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Abstract — This work presents a system to manage wind 

turbines maintenance through a predictive model. The system is 

based on specific maintenance software and hardware for data 

acquisition and also on algorithms for prediction based on time 

series. The maintenance software is called SMIT - (Terology 

Integrated Modular System). The acquisition system can be 

interconnected with professional, industrial and low cost 

acquisition systems. The communication channel is based on IP 

networks, using clock synchronization for data sampling. A time 

series prediction algorithm runs on low cost hardware, working 

as a monitoring trigger of the central system. 

 
Index Terms — wind energy, renewable energy, equipment 

maintenance, time series prediction.  

 

I. INTRODUCTION 

HE market of wind energy is growing in this century, 

mainly due to the trend of the oil scarcity, its high price in 

the international markets and the climatic alterations produced 

by pollution. The financial and energy crisis will also play an 

important role in future decisions on the energy production 

systems and wind generators. As mentioned, they can 

contribute for a better environment. 

In this article it will be presented an integrated system for 

maintenance of wind energy production systems and a 

methodology to optimize the production cycles and, 

consequently, the reduction of other kinds of energy 

production. 

The new methodologies will be later incorporated through 

new predictive maintenance modules in an integrated 

maintenance management system called SMIT (Terology 

Integrated Modular System) [9], [17], [14], [15].  

The SMIT system includes the main modules of a traditional 

system, as well as a fault diagnosis, a non-periodic 

maintenance planning and a generic on-condition maintenance 

module, among other innovations. The new features will 

include, in the case of wind generators, on-line measures and 

the corresponding on-time treatment, using forecasting 
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algorithms based on time-series and wireless technology to 

transmit the signals. 

 

II. AN INTEGRATED MAINTENANCE PRACTICE FOR RENEWABLE 

WIND SYSTEMS 

A. The global system 

The proposed system for integrated maintenance of wind 

systems is described on Fig. 1. The central system is based on 

a Linux server running apache web server and postgreSQL 

database [16]. The server incorporates the logic necessary to 

save the normal information adjacent to a maintenance system 

like: working orders; planned maintenance management 

(including on-condition maintenance); emission of reports, 

analyses and improvement of  maintenance plans; spare parts; 

maintenance objects; suppliers (of equipment, parts and 

services); human resources management and tools 

management. 

 

B. Important signals for wind maintenance systems 

Figure 2 shows the most used wind generator by commercial 

companies. The important parts of wind generators are: the 

rotor blades; the main shaft; the gearbox; the secondary shaft 

and break system; the generator; the pitch control system of 

the rotor blades and the nacelle alignment system.  
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Fig. 1.  An integrated system for maintenance of Wind systems 
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To infer the “health” of a wind system some signals are 

acquired like: active and reactive power; wind velocity; rotor 

blade velocity; shaft velocity and vibration signals on the 

gearbox and generator; and the state of the pitch control. 

The signature of the wind generator is then compared with 

the power curve, using Support Vector Machine classifier. In 

this article only the process using time series will be described. 

Time series algorithms are used to predict problems in the 

generator and gearbox with help of Fast Fourier transform and 

they will be used to “track” the amplitude of spectral signals of 

the vibration on some range frequency values. 

 

III. TIME SERIES ANALYSIS TO PREDICT WIND GENERATORS 

MAINTENANCE 

Time series analysis accompanies and “tries” to understand 

the evolution of data received through time. The important 

issues to measure are: trend; seasonality; cyclicality; and error 

or random components.  In the science field, time series 

analysis are welcome on the economics to maximize profit, but 

also to predict important aspect of humans like ambient 

catastrophes, minimizing human dramas, predicting industrial 

production to adjust the production to the esteem levels of 

search, and many others. 

Many techniques have been presented throughout the times, 

catalogued in three great methodologies: use of statistical 

methods; use of adequate models to the process in question or 

use of artificial intelligence methodologies [18], [19]. 

Although the innumerable methods, more or less elaborated, 

all them present forecasting errors, being one of the 

imperatives to minimize definitive metric adjacent to the 

measure of these errors. 

 

A. Time Series Theory 

If time series [1], [2], [3], [4], [5], [6], [7], [8] forecasting 

can be accomplished by normal function, the series is called 

deterministic, otherwise, if forecasting is only possible by 

statistical methods the time series is called stochastic. The 

respective stochastic process can be represented 

by ( ){ }Ω∈∈= θθ ,;, TttyY , where T represents the time space 

and Ω represents the space of a probabilistic event. A 

stochastic temporal process is stationary if is invariant to a 

time shift, i.e., ( ) ( ) Ttttyty ∈∆∀∆+= ,,, θθ . 

For each observation, a stochastic time series will apply, 

represented by ,...3,2,1],[ =kky where k represents a variable 

evenly spaced in time where ktt s ⋅∆= . Our problem then, is 

how to forecast the values for [ ] 0,ˆ >+ mmky  (we will use 

notation ŷ for prediction and in some cases, for better 

readability, ][kyyk = ). 

 

[ ] [ ]( ) 1,...,0,1ˆ −=−=+ kiikyfky              (1) 

 

The quality of forecasting will be measured by error 

indicators: MSE – Mean Square Error and TIC-Theil 
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Moving Average Algorithm 

Moving Average [20] (results will be labeled with MAS) 

takes the forecast as a weighted average of data in a window of 

fixed width, where [ ]∑
−
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Exponential Smoothing Algorithm 

Exponential smoothing (results will be labeled with ES) uses 

two values to predict the next forecast value, where [ ] [ ]11ˆ yy =  
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The value for α can be obtained minimizing the MSE, 

conducting to a non-linear optimization problem, usually 

solved by the Levenberg-Marquardt algorithm.  

It is possible to continuously update α value (results will be 

 
Fig. 2.  Principal components of a wind turbine 
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labeled with ESMSE) and introducing an estimation of α with 

an implicit error, considering that the old forecasting values 

are independent of α; equation (6) represents the update. 

However, we will use the mean of equation (6) with the 

equation (6) substituting [ ] [ ]11ˆ −=− iyiy  (MSE minimization).  
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Adaptive Response Rate Single Exponential Smoothing 

This is a variant of exponential smoothing that continuously 

updates the smoothing parameter (results will be labeled with 

ARRSES). This method allows changes in a trend (normally at 

start, β=0.5 and α=0.5). 
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Exponential Smoothing Algorithm – Holt-Winters forecast  

Exponential smoothing described by equation (5) can be 

improved to handle better trends and seasonality (results will 

be labeled with HWSas with seasonality and HW without) of 

period n where [ ]1,0,, ∈γβα , as described on equation (8). 
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The initial setup is very important and depends on the length n 

of the period of seasonality. 

 

AR, MA, ARMA and ARIMA models, Box-Jenkins 

To introduce these models let consider the Lag operator 

denoted L as ]1[][ −= kykLy , with properties 
2

2

−= kk yyL , 

kk yyL =0  and 
2

2

+
− = kk yyL . This operator can also be used 

in polynomials ( ) p

p LaLaaLa ⋅++⋅+= ...10
 , and applied 

to time series ( ) pkpkkkp yayayayLa −− ⋅++⋅+⋅=⋅ ...110
. In 

this case ( )La p
 have order p. 

Considering ][kwn  as a white noise process with mean 

{ } 1][ =kwnE , { } 0][][ 21 =⋅ kwnkwnE  and { } 0][2 =kwnE , 

then a ARMA (Auto-Regressive Moving Average) model - 

known as ARMA(p,q) (results will be labeled with ARMA) – is  

described by the following equation: 

 

( ) ( ) ][.][ kwnLbkyLa qp =⋅                (9) 

 

A times series follows an ARIMA(p,d,q) process if and only 

if its derivative of order d follows an ARMA(p,q) (Auto-

Regressive Integrated Moving Average, the I for integrated 

means when a time series needs to be differenced to be 

stationary): 

 

( ) ( ) ][.][ kwnLbkyLa q
d

p =∇⋅               (10) 

 

Setting p=0, d=0, equation (10) stands for a MA process, 

setting d=0, q=0 equation (10) stands for an AR process.  

The ARIMA methodology includes analyzing data for 

model identification, model estimation and model validation. 

The main problem with ARIMA models resides on model 

identification suitable for the actual data. Some author use 

genetic programming [7], others [8] use ANN for ARIMA 

model tuning. 

 

Support Vector Machines Regression - SVR 

Support Vector Regression [12], [13] (results will be 

labeled with SVR+Kernel) performs a non linear mapping 

between the user space and the feature space and then 

performs a normal linear regression.  

Given a dataset ( ) ( ){ } ℜ×⊂ χkk yxyx ,,...,, 11 , where X is de 

input space, in ε-SVR the goal is to find a function f(x) with a 

deviation of ε. 

In the linear case  

 

( ) ℜ∈∈+= bwbxwxf ,,, χ ,           (11) 

 

where .,.  is a dot product. Using Euclidian norm, the 

optimization problem can be written as: 
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The main idea is always the same: to minimize error, 

individualizing the hyper plane that maximizes the margin, 

keeping in mind that part of the error is tolerated [21]. 

The loss function can be quadratic, Laplace, Huber or ε-

sensitive (Fig. 3). The first one corresponds to the least square 

error criterion. Second is less sensible to outlier’s points. 

Huber’s function is used when the underlying distribution of 

the data is unknown, and the last one is an adaptation of the 

function of Huber introduced by Vapnik. More details can be 

seen in [21],[22],[23]. 
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Fig. 3. Representation in 
2ℜ of the loss function indicating the error 

tolerance; in this case the ε-sensitive 

 

B. Using Time Series Analysis for Predicting future 

damage on wind turbines 

Several works in the past and in the present are under 

progress in this field as can be seen on  [10], [11]. 

First, not forgetting the central goal of this work:  

 

“… to forecast the temporal instant where we will have one 

probable damage. With this information launch an working 

order in the SMIT maintenance software, to opportunely the 

causes that in the future will give damages are corrected in the 

present …”. 

 

The answer to this question stipulates, at first hand, the 

continuity of key variables that must be observed, and 

provides instant information to the "state of health" of 

equipment. 

By analogy with human life, and removing rare exceptions, 

no person instantly passes from a state of good health to a state 

of death (except, accidents). There are lots of medical 

examinations that allow foresee any serious illness. 

Even in extreme cases such as exposure to pathogens 

harmful to human life, for example, viruses, chemical weapons 

or, in a case of death by drowning, probably a monitoring 

system in some measurable variable of the human body could 

predict what would happen. In the case of drowning, 

monitoring the amount of oxygen allowed by the pulmonary 

system, amount of water absorbed or heart rhythm would 

predict the death before this happens. 

What is intended to emphasize, it is to indicate that there is 

a high expectable probability of the monitored systems to keep 

some continuity on the variables monitored, that are, 

mathematically speaking, most probable that they are functions 

without discontinuities. Similarly, it is also foreseeable that if a 

determined functionality of equipment begins to enter in a 

deterioration state, some measurable variable of the equipment 

departs from nominal values, entering into a rise or fall 

continuously. 

The speech related to the previous paragraph supposedly 

and mostly of time is true, however, incorporating the result of 

the maintenance intervention (with/without substitution of 

damaged components), it is intuitive, after the cause of the 

anomaly is corrected, and evidently the monitored signals will 

enter again inside of the tolerable range values. This behavior, 

studied by the time series level, indicate the existence of a 

seasonal period which will be necessarily directly related to 

the mean time between failures. Other likely hypothesis is the 

existence of a discontinuity at the parameter measured, 

between the moments between pre-maintenance and post-

maintenance. 

To overcome this problem, if the Mean Time Between 

Failures (MTBF) is known, then a normal algorithm can be 

used (rather then trying to estimate the seasonal length), 

otherwise, after a maintenance intervention, the time series will 

be initialized again. This last procedure will overcome the 

problem of measuring accurately the seasonal period and, in 

practice, will remove it.  Another feature of the algorithm is 

the necessity, for each signal: to indicate the intervals of 

tolerance, in particular; acknowledgment interval and the 

critical interval. When the time series provides an output out 

of these bauds, the SMIT software launches a warning to the 

operator. 

 

IV. EXPERIMENTAL RESULTS FOR FORECASTING 

MAINTENANCE BASED ON TIME SERIES ANALYSIS 

In this section results for the algorithms presented on section 

III-B will be presented.  

Figure 4 shows the first typical time series to track divided 

for better understanding in 10 different types of situation that 

 
Fig. 4.  Typical time series for maintenance parameters to track 

  

 
Fig. 5.  Methods results, where smoothing moving average prediction, will 

not work, and is normal experimental result as expected (MAS signal). 
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could occur. From 0-200 we have a situation of accentuate 

trend, from 200-400 a normal operation, from 400-600 

accentuate trend with different slopes, from 600-800 a high 

slope trend and finally from 800-1000 a quadratic trend. 

Results will be described for 1 and 10 steps ahead for 

algorithms described on section III. The normal situation will 

be 200-600 where we have described the normal time life of 

equipment followed by its end of life stage. Green and Red 

lines show limits (Fig. 4), indicating acknowledge and critical 

intervals. 

Table I, II, III, IV and figures 5 and 6 show the results for 

the tested methods. 

From these preliminary tests, the Holt Winter algorithm 

without seasonality gets a better performance when predicting 

10 steps ahead. SVR-RBF seems to be a stable solution to be 

studied more deeply, because under these tests only 10 points 

were used for the training. However, further improvements 

should be done on SVR while in training, during the time to 

stabilize. 

The tests were done with the presence of white noise of 

mean 3 and 2. 

For each algorithm the parameters were ARRSE(0.5,0.2);  

ES(0.5); HW(0.5,0.2); HWSAS(0.5,0.2, 0.2,20); 

ESMSE(0.5,0); MAS(2);  ARMA(2,2); SVR-RBF(30,10) and 

SVR-LIN(30,10); 

 

V. CONCLUSION 

The algorithms proposed are used for forecasting problems 

in wind turbine systems, and the results are promising. Next 

future work will pursue the goal to automate the choice of the 

model used depending on the signal/situation. Another 

important issue is to accommodate the results for non periodic 

sampled time series. This is an important goal, because most 

of the cases, the data will be sampled with different period 

over time. 
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