMMARY 
The major advantages of ANN-based controllers are 
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simplicity of design, and their compromise between 
complexity and performance. The B-SNN is a particular case 
of neural networks that are able to adaptively control a system, 
with the option of carrying out such tasks on-line, and taking 
into account non-linearities [4-6]. Additionally, through B-
SNN the possibility exists to bound the input space by the 
basis functions’ definition. The most important feature of the 
B-spline algorithm is the output's smoothness that is due to the 
shape of the basis functions. Their size, shape and overlap 
determine how the network generalizes in M-dimensional 
input space. Some parameters have to be specified as the basis 
functions and the learning rate. Once the B-spline NN is 
specified, it is adaptive and able to achieve a satisfactory 
performance over a wide range of operating conditions. This 
is due to the weighting vector is updated on-line in each data 
sampling. The network can adaptively be updated to follow 
output's modifications when the system's operating point 
varies or an external disturbance takes place [7-9]. 
The bus voltage magnitude must attain its reference value 
through the B-spline adaptive control scheme. That is, control 
must drive the StatCom’s modulation ratio m and the phase 
angle α to the desired value in order to regulate the injected 
voltage of the shunt converter. 
 
The B-spline neural network output is [10], 
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where wi and ai are the i th weight and the i th B-spline basis 
function output, respectively; p is the number of weights. Let 
us define 

T
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Thereby, eqn. (1) can be rewritten as 

waTy =                       (2) 
 
The input space is normalized by a lattice on which the basis 
functions are defined. The transformed input vector, a, is 
generally sparse, which means that knowledge is stored and 
adapted locally. That is, only a fixed number of basis 
functions participate in the network’s output. Therefore, 
weights are not calculated each time step, thus reducing the 
computational effort and time, making B-spline NN suitable 
for on-line adaptive control. 
In order to define a lattice of the input space, a set of M knot 
vectors must be specified; one knot vector for each input axis. 
These knot values give the positions of the (M-1)-dimensional 
hyperplanes which are parallel to each other (M-1) axes, and 
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the set of all hyperplanes generates the lattice in the input 
space. For instance, a two-dimensional multivariate basis 
function formed from an order-1 ( )1x  and an order-2 ( )2x  
univariate basis function is exhibited in Fig. 1. There are 
usually a different number of knots on each axis and they are 
generally placed at different positions. More specifically, a 
knot vector must be specified for each input axis. 
 

 
Fig. 1.  Two-dimensional multivariate basis function constituted by an order-1   
and an order-2  univariate basis function 

 
These knots are required for generating the basis functions of 
width ki, which are close to the lattice’s boundary. Given a 
knot vector, it is possible to define a univariate basis function. 
The network’s input space is the domain [ min

1x , 
max
1x ] ××L [ min

Mx , max
Mx ] [8-10]. 

 
The jth univariate interval on the ith axis, denoted by Ii,j, is 
defined as: 
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Thus, denoting the jth univariate basis function of order-k by 

( )xN j
k , the basis functions are defined through the following 

recurrence relationship, 
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where λj is the jth knot and Ij (=[λj-1, λj)) is the jth interval, eqn. 
(3). 
Since in this paper the ANN is employed as a controller, the 
proposed input signals are some errors. That is, the difference 
between a reference and measured values. The B-SNN 
requires the following a-priori information: the bounded 
values of ey and ez (error signals), for characterizing the size, 
shape, and overlap definition of the basis function. Such 
information allows to bound the B-SNN input and to enhance 
the convergence and stability of the instantaneous adaptive 
rule. With this information the B-SNN estimates the optimal 
weights. 

Learning in artificial neural networks (ANNs) is usually 
achieved by minimizing the network’s error, which is a 
measure of its performance, and is defined as the difference 
between the actual output vector of the network and the 
desired one.  
On-line learning of continuous functions, mostly via gradient 
based methods on a differentiable error measure is one of the 
most powerful and commonly used approaches for training 
large layered networks in general [10], and for nonstationary 
tasks in particular.  
For the voltage magnitude regulation, the controller's quick 
response is looked for. While conventional adaptive 
techniques are suitable to represent objects with slowly 
changing parameters, they can hardly handle complex systems 
with multiple operating modes. The instantaneous training 
rules provide an alternative so that the weights are continually 
updated and reach the convergence to the optimal values. 
Also, conventional nets sometimes do not converge, or their 
training takes a lot of time [10-13]. 
 
In this paper, the neural controller is trained on-line using the 
following error correction instantaneous learning rule [9], 
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where: η  is the learning rate and ( )tei  is the instantaneous 
output error. 
This learning rule has been elected as an alternative to those 
that use, for instance, Newton’s algorithms for updating the 
weights [12-13] that require Hessian and Jacobian matrix 
evaluation. Equation (6) has been obtained through the 
minimization of the output’s mean square error, using 
descendent gradient rules. That is the reason because it is said 
that the weights converge to optimal values [10]. 
Thus, the proposed neurocontroller consists fundamentally on 
establishing its structure (the definition of basis functions) and 
the value of the learning rate. Regarding the weights’ 
updating, (6) should be applied for each input-output pair in 
each sample time; the updating occurs if the error is different 
from zero. Respect to the learning rate, it takes as initial point 
one value inside the interval [0, 2] due to stability purposes 
[10]. This value is adjusted through trial-and-error; with a 
value close to zero the training becomes slow. However, if 
such value is large, oscillations can occur; in this application it 
settles down in 0.55. 
Hence, the B-SNN training process is carried out continuously 
on-line, while the weights’ value are updated using the 
feedback variables. The neural network output is calculated by 
(2). 
 
The fundamental structure of the StatCom is based on a 
Voltage Source Converter (VSC), and a coupling transformer 
that it is used as a link with the electric power system, Fig. 2; 
EST represents the StatCom’s complex bus voltage, and Ek the 
power system complex bus voltage; all angles are measured 
respect to the general reference. 
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The model is represented as a voltage variable source EST, 
whose magnitude and phase angle can be adjusted with the 
purpose of regulating the voltage magnitude. The magnitude 
VST, it is conditioned by a maximum and a minimum limit, 
depending on the VSC’s capacitor rating. Ordinarily, the 
interval of the magnitude, VST, is settled down within [0.9, 1.1] 
p.u.; the phase angle, δST, may vary within [0, 2π] rad. 
 

 
Fig. 2. StatCom’s schematic representation. 
 
For tuning parameters, a simplified dynamic model of 
StatCom may be employed and represented by the capacitor 
voltage equation , 
 

( )ψψ sincos STqSTd
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dt
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dcST mkvV =                                                            (7b) 
ψδ =ST                                                                  (7c) 

 
where STqSTdST jII +=I , represent the d and q StatCom’s 

current components, respectively; vDC is the DC StatCom 
voltage; CDC is the capacitance; m is the modulation ratio 
defined by the PWM; ψ is the phase angle defined by the 
PWM, and it determines the phase δST; k is the ratio between 
the ac and dc voltage depending on the inverter structure. 
Thus, signals STV  and STδ  will be controlled by the proposed 
B-SNN controller. 

III.  RESULTS 
A lab StatCom's prototype has been implemented in order to 
validate the appropriateness of the proposition, Figs. 3-6. 
 

 
Fig. 3 Lab Prototype overview 
 

 
Fig. 4 DSP’s connection 
 

 
Fig. 5 VSC and transformers 
 
 
The major elements of the scheme are the following, Fig. 6: (i) 
source voltage - 85 volts peak, (ii) transmission line – 
inductance  3.1 mH, (iii) LC filter - Capacitors 5 uF and 
inductors 3.1mH, (iv) Asynchronous motor - squirrel cage 
0.745 kW. 
The Voltage Source Converter (VSC), which is the major 
component of the circuit, has been controlled by a DSP 
TMS320F2812, Fig. 4. This DSP has 6.67ns instruction cycle 
time (150MHz), 16 channel, 12-bit ADC with built-in dual 
sample-and-hold, and analog input from 0 to 3V which makes 
the complete system easy to implement. The synchronizing 
circuit for the twelve-pulses VSC has been already 
implemented on the DSP, collecting the data with a global Q 
of 20, which means it has 20 bits as fractional part of the data, 
and 12 bits as the data’s integer part. The selected sampling 
frequency for the ADC on this application is 2500 Hz, thus 
60000 clock cycles available between successive samples can 
be accomplished. The amount of cycles used for implementing 
the novel PLL on the DSP, along with the necessary code for 
refreshing the control signal is 2150.  
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Fig. 6 Scheme of the arrangement 
 
Fig. 7 illustrates details of feeding the line-to-line voltages 
into the DSP; escalation must be done. 
 

 
 

 
Fig. 7 line-to-line voltages fed into the DSP 
 
Clarke’s transformation is utilized for controlling purposes. 
Thus, three signals result: sine (α), cosine (β), and the 
integrated one, Fig. 8. 
 
 
 
 
 

 
Fig. 8 α-β and integrated signals 
 
The inverse Park’s transformation creates three modulating 
signals, Fig. 9, which are in charge of IGBTs’ triggering. 
 

 
Fig. 9 Modulating signals 
 
Controling the StatCom by two PI controllers (dc voltage and 
reactive power), Fig. 10 illustrates reactive power at the 
transformer’s primary side (StatCom’s side). Likewise, the 
DC voltage at the capacitor is shown. The reference values 
are: (i) 100 VDC, (ii) reactive power 100 Vars. 
 
Under this condition, an induction motor is started (time = 8 s) 
once the source voltage has been turned on to 87 Vpeak. The 
difference between the angle of the StatCom’s voltage and the 
System’s one has been ten times amplified in order to notice 
it, Fig. 11. The desired values are as following: (i) 100 VDC, 
(ii) reactive power 100 Vars. In Fig. 11, oscillations  can be 
noticed in both reactive power and voltage capacitors. 
 
As an alternative, a B-spline controller is designed for the 
StatCom’s regulation. Fig. 12 schematizes its corresponding 
structure. 
 
The induction motor is started at time = 109 s. I.C. means 
initial conditions (on the DSP units, value stored on the term 
z-1 in Fig. 11). N means learning, and D.T. is disturbance time. 
The reference values are the aforementioned, Fig. 13. 
 
By modifying the B-spline initial condition, a better behavior 
can be obtained, Fig. 14. 
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Fig. 10 Reactive power, DC voltage, and duty cycle 
 
 

 
Fig. 11 PI’s controllers performance under disturbance 
 
 
 

 
Fig. 12 B-spline neural network structure 
 
 
 

 
Fig. 13 B-spline neural controller performance 
 
 
 

 
Fig. 14 Behavior under different initial conditions 
 
By an averaging on the error between the desired and 
measured reactive power, the B-spline performance may be 
additionally improved, Fig. 15. It is noteworthy that a duty 
cycle in the B-spline case behaves as a squared signal. 
 
Thus, in this paper results have been shown where it is noticed 
that a B-spline neural network controller may be an interesting 
alternative for regulating FACTS devices, which are exposed 
to variations on the operating point. 
This strategy allows appropriately controlling the bus voltage 
magnitude where the StatCom is connected, but also it helps 
to limit the oscillations and overshoots in other relevant 
signals. The proposed control strategy does not depend on the 
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FACTS location, since the neurocontroller is able to adapt by 
itself to different operating conditions. 
 

 
Fig. 15 B-spline performance by an error averaging 
 

IV.  CONCLUSIONS 
By the proposed neural control the possibility to implement 
the on-line control is potential due to it has learning ability 
and adaptability, robustness, simple control algorithm and fast 
calculations. These are desirable characteristics for practical 
hardware implementation on the power station platforms. 
Unlike the PI control technique, the B-spline NN control 
exhibits adaptive behavior since the weights can be adapted 
on-line responding to inputs and error values as they take 
place. Also, it may take into account nonlinearities, non 
modeled dynamics, and non measurable noise. Lab results for 
different disturbances and operating conditions demonstrate 
the effectiveness and robustness of the NN control. Likewise, 
they show the appropriate performance of the controller, while 
rapid reference tracking is achieved; also, a satisfactory 
transient response is obtained. 
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