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Abstract—This paper uses methods from stochastic analysis
and stochastic modeling to determine the impact of a certain
trading limit on the transfer between the two areas of a
benchmark two-area power system. We also try to state which
uncertainties are important to consider when calculating this
power transfer.

Index Terms—Ornstein-Uhlenbeck Process, Power Market,
Power Transfer, Trading Limit.

I. INTRODUCTION

In a deregulated electricity market with area-pricing it is
often desirable to be able to transfer as much electric power
as possible between the areas of the system, since this is the
most cost efficient way to use the power grid. However, due
to limitations in the system there is a maximal amount of
power that is possible to transfer between the areas of the
system, this limit is called the total transfer capacity (TTC).
When the transmission system operator (TSO) is setting the
trading limits between the different areas of a multi-area
power system he cannot, however, consider only the TTC but
also has to consider the uncertainties in the system. In this
paper we will try to give an example of what impact a certain
trading limit can have on the transfer between two areas of
a power system and which uncertainties are important to
consider when calculating this power transfer. The treatment
in this paper does not consider any component specific power
system but focuses on the trading between different actors at
the market and the resulting power flows in the system. An
electricity market is somewhat different from other markets
since electric power is generated at the same time that it is
consumed. A common market-structure is given below.

The Market
Electrical power is traded in energy per trading period. Usu-
ally, trading is performed hourly as on the European Energy
Exchange [1], PJM [2], and in the Nordic system [3]. Also,
half-hour periods are used in some systems such as for
example in UK [4]. To resemble the Nordic power market, in
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this project we assume a trading period of one hour, but the
suggested models and methods can be applied to any period
length. The market structure assumed in this project includes
the following possibilities of physical trading of power:

• Day-ahead market: This is where most of the electric
energy is traded. The day-ahead market closes at noon
on the day before the trading period during which the
actual exchange of energy will take place, thus the name
day-ahead market. Hence, energy at this market is traded
12 to 36 hours before it is actually delivered, and accurate
forecasts of the electric energy consumption and the state
of the power grid are thus needed.

• Intra-day trading: Intra-day trading offers a possibility to
adjust the traded quantities from the day-ahead market
according to updated forecasts or to non-accepted bids
on the day-ahead market. It is possible to continuously
trade power on this market after that the day-ahead market
has closed and the traded quantities and prices have been
published, until one hour before the start of the actual
hour.

• Real-time balancing market: On this market, the system
operator can trade power in order to keep a balance
between production and consumption in the system when
necessary. This is a part of the frequency control. In
situations with excess power, the system operator can
accept bids corresponding to decreasing the net produc-
tion in the system (downward balancing). In the opposite
situation, the system operator calls bids corresponding
to increasing the net production in the system (upward
balancing). Bids to this market can be submitted shortly
before the start of the operational hour. Let’s assume that
in our market bids can be submitted up till 10 minutes
before the start of the operational hour (as is the case
on the Nordic market [3]). These bids are then activated
during the operation hour in order to keep the frequency
close to the nominal frequency. Bids are usually activated
in order of their cost but some considerations will also
have to be taken to the stability constraints, i.e. the NTC.

• Imbalance settlement: The difference between the actual
energy consumption / production and the traded quantity
is called an imbalance. At the end of each hour the
transmission system operator (TSO) checks the imbalance
for each actor on the electricity market. If a consumer has
consumed more than he has bought on the ahead markets
he has a negative imbalance that he will have to pay for,
if he on the other hand has consumed less power than
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he has bought on the ahead markets he will get payed
for his positive imbalance. The price for positive and
negative imbalances are the same, if not, say that the
price for a positive imbalance is less than the price for
a negative imbalance, then it will be profitable to buy
more power than the actor’s forecast, which is not totaly
certain, tells the actor that he/she will use in order to avoid
a negative imbalance. This would render much problems
for the TSO, but is avoided by keeping the same prices
on both positive and negative imbalances.

Fig. 1. Time line for physical trading of electricity.

A time-line showing the above trading possibilities is shown
in Figure 1. As mentioned above the large quantities are
usually traded on the day-ahead market, while the intra-day
market can be used to decrease the imbalance between
quantities traded on the day-ahead market and the expected
production according to updated production forecasts.
However when analyzing the transfers between the areas of
the system the market whose structure is of primary interest
is the regulating power market. This market is quite unique
for the Nordic system. In most electricity markets this is
handled by an automatic system called Automatic Generation
Control (AGC). AGC is preferable when the underlying grid
has a meshed structure in which case analyzing the resulting
power flows when altering the production in a production
unit becomes very complicated. However in some systems,
like the Nordic system the areas are not meshed and the
secondary control can be allowed to be a market which will
lead to a more efficient use of the system assets than AGC
would.

In this paper we will, as mentioned above, investigate the
power flows between the two areas of a two area benchmark
power system with few actors. First, the system and the actors
will be presented, then some arising questions concerning
which uncertainties are important will be put, and each
question will be discussed in the following sections. The
last section is devoted to a numerical example where, using
Monte Carlo Simulations, the distribution of the maximal
power flow between the areas of our test system during a
specified time-period will be estimated.

II. ARISING QUESTIONS

Assume that we have two areas, Area 1 and Area 2. In Area
1 the producer A has a hydropower plant. In Area 2 the trader

Fig. 2. A schematic sketch of the system considered.

B sell energy to a small village and a factory, and the producer
C has a fossil fuel power plant. The price of electricity in Area
1 is less than the price in Area 2 and therefore B wants to by as
much power as possible to cover the demand of his customers
for from A in Area 1. The demand, (DB

t , 0 ≤ t ≤ 24) MW,
of the customers of B during the day is modeled by:

DB
t = mt +Xt = mt + e−αt(D0−m0 +

t∫

0

σse
αsdBs), (1)

where mt is the mean of the load and (Bt ,t ≥ 0) is
standard Brownian motion [5], This model was used to
model the electric power consumption in the Swedish power
system in [6]. As an example a similar model is commonly
used to model temperature fluctuations when pricing weather
derivatives [7]. Since the electric power consumption is very
temperature dependent it will thus seem reasonable to use a
similar model for the electric power consumption.

The energy consumed during each hour (trading period) is

SB
k =

k∫

k−1

DB
t dt MWh, for k = 1, 2, ..., 24. (2)

However, assume that the transmission system operator (TSO)
tell A that he is not allowed to sell more than τk MWh during
hour k, for k = 1, 2, ..., 24, to consumers in Area 2, due to
limitations in the power system. When B hears about this he
decides to buy τk MWh from A and the remaining SB

k −
τk MWh from C during hour k, for k = 1, 2, ..., 24. Some
important questions that arises when contemplating the event
described above are:

1) How will the trading of B at the ahead-markets (i.e. the
day-ahead market and the intra-day trading market) look
when B does an optimal deal?

2) How will the variations within the hour be balanced?
Only by using frequency control or stockpiled at the
real-time balancing market?

3) Where in the system is the frequency control placed?
4) What will be the distribution of the maximal power flow

between the two areas?

These questions will now be dealt with, one for each of the
following four sections.
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III. THE TRADING OF B AT THE AHEAD-MARKETS

In some power systems the TSO does not make instan-
taneous measurements of the electric power consumption at
the nodes but rather measurements of the energy consumed
at the nodes of the system in short time intervals (often of
lengths 10-30 minutes). Lets assume that B gets information
of the total energy consumption of its customers for every 10
minutes that pass. This means that B will never have perfect
information about its customers power consumption, unless it
is constantly zero for an entire 10 minute interval which seems
very unlikely.
When forecasting the load, B will want to forecast the hourly

energy consumptions (SB
k =

k∫
k−1

DB
t dt, k = 1, ..., 24) rather

than (DB
t , 0 ≤ t ≤ 24), since this is the traded quantity.

Let (Ft, t > −∞) be the sigma algebras containing the
information that B has at time t (observe that this is a filtration
for a discrete time process). What B wants is to find first
E

(
SB

k |F−12

)
for trading at the day-ahead market and then

E
(
SB

k |Fk−2

)
for trading at the intra-day market.

Since IB
t =

t∫
0

Dsds does not have the Markov property like

Xt does, we will have to use all the measurements done up
to the time of the decision when calculating the sought mean
values. That IB

t does not have the Markov property can be

realized by the fact that if SB
k is around

k∫
k−1

mtdt and SB
k−1

is very small then E[SB
k+1|SB

k , SB
k−1] is well above

k+1∫
k

mtdt,

but if SB
k−1 is very large then E[SB

k+1|SB
k , SB

k−1] is well below
k+1∫
k

mtdt, hence SB
t does not have the Markov property and

thus cannot be a diffusion.
How can then the above sought expected values be found?
Well, we start by noting that by Itô’s formula of Partial
Integration,

T∫

0

Dtdt =

T∫

0

mtdt +
1
α

(
(D0 −m0)

(
1− e−αT

)

+ σe−αT

T∫

0

(
eαT − eαs

)
dBs


 (3)

where the first integral is the deterministic part,
(D0 −m0)

(
1− e−αT

)
originates from the initial distribution

of (Dt ,t ≥ 0) and the last integral is a purely stochastic
part depending on the trajectory of the Brownian motion
(Bt ,t ≥ 0). Observe that by t = 0 in this part we mean
the time that the measurements started. Since this is very
long ago (i.e. T is very large), and we are interested in
integrals over intervals of the form (T, T + ∆), where ∆ is
10 minutes, the part originating from the initial distribution

of (Dt ,t ≥ 0) can be neglected. Note also that
t∫
0

σse
αsdBs

is a stochastic integral with a FB
s -measurable integrand and

hence, normally distributed, and that the same reasoning also

apply for
T∫
0

(
eαT − eαs

)
dBs. Now, since the sum of, or the

difference between, any combinations of integrals of the form
(3) over intervals (T1, T1 +∆), (T2, T2 +∆), ..., (Tn, Tn +∆)
with Ti, i = 1, 2, ..., n sufficiently large will be normally
distributed, the vector of increments in energy-consumption
during the 10-minute intervals will be a normal vector.
Hence, finding the conditional mean values above is reduced
to computing an integral.

IV. BALANCING VARIATIONS WITHIN THE HOUR

When the consumption in the system increases the sys-
tem frequency [8], which in the Nordic system is normally
50Hz [9], will decrease. This causes power plants that have
a certain amount of production capacity reserved for what
is known as the primary frequency control to increase their
production. In the same manner a decrease in consumption or
an increase in production will lead to an increased system
frequency and thus that the power plants with a capacity
reserved for primary control decrease their production. All
power plants that are used in the primary control have a
certain gain, R[MW/Hz], which indicates how the generation
in this plant is changed when the frequency changes, the
production of the primary control will thus only depend on
the system frequency. The distribution of the gain amongst
the different areas of a power system will thus decide how the
transfers between the areas changes when the load changes
in some part of the system or one of the generating units
is suddenly taken out of service. Observe that the primary
control only terminates the change of frequency. When this
angular acceleration/deceleration is stopped we will end up
with a different system frequency. What then happens is that
the secondary control steps in to take the frequency back
to its nominal value. As mentioned above this secondary
control is a market called the regulating power market in the
Nordic power system. How this market works will thus have a
influence on the size of the transfers in the system. If the TSO,
which monitor the transfers through all the critical sections in
the system can steer the secondary control to always keep
the transfers below some limit a smaller limit for Transfer
Reliability Margin (TRM) can be kept than if the no transfer
limit is considered when activating bids from the real-time
balancing market. In this paper the aim is to find the impact
of a certain trading limit on the transfer between the two areas
of a small test power market and the ability for the TSO to
stockpile energy at the real-time market will not be considered.

V. LOCATION OF THE POWER PLANTS THAT CONTRIBUTE
TO THE FREQUENCY CONTROL

In close connection to the subject of the previous section
is the question of where the frequency control power plants
are located and in what area available capacity can be bought
at the real-time market. If for example half of the frequency
control reserve is located in Area 1 then, when neglecting
losses, half of the load variations will be compensated from
Area 1 and thus contribute to the power flow between the two
areas. In reality, with the size of the power systems of today,
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the TSO often does not know the distribution, or even the
size, of the frequency control reserve in the system. Therefore,
when simulating or calculating the power transfers between the
different areas of a multi-area system one has to use a multi-
dimensional probability distribution, with one dimension for
each area in the system, to represent the frequency control
reserve in the system. In this paper, however, there are only
two areas and the problem becomes less complicated.

VI. THE DISTRIBUTION OF THE MAXIMUM POWER FLOW
BETWEEN AREA 1 AND AREA 2

As we have seen, the distribution of the r.v.
Pk,max = sup

k−1≤t≤k
|P 1,2

t | may depend on, how B trades on

the ahead-markets, how the variations in the demand of B’s
customers are taken care of, the placement of the frequency
control power plants and from where (if at all) electric energy
can be bought at the real-time market, and of course what the
trading limit τk is set to be.
In this section we are going to explain how to find this
distribution for our simple test system. We assume that the
deviations of DB

t from its mean value are small enough
to be handled by the frequency control or rather that the
frequency control reserve is large enough to handle the load
variations, that 100β% of the frequency control reserve is
located in Area 1, and that DB

t is modeled as described above.

Let V C
k be the amount of energy that B has bought from C

at the ahead markets, we also assume that V C
k > 0 (i.e. that

the expected (forecasted) demand of the customers of B for the
hour in question is more than τk MWh). C will probably want
to run its power plant on a constant rate so that its production
throughout the hour will be V C

k . Now, the power flow between
Area 1 and Area 2, P 1,2

t can be written as

P 1,2
t = τk + β(DB

t − V C
k ). (4)

Hence Pk,max = sup
k−1≤t≤k

|τ + β(DB
t − V C

k )|. Under normal

circumstances the maximum is attained in the direction from
Area 1 to Area 2, i.e. Pk,max = τ + β sup

k−1≤t≤k

{
DB

t − V C
k

}
.

But V C
k is constant, hence

Pk,max = τ + β

(
sup

k−1≤t≤k

{
DB

t

}− V C
k

)
. (5)

Left is only the problem of finding the distribution of
sup

k−1≤t≤k

{
DB

t

}
and its connection to V C

k .

A. Finding V C
k given a general set of measurements

Before the intra-day market closes, one hour before the start
of the operational hour, B will have to use the information
at hand to make a forecast of his customers demand during
the operational hour (i.e. a forecast of SB

k ). The information
at hand is the energy consumption of B’s customers in 10-
minute intervals made up till one hour before the start of the
operational hour. Lets call this series Yi, i = 1, 2, ..., N , with
Y1 the last measure made. Furthermore let T be the time that
measurements have been made (i.e. T = N/6 hours), and

remember that T is very large. The random variables Yi are
given by

Yi =

T−(i−1)∆∫

T−i∆

Dtdt ≈
T−(i−1)∆∫

T−i∆

mtdt + (6)

σ

α
e−α(T−(i−1)∆)

T−(i−1)∆∫

0

(
eα(T−(i−1)∆) − eαs

)
dBs

−σ

α
e−α(T−i∆)

T−i∆∫

0

(
eα(T−i∆) − eαs

)
dBs

Now let IB
t =

t∫
0

Xsds, as before. What we want to do is

to find the covariance-matrix for the normal vector
(
SB

k , Y1, Y2, ..., YN

)
. (7)

The mean vector is obviously given by



k∫

k−1

mtdt,

T∫

T−∆

mtdt,

T−∆∫

T−2∆

mtdt, ...,

T−(N−1)∆∫

T−N∆

mtdt


 .

(8)
Since,

Cov(Yi, Yj) =
Cov(IT−(i−1)∆ − IT−i∆, IT−(j−1)∆ − IT−j∆) =
Cov(IT−(i−1)∆, IT−(j−1)∆)−
Cov(IT−(i−1)∆, IT−j∆)−
Cov(IT−i∆, IT−(j−1)∆) + Cov(IT−i∆, IT−j∆),

and SB
k = IB

k − IB
k−1, we only need to compute Cov(Iu, It)

for all u, t ∈ [0, T ]. This is given by

Cov(Iu, It) =

=
σ2

α2

(
(u ∧ t)− 1

α

(
e−αu + e−αt

) (
eα(u∧t) − 1

)
+

1
2α

(
eα(u∧t−u∨t) − e−α(u+t)

))
.

Now that the mean vector and the covariance-matrix are
found, V C

k is , due to the market structure where positive
and negative imbalances have the same price, the mean of
SB

k |Y1, Y2, ..., YN , which can be calculated from the condi-
tional normal-distribution

fSB
k
|Y1=y1,Y1=y1,...,YN=yN

(x) =

fSB
k

,Y1,Y2,...,YN
(x, y1, y2, ..., yN )

fY1,Y2,...,YN
(y1, y2, ..., yN )

.

B. The distribution of DB
k−1 given a general set of measure-

ments

To calculate the distribution of the maximal transfer between
the two areas during the operational hour we also need to know
the distribution of DB

k−1|Y1, Y2, ..., YN . We start by noting that
also (

DB
k−1, Y1, Y2, ..., YN

)
, (9)
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is a normal-vector, and hence, the same method as when
computing the distribution of SB

k |Y1, Y2, ..., YN can be used.
What is needed here is in addition the variance of DB

k−1 and
Cov(DB

k−1, It) for t ∈ [0, T ]. These can be calculated straight
forwardly by applying the Itô isomorphism as shown below:

Var
[
DB

k−1

]
= E





σe−α(T+1)

T+1∫

0

e2αsdBs




2

 = (10)

= σ2e−2α(T+1)

T+1∫

0

e2αsds =
σ2

2α

(
1− e−2α(T+1)

)
,

and

Cov(DB
k−1, It) =

σ2

α2

((
eα(t−(T+1)) − eα(T+1)

)
(11)

− 1
2

(
eα(t−(T+1)) − 1

)
e−α(T+1+t)

)
.

The distribution of DB
k−1|Y1, Y2, ..., YN can now be calculated

using the conditional distribution just as was made in the
previous subsection.

C. The distribution of Pk,max

There are several different ways of finding the distribution
of Pk,max|Y1, Y2, ..., YN , one way would be to use the same
method that was used in [6]. This method rewrites (DB

t ,
k − 1 ≤ t ≤ k) as a time shifted Brownian motion with
initial distribution DB

k−1|Y1, Y2, ..., YN and then uses a method
developed by Axel Lehman [10] to find the distribution of

sup
k−1≤t≤k

{
DB

t

}
. The distribution of (5) is then found by simple

addition and subtraction of stochastic variables (observe that
V C

k and DB
k−1 are independent). At last Pk,max is found as the

marginal distribution of Pk,max|Y1, Y2, ..., YN . An alternative
method is to use Monte Carlo Simulation and randomize
outcomes of DB

t and use the method presented above to
determine V C

k and thus get Pk,max.

VII. NUMERICAL EXAMPLE

In this Section a numerical example will be given to
illustrate how to find the amount of energy that B has bought
from C at the ahead markets ,V C

k , in reality, and then how
to use Monte Carlo Simulations to find the distribution of
Pk,max. In the load model for this example a thousandth of
the load model in the Swedish power system is used, this
model was derived in [6]. This means that for our model of
the demand of the customers of B α = 0.0296, σ = 0.196
MW, and mt is shown in Figure 3.

A realization of the consumption of the customers of B for
a period of Monday to Friday is given in Figure 4.

In real life B might not use all the earlier measurement to
estimate V C

k , because of the numerical difficulties involved
and the small difference in prediction between using a lot of
values and just a few. Since DB

t is an Itô diffusion, B only
needs an estimate of the load at the time of the decision to
find the best possible forecast. To find this value it is not
of such great importance to know the energy consumption
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Fig. 3. The mean demand of the customers of B during a working weekday.
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Fig. 4. A realization of the demand of B’s customers for one working week.

during some time interval yesterday if you already know the
energy consumption during the last six 10-minute periods.
What we want is to estimate a function (the load) given the
values of its integral (energy consumption) at certain points
of time. In this numerical example B uses six values (i.e. the
consumption for all the 10-minute intervals of the last hour)
at time T = 1 to make his forecast of the energy consumption
during the hour [2, 3]. Observe that now B will have to take
into account also the part of (3) originating from the initial
distribution of (Dt ,t ≥ 0), which is the asymptotic distribution
of (Dt ,t ≥ 0), since we will use no prior information of the
load. In the covariances of the energy consumptions we will
thus have to add a factor Var(D0) (1− e−αu) (1− e−αt) =
σ2 (1− e−αu) (1− e−αt) /2α3 to Cov(Iu, It). The trading
period that we have chosen to simulate is the hour between
6 and 7 in the morning. The main reason for this choice was
that this hour has one of the largest variations in the mean
load curve mt , it will thus often contain one of the largest
variations between trading limit and maximal power transfer.
The result of the simulation with τ7 = 10 MWh/h, and all
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frequency control reserve in Area 1 (i.e. β=1) is depicted in
Figure 5 where a Monte Carlo estimate of FPmax,7 is plotted
and a 99% upper confidence bound for Pmax,7 is given by the
dashed line.
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Fig. 5. A Monte Carlo estimate of FPmax,7 and a 99% upper confidence
bound.

What is interesting to note is that even though the trading
limit is set to 10 MWh/h, the 99% upper confidence bound
is more than 11.6 MW. Hence it is of great importance to
consider the factors described in this paper when setting the
trading limits of a system.

VIII. CONCLUSIONS

In this paper the impact a certain trading limit has on the
transfer between two areas of a power system and which
uncertainties are important to consider when calculating this
power transfer was investigated. To reach the final general
result as explained in Section VI-C we will, however, have to
compute a integral of many dimensions which is numerically
cumbersome. Therefore Monte Carlo Simulations might be a
better alternative. What is interesting to note when it comes
to the physical behavior of the system is that for different
hours, the same trading limit will give different distributions
of the maximal transfer due to the daily variation of the mean
curve. In the problem formulated there are very few actors on
the electricity market and to get a more realistic model of the
impact of a certain trading limit a market with more actors
would be needed.
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