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Estimation of power system dominant modes  
A. Cagnano, Student Member IEEE, E. De Tuglie, Member IEEE, F. Torelli 

thus it is preferable to use the measurement-based methods 
developed in time or frequency domain, such as the 
Discrete Fourier Transform (DFT) [10-13], the Kalman 
filter [14] or the Prony analysis [15-20]. Practical 
experiences, with these well consolidate techniques for 
modal analysis of linear signals demonstrate that they 
degrade their performances when they are applied to 
nonlinear signals, such as power system oscillations. This 
has led to an increased need to develop analytical 
techniques for a better characterization of power system 
oscillations, especially under stressed operating conditions. 
Among these techniques, there are some procedures based 
on nonlinear analysis of time series, such as the wavelet 
transform [21] and Hilbert analysis [22-24]. However, 
among all these linear and nonlinear modal analysis 
techniques, the Prony method can be considered as the 
widely used method for analysis of electromechanical 
oscillations of a power system. As fitting signal, it adopts a 
linear combination of damped sinusoids whose frequencies 
and damping factors characterize the modes of each power 
system oscillation. Thus, observing the resulting spectrum 
of modes its dominant mode can be revealed. This method 
requires high computational effort since it must provide the 
overall spectrum of modes of power system oscillations. 
With the same aim to determine the dominant mode of a 
power system oscillation, a novel procedure based on 
Lyapunov method applied to the Sensitivity theory is 
proposed. In particular, this paper has been structured with 
the Section II in which is proposed the mathematical 
formulation of the method able to investigate on dominant 
mode of a generic signal. As application of the proposed 
method, in Section III, we investigate on dominant modes 
of angular velocities of power system’s machines. In this 
sense the paper focuses its attention on the modal analysis 
of local oscillations. An extension on inter-area mode 
oscillations can be carried out analyzing inter-ties 
oscillations between coherent areas. Section IV presents 
simulation results to demonstrate the effectiveness of the 
proposed methodology. In Section V are reported the 
conclusions. 

 

Abstract-- The aim of this paper is to propose an approach 
to estimate the nature (damping and frequency) of a dominant 
mode. The suggested method, based on Prony analysis, aims 
to directly evaluate dominant modes of electromechanical 
oscillations. The basic idea is to fit the given oscillation with a 
fitting function having one mode only whose parameters need 
to be identified by any identification process. When the 
transient of the given signal vanishes, modes having high 
damping attenuate reaching a quasi linear behavior and 
revealing the dominant mode only. In this sense, the fitting 
function gains characteristic parameters (damping and 
frequency) of the dominant mode. For the identification 
process we suggest a nonlinear analysis approach based on the 
Lyapunov method applied to the Sensitivity theory. 

The proposed methodology is tested on the New England 39-
bus system. 

 
 
Index Terms—dominant mode, Lyapunov method, modal 

analysis, Prony analysis. 

I.   INTRODUCTION 
oday’s power systems are more and more stressed due 
to economical forces, demand increase, insufficient 

generation, transmission limits, and environmental factors. 
As a result, these systems operate closely to their stability 
limits, thus requiring exceptional efforts from researchers 
and operators to accomplish these needs. As pointed out by 
several studies, power system stability is a dynamic non-
linear phenomenon which mainly depends on the poorly 
damped low-frequency oscillations following a 
contingency. These oscillations play an important role in 
power system small-signal stability analysis [1]. If they are 
not sufficiently damped, an unstable operation may occur 
and, potentially, may lead to a network collapse. For this 
reason, if the power system stability analysis and control is 
concerned, a parametric estimation of these low-frequency 
oscillations is necessary. 

T 

Mode estimation can be accomplished using two basic 
approaches, respectively, dynamic model-based and 
measurement-based approaches [2]. 

Current techniques for estimating electromechanical 
modes based on dynamic models are described in [3-9]. 
These methods lack of accuracy in the modelling process, 

II. MATHEMATICAL FORMULATION OF THE IDENTIFICATION 
METHOD  

The goal of this section is to develop a novel 
methodology to estimate the dominant mode of a given 
signal. The methodology derives from the Prony analysis. 

                                                           
E. De Tuglie is with the Dipartimento di Ingegneria dell’Ambiente e 

per lo Sviluppo Sostenibile (DIASS), Politecnico di Bari, Viale del 
Turismo, 8 -74100 Taranto, Italy. 

Prony analysis is a method able to fit a given signal, y(t), 
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where with i=1,…,4 is a diagonal matrix in 
which the i-th generic positive element, , represents an 
accelerator factor. In order to guarantee the algorithm 
convergence,  needs to be negative. 

)diag(χ= iχ
where subscript i represents the i-th complex mode, 
whereas j is representative of the real one, and q and p are, 
respectively, total number of real as well as complex 
modes. 

iχ

iχ∈  σ ℜ is the damping factor and f is the frequency 
of complex modes. A, B and C are constant values.  

Then substituting eqn. (6) into eqn. (5), the time derivative 
 can be obtained: V�Unknown parameters Ai, Bi, Cj, σi, σj, and fi of the 

Prony’s series can be estimated by an adequate 
identification parameter process.  eeee-=V
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For this reason Prony Analysis fits the recorded data 
samples of the signal under investigation, constructing a 
discrete linear AutoRegressive (AR) model. The 
methodology processes, simultaneously, all the available 
samples of the entire signal. As a result of it, a wide 
spectrum of power system modes can be revealed, even if 
operators are interested in the dominant mode only. 
However, when the transient of the signal y(t) vanishes, 
modes having high damping attenuate reaching a quasi 
linear behavior and revealing the dominant mode only. 
Knowing that, we propose to limit eqn. (1) to one term only 
in order to directly estimate the dominant mode. For this 
purpose, we define the following Monomodal Fitting 
Function (MFF): 

Equation (7) expresses V  in a quadratic form, thus it is  
negative semidefinite. This condition can be held until p is 
produced according to eqn. (6). 
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( )p∂∂ eThe Jacobian  appearing in eqn. (7) can be 
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For clarity purposes, in Figure 1 we show the basic idea 
of the parameter identification process. 
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where represents the (4×1)-
dimensional vector of the unknown parameters. The 
subscript 0 refers to parameters related to the dominant 
mode. 

[ T
0000 f̂ σ̂ B̂ Â=(t)p ]

In our procedure, we perform an identification process 
aimed to evaluate these unknown time-varying parameters 
giving rise to an adaptive model that fits the given 
signal y(t). For this purpose, we define the fitting error as: 

(t))(t,ŷ p

  (3) (t))(t,ŷ-y(t)=(t))e(t, pp
The goal of this procedure is to change p until e(t, p(t)) is 

either zero or it assumes a minimal value. This condition 
can be achieved turning to the Lyapunov method applied to 
the sensitivity theory based on [26]. We assume the 
following positive definite Lyapunov function: 

 ( ) 0 e
2
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If the time derivative of V can be defined negative, then 
 approaches the origin (or the minimum of e) 

asymptotically. By determining V  from eqn. (4), we 
obtain:  
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If  is chosen according to the following position: p�

 
Fig. 1. Block diagram of the proposed identification methodology. 

 
As it can be noted, the procedure adjusts parameters in 

the continuous time domain until they reach their steady 
state values. In this context the fitting error starts from its 
maximum value depending on the initial guess of 
parameters and decreases until it reaches its minimum. 

Multi-solution problems arise with the number of 
unknown parameters and their initial values as well as the 
gain factor χ . In order to minimize such a deficiency, we 
suggest to limit the analysis to a class of signals having the 
following conditions: 
  (9) ∞→t and 0=t    for          0=y(t)

With this assumption a new fitting function can be 
obtained: 
 ( )[ ](t)tf̂π2(t)senÂe=(t))(t,ŷ 00

(t)tσ̂0p  (10) 

where [ ]T000 f̂ σ̂ Â=(t)p is the (3×1)-dimensional vector of 
the unknown parameters. As it can be noted, this new MFF 
contains only three parameters to be identified. 
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III. SYSTEM MODES ESTIMATION OF A POWER SYSTEM 
USING SENSITIVITY THEORY. 

In this section we give details about the application of 
the general identification method developed in the previous 
Section to a power system, deriving a practical procedure 
to estimate dominant modes of local oscillations of power 
system. In particular, our aim is to evaluate dominant 
modes of speed trajectories of all power system’s 
machines. We must notice that computational problems can 
arise, especially in the case of power systems having a 
considerable numbers of machines. However this problem 
can be minimized if the system is composed by coherent 
areas. In this case we can reduce the signals under 
investigation considering those provided by equivalent 
machines representing coherent areas, for local modes 
investigations, or those deriving from inter-ties 
measurements, for inter-area oscillation analysis. 

In this preliminary work we analyze on local dominant 
mode. For this purpose we adopt machine speeds as signals 
under investigations. These particular signal belong to the 
class of signals having initial and final values equal to zero. 
With this assumption we adopt the following monomodal 
fitting function: 

( ) ( ) G
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0
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where NG represents the total number of generating units 

and  is the (3×1)-dimensional vector of 
the unknown parameters. 

[ Tj
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j Â f̂ σ̂(t) =p ]
We define the (NG×1)-dimensional vector of the fitting 

function errors as: 
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In order to solve the problem an iterative scheme in the 

continuous time domain needs to be realized as described 
by the following stages: 
1) Import measurements of angular velocities of 

generators; 
2) Assume initial value of the parameter vector; 
3) Evaluate the estimated angular velocity by means of 

eqn. (11); 
4) Evaluate the fitting error between the measured value of 

 and the estimated one; ω
5) Evaluate sensitivities of the error function with regard 

to the estimated parameters and then evaluate the 
derivative of unknown parameters; 

6) If the modulus of the derivatives of estimated 
parameters are less than a fixed tolerance, the algorithm 

stops, otherwise the vector of independent variables, p, 
is updated; 

7) Update the unknown parameter vector as follows: 

  (13) ∫ dt-=)t( pχp �

where  with i=1,…,3 and k=1,…,N)diag(χ= iχ G is a  
(3N  ×3NG G)-dimensional diagonal matrix whose 
elements represent positive accelerating factors. The 
gain factor χ  has to be chosen carefully as in all 
gradient-based methods. If χ  is chosen too large, the 
procedure can diverge, if it is chosen too small, the 
identification takes too much time. 

Note that, the architecture of the monitoring system of 
dominant modes requires that the algorithm runs 
permanently. It gives the last value of parameters as output 
if nothing happens on the system. When transient 
phenomena caused by line switching or generator/load 
outages occur on the system, the algorithm changes its 
output giving new damping and frequency values 
characterizing the dominant mode. On the contrary, the 
change of damping and frequency values can reveal the 
occurrence of a contingency. 

 

   
Fig. 2. Flow chart of the proposed algorithm. 
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IV. TEST RESULTS  
The methodology was tested developing the 

identification algorithm in the Matlab/Simulink 
environment [27].  

Preliminarily we used a simple example to better 
understand the algorithm ability in estimating the dominant 
mode, thus to validate our approach. By doing this we 
produced a known reference signal, y(t), containing more 
than one mode as follows: 
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Fig. 3. Time domain behavior of the damping factor  and the 

frequency . 

0σ̂

0f̂ 
The first term of y(t) is the dominant mode, having 

damping factor and frequency . In 
order to stress the identification ability of the proposed 
methodology, the subsequent mode has been chosen 
closely to the dominant one. 
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The application of the investigation on such a signal 

gave rise to the damping factor and frequency of the 
dominant mode whose behavior is shown in Figure 3. As it 
can be noted, after a brief transient, parameters and 

frequency  reach their steady-state values equal to, 

respectively,  and 

 
Fig. 4 Comparison between the given signal  and the reconstructed 

one  
y(t)

(t)ŷ

0σ̂  
In order to investigate on the noise rejection ability of 

the method, we added a white noise with a variance equal 
to 0.1 to the previous signal .  

0f̂

Hz098.1f̂0 =1
0 s097.0σ̂ −= . The 

resulting error is, respectively, equal to  and 

. 

y(t)
%0.3e %σ0

= Figs. 5 and 6 show the resulting signal under 
investigation and the estimated parameters. In this case the 
parameters were equal to  and 

, thus obtaining values similar to those 
obtained in absence of noise. This result can be justified by 
the presence of a filtering action due to the integrator in our 
algorithm. 

%4.1e %f0
=

1
0 s096.0σ̂ −=Figure 4 shows the given signal, y(t), and the 

reconstructed signal, , applying time varying 

coefficients and 

Hz098.1f̂0 =(t)ŷ

0f̂0σ̂ . Note that the Monomodal fitting 
function correctly reproduces the given signal after 3÷4 
sec., even if it contains more than one mode, thanks to the 
time-varying parameters. As time passes modes having 
high damping factor attenuate. After 40÷50 sec the system 
approaches a quasi linear behavior and parameters reach 
their steady-state values giving rise to a fitting function 
revealing the dominant mode only. 

The precision of results can be considered relatively 
high, whereas, on the contrary, the accuracy of the 
measurement chain can influence results obtainable by the 
method. 
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Fig. 5. Time domain behavior of the signal y(t) affected by noise. Fig. 6. Time domain behavior of the damping factor  and the 

frequency of the dominant mode. 
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We performed another test aimed to estimate dominant 
modes of local oscillations of power system. For this 
purpose, we adopted the IEEE-39 bus test system, known 
as New England system. Figure 7 shows the system whose 
static and dynamic data can be found in [28]. Time domain 

simulations were conducted in the Matlab/Simulaink 
environment [27] by adopting the PST software [28]. 
Ordinary differential equations were solved adopting the 
ode23tb solver with a variable time step.

 

 
Fig.7. Single-line diagram for the IEEE-39-bus test system. 
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We perturbed the system by a three phase fault located at 
bus 3, cleared after 0.25 sec by tripping the line 3-4. The 
developed code collected all rotor angle behaviors of all the 
ten generators and then post-processed by the algorithm for 
the dominant mode detection. Also in this case we 
initialized the algorithm using  and . 0σ0 = 0f0 =

This investigation identified the dominant modes for all 
generator behaviors reported in Table I. 

The methodology gave rise to almost the same 
parameters of the dominant modes for all generators. 

Figure 8 shows the comparison between angular 
velocities obtained by the PST simulator and those deriving 
from the MFFs adopting the estimated parameters. 
 

TABLE I – ESTIMATED DOMINANT MODE PARAMETERS FOR THE NEW 
ENGLAND’S GENERATORS 

Generator 
# 

Damping 
[sec-1] 

Frequency 
[Hz] 

30 -0.16 0.53 
31 -0.22 0.54 
32 -0.21 0.56 
33 -0.20 0.56 
34 -0.20 0.56 
35 -0.21 0.56 
36 -0.18 0.53 
37 -0.19 0.56 
38 -0.19 0.56 
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Fig. 8. Time domain behavior of the angular velocity at generator #34: 
 measured on the power system;  the reconstructed 
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As it can be noted the two signals are almost overlapped. 

V. CONCLUSIONS  
In this paper a novel methodology to estimate dominant 

modes of generic signals has been developed. This method 
is based on a parameter identification process adopting the 
Lyapunov function and it has the advantage to directly 

estimate dominant modes overcoming the traditional 
problems related to classical estimation method of 
nonlinear signals. 

In this preliminary work, the methodology has been 
applied to the analysis of local dominant mode of 
electromechanical oscillations of power system. 

Test results demonstrated a good ability and fast 
convergence to evaluate dominant modes even if the signal 
under investigation is strongly corrupted by noise. This is 
due to an intrinsic integral filtering action of the algorithm. 
In addition, the considered technique does not require 
system linearization or any a priori information about the 
system order that generates the given signal. 

Future developments should be focused on the 
application of the methodology to inter-area oscillations 
analyzing inter-ties signals. 
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