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Abstract--The integration of large shares of wind generation in 

power systems requires the development of new algorithms and 
forecasting tools for making decisions in the operational domain 
taking into account wind generation forecast uncertainties. One 
of these decisions regards operating reserve requirements to meet  
load and wind variations. The aim of this paper is therefore to 
address this issue from a risk evaluation perspective, showing 
that it is possible to describe the consequences of each possible 
reserve level through a set of risk indices useful for decision-
making. The new reserve management tool described in this 
paper is intended to support the Transmission System Operator 
(TSO) in defining on-line the operating reserve needs for the 
daily and intraday markets. Decision strategies like setting an 
acceptable risk level or finding a compromise between economic 
issues and the risk of loss of load are explored. A case-study 
based on the Portuguese power system demonstrates the 
usefulness and efficiency of the tool. 
 

Index Terms--multicriteria decision, operating reserve, 
operating risk, uncertainty, wind power forecast. 

I.  INTRODUCTION 
HE benefit of accurate wind power forecasting to power 
systems management is being increasingly recognized. It 

becomes an important issue in defining the operation planning 
policies to be adopted by a TSO (Transmission System 
Operator), namely in accepting high wind penetration [1]. 
Currently, increasing the value of wind generation through the 
improvement of prediction systems’ performance with new 
algorithms is one of the priorities in wind power forecasting.  

However, even the best tools are unable to eliminate the 
uncertainty associated to each particular forecast. The 
combination of generation and consumption variability and 
high uncertainty of forecast can make it more difficult to fit 
wind generation into conventional procedures for power 
system operations, such as setting reserve levels or 
scheduling. Therefore, a correct management of the power 
system must take into account the uncertainties when making 
decisions. 

The integration of large shares of wind generation requires 
an increase in the amount of reserves that are needed to 
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balance generation and load according to the different time 
frames defined by UCTE [2]. Studies in [3] showed that large 
scale integration of wind generation does not create problems 
in terms of primary reserve levels. So, the analysis should 
only be considered in terms of the operating reserve 
management.  

Generally, the methods employed by the TSO to define 
operating reserve requirements are deterministic, as can be 
seen in the survey presented in [4] about reserve 
categorization that reviews the criteria used across eight 
electrical systems.  Sometimes, the UCTE rule [2] for defining 
reserves is used as a reference for deterministic criteria. The 
rule depends only on the size of the typical load variations and 
is insensitive to the level of wind power of the system.  

The variability of wind generation tends to increase, 
becoming a source of stress for the operations personnel. This 
leads to a highly conservative attitude and an adoption of high 
safety margins to minimize the risk, and consequently 
increases the operational costs. The main limitation of 
deterministic approaches is that they are incapable of 
assessing the risk and so they treat all operation scenarios as 
having the same risk. In a market environment, where the 
reserve cost will be part of the tariff paid by all customers, a 
trade-off between cost and risk should be considered instead 
of avoiding risk at almost any cost. On the other hand, since 
deterministic approaches do not in fact measure the risk, it 
may happens that, in some circumstances, complex risky 
situations are not covered. Therefore an approach based on 
deterministic criteria may lead, either to higher operational 
cost, or to excessive risk. 

Recent research in the field for operating reserve 
requirements includes in the models the uncertainty of wind 
power forecast. Strbac et al [5] calculate the square root of the 
sum of the square of the standard deviations of hourly wind 
power forecast errors with the square of the standard 
deviations of load forecast errors. The reserve is defined to 
cover all variations contained within 3σ of the total system 
forecasting error, which means that 99.74% of variations are 
covered. The same approach is used by Holttinen [6], where 
the main goal was to estimate the increase in hourly load-
following reserve requirements based on wind power 
generation and hourly load data in the four Nordic countries. 
Doherty et al [7] present a methodology that relates the 
reserve level on the system in each hour to a specified 
reliability level of the system over the year. The reliability 
criterion is defined as being the number of load shedding 
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incidents tolerated per year. Load and wind forecast errors are 
incorporated in the model as Gaussian errors.  

These approaches represent the wind uncertainty through a 
Gaussian distribution. However, wind forecast error is well 
known to have a non-Gaussian distribution [8]. An alternative 
approach is not assuming any distribution for the uncertainty. 
Pahlow et al [9] studied the impact in load curtailment and 
reserve cost of several criteria based on the use of ensembles 
that provide a set of forecasts which cover the range of 
possible uncertainty. 

Nevertheless, most methods compute reserve requirements 
based on a prior setting of a reference risk level. As stated 
above, a trade-off between cost and risk should be considered. 
Leite da Silva et al [10] describe a methodology for evaluate 
the operating reserve requirements in a deregulated electrical 
market. They use system interruption costs, represented by 
LOLC (loss of load cost), and the reserve bid prices to balance 
risk and cost. Wang et al [11] compute the optimal reserve 
capacity in the operating reserve market by minimizing the 
social cost, defined as the sum of the reserve cost with the 
expected cost of interruptions, represented by the Interrupted 
Energy Assessment Rates (IEAR). Ortega-Vazquez et al [12] 
balance the spinning reserve cost and benefit in an electrical 
market with unit commitment. The benefit is a function of the 
reduction in the expected energy not supplied (EENS), and 
converted into socioeconomic cost by using the VOLL (Value 
of lost load). 

This paper presents a new reserve management tool (RMT) 
intended to support the TSO in defining on-line the reserve 
needs for the daily and intraday markets. Based on wind and 
load forecast uncertainty, reliability risk indices are calculated 
that give information to the TSO about the consequences of 
setting each possible reserve level. After interaction with the 
TSO, the RMT outputs the reserve levels to set for the next 
day (or current day) that either: 1) lead to an acceptable risk 
level at minimum cost; 2) respect a trade-off between risk and 
reserve cost. 

The structure of this paper is as follows: Section II presents 
the problem and the general methodology. In Section III, the 
details of the probabilistic model that computes the system 
margin distribution are described. Decision-making issues are 
discussed in section IV. The management tool is demonstrated 
by a case-study in Section V. Section VI presents the 
conclusions. 

II.  GENERAL METHODOLOGY 
The RMT addresses the problem of defining the operating 

reserve needs in a deregulated electrical market environment 
where the TSO may acquire all of the reserve needed for the 
control area, in order to maintain a minimum reliability level. 
However, the methodology can be applied to other balancing 
mechanisms without difficulty. 

A.  Operation 
In the daily market the TSO at day D is in charge of 

defining the reserve needs for the next day (day D+1) after the 

technical constraints management that leads to a viable 
program. The TSO at time instant tm determines and publishes 
the reserve needs for each look-ahead time of day D+1, the 
time gap km between the beginning of day D+1 and the 
decision instant being equal to 24-tm. These reserve amounts 
should then be split into secondary and tertiary reserves 
according to TSO operating rules (problem not addressed in 
this paper).  

The relevant inputs are the following variables: total load 
and wind forecast uncertainty made at time instant t0 for each 
look-ahead time of day D+1, (k0 is the time gap between the 
beginning of day D+1 and the forecast instant, 24-t0); 
scheduled generation by technology decided by the market 
mechanisms (viable program) at time instant tm for each look-
ahead time of day D+1; failures rates of the conventional 
generation; interconnection power levels resulting from the 
market.  

Also in each intra-daily market (IDM) session the TSO has 
to define the reserve needs for the next day or for the 
remaining hours of the current day. The same framework is 
used, the input data being “refreshed” with the new forecasts 
and with the scheduled generation decided by the intra-daily 
market. 

B.  Methodology 
The approach computes first the probability distribution of 

the system total generation (G), for each look-ahead time, by 
integrating the conventional generation unavailability 
distribution and wind generation forecast uncertainty. Then, 
the system margin probability distribution (M), defined as the 
difference between total generation and load (L), is computed, 
taking into account the load forecast uncertainty. For a 
specific level of operating reserve R, the distribution of M+R 
describes the probability of the reserve being (un)sufficient to 
cover the deficit of generation. 

In the second step of the methodology, the decision 
problem is formulated in a way suitable to incorporate the 
preferences of the Decision Maker (in this case the TSO), and 
the final level of reserve is decided. Fig.1 shows the complete 
structure of the tool. 

 

 
Fig. 1.  Reserve Management Tool Structure 

 
Risk indices related with the amount of loss of load are 

derived from the system margin probability distribution, for a 
specific level of reserve (with its inherent cost). The aim here 
would be to minimize simultaneously risk and cost, which is 
impossible due to the conflict between the two minimizations. 
So, the decision strategies model helps the decision maker 
(DM) to find a preferred solution based on his preferences. 
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The output of the decision strategies model is the reserve 
level to be set for each hour of the time horizon.  

III.  PROBABILISTIC MODEL 

A.  Representation of Uncertainties 
          a)  Conventional Generation 

The probability mass function (pmf) of the conventional 
generation is analogous to the discrete probability distribution 
of the possible capacity states, better known as the capacity 
outage probability table (COPT) [13][14]. Note that, because 
the subject is operating reserve, the outage replacement rate 
(ORR) is used instead of the forced outage rate (FOR) [13]. 

The method used in this paper to build the COPT is similar 
to the one described in [15], that it is based on the FFT (Fast 
Fourier Transform) algorithm [16]. This method is 
computationally and mathematically attractive, since the 
computational time grows linearly with the number of 
machines in the system and can also accurately compute the 
COPT for systems with small ORR (which is the case, as 
probabilities of failure during the lead time are very low).  

The approach followed for the conventional generation 
consists in build a COPT based on the conventional dispatch 
that results from the market (viable program). 
          b)  Wind Generation 

Two sources of uncertainty in wind power are taken into 
account by the model, one coming from the forecast error and 
the other from possible wind turbines outages.  

The first source of uncertainty is related with the 
impossibility of producing perfect wind power forecast. 
Research work has been developed to estimate uncertainties in 
wind power forecast. As a result from the ANEMOS project 
(http://anemos.cma.fr/), different methods to estimate the 
uncertainty of deterministic (or point) forecasts were 
developed in ANEMOS [17]. 

The uncertainty of the deterministic forecast can be 
approached by different representations. The most common 
representation is a non-parametric probabilistic forecast [8] 
represented by quantiles, intervals or probability density 
functions. The other two representations take the form of risk 
indices [8] linked with the forecasts, and scenarios [18] 
incorporating temporal or spatial interdependence structure of 
prediction errors. In this paper we used a non-parametric 
probabilistic forecast, with the form of a set of quantiles.  

The second source of uncertainty is related with the 
possible outages of the wind turbines and could be addressed 
the same way we did for conventional generation. However, 
since we are dealing with a large number of similar wind 
turbines (identical failure rate λ and size) a simpler model can 
be used. For instance, for a system with 2000 similar wind 
turbines, a failure rate of 10 failures/year, and a lead time of 
24 hours, the mean power (β) is 97.26% of the rated power, 
the coefficient of variation (σ/β) is 0.38%, so the probability 
of having at least 96% of the rated power is 99.995% (β-4σ). 
Therefore, an adjustment in the forecasted values using the 
mean value of the COPT (0.9726 in this case) is sufficient to 

capture this kind of uncertainty. 
          c)  Load 

Generally, load uncertainty is modeled through a Gaussian 
distribution with a given standard deviation and zero mean 
[13]. The load forecast uncertainty represented by a Gaussian 
distribution is approximated by a set of quantiles (intervals 
with equal probability).  

So in order to set the parameter σ, it is possible to establish 
a relation between the value of the MAPE (mean absolute 
percentage error) and σ, assuming Gaussian distribution of the 
forecast errors. The following holds under Gaussian errors: 
 ( ) ( ) 25.05.0 =>⇔=< MAPEePMAPEeP  (1) 

then the relation between the two is MAPE=0.67449σ. 
Note that no changes are necessary in the methodology if 

the forecast uncertainty is a non-parametric representation 
(e.g. set of quantiles). 

B.  System Margin Model 
The generation margin is the amount that the available 

generating capacity exceeds the system load, Margin = 
Available Generation-Load. Since the margin is a function of 
system load and generation, it is also a random variable In 
order to compute the system margin distribution (M), we take 
as input the probability distributions of wind power generation 
(W), of load (L) and of conventional generation (C). 

The first step is to compute the pmf of the sum of wind and 
conventional generation (G=W+C) for each look-ahead time 
step. Assuming independence, the sum can be computed by 
applying the convolution definition [19]: 

 ( ) ( ) ( )∑
∞

−∞=

=⋅−===+
k

CWG kCPkzWPzCWP  (2) 

However, a more efficient way to compute the convolution 
is in the frequency domain with the FFT method adapted from 
the one described in [20].  

Finally, the system margin is the difference between the 
generation (G) and the load (L), which requires also a 
convolution, assuming independence: 

 ( ) ( ) ( )∑
∞

−∞=

=⋅+===−
k

LGM kLPkzGPzLGP  (3) 

It is important to stress that the dependence between the 
load and wind generation uncertainties in one hour is 
negligible. Note that we are talking about independence 
between the uncertainties (or prediction of them) of generation 
and load in a specific hour, not between wind generation and 
load as a function of time. Therefore the hypothesis of 
independence is acceptable. 

The system margin distribution is a discrete probability 
distribution for each look-ahead time, represented by its pmf, 
as depicted in Fig. 2. Note that the mean value of this initial 
margin tends to be close to zero, since it resulted from a 
balancing exercise (C=L-W). 

Now, after setting a value for the operating reserve, the 
translation of the margin distribution (M+R) can be used to 
calculate the probability of losing load and other risk indices. 
Fig. 3 shows the effect of setting a reserve level of 700 MW in 
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the same situation of Fig. 2. 
At this point, different risk related attributes meaningful for 

the DM can be computed. Following the approach described 
in [21], the idea is to replace the system margin distribution by 
a set of risk attributes, resulting from different concerns, in 
order to give information to the DM about the impact of a 
potential reserve level. 

The classical measures in reliability can be calculated from 
the system margin distribution, such as the loss of load 
probability (LOLP), the loss of load expectation (LOLE) or 
the expected energy not supplied (EENS) [13]. For instance, 
LOLP=0.49 and EENS=157.1 MWh in the situation depicted 
in Fig. 2, but the effect of the reserve considered in Fig. 3 
(700 MW) is reducing EENS to only 5.38 MWh 

 

 
Fig. 2.  pmf of the system margin for a specific look-ahead time 

 
Fig. 3.  pmf of the system margin for a operating reserve of 700 MW 

 
If we take the cumulative distribution of the negative 

margin, a direct reading of some risk attributes (LOLP, 
LOLE) is possible. More elaborated indices (EENS) just 
require some statistical manipulation. An example of this kind 
of risk/reserve curve is depicted in the top of Fig. 4  

Finally, note that other measures of risk, such as the 
conditional expected value of loss of load (XLOL), reserve-at-
risk or conditional reserve-at-risk [22] could be computed. 

C.  Reserve Cost 
The cost of buying reserve in the market can be assessed by 

a curve representing the reserve bids offered by the market 
agents for selling up and down regulation reserve. The bids 
for selling regulation are paid at the bid price or by the 
marginal price [23]. A typical curve of the reserve cost can be 
seen in the bottom of Fig. 4. 

IV.  DECISION-MAKING ISSUES 
The preceding analyses and results are not sufficient to set 

the level of operating reserve, so a decision-making phase is 
needed where the DM introduces his preferences and makes 
the final decision. The preferred solution can be different for 
different DM, because each one has different preferences and 
values differently risk and cost, based on his global perception 
and judgments. The participation of DM during this process is 
absolute imperative. 

A.  Setting a Threshold 
The simplest approach consists in comparing the risk 

measure of a potential reserve level with a prespecified 
reference threshold. If the proposed reserve level leads to an 
unacceptable risk then the reserved level is increased until the 
risk value is lower than the threshold. This reference risk 
should be maintained through each hour of the scheduling 
horizon, therefore the reserve is adjusted in each hour to 
maintain a uniform risk level. 

For instance, in Fig. 4, a EENSref equal to 5 MWh would 
require a reserve level of at least 625 MW. The reserve cost 
would be 1812.5€. 
 

 
Fig. 4.  Reserve that corresponds to the reference 5 MWh of EENS for a 

specific look-ahead time 
 
Note that this approach does not take into account the 

reserve cost, and this may request expensive additional 
generation to maintain the risk below the threshold. 

B.  Multicriteria Approach 
If, instead of just setting a threshold, the DM wants to 

balance risk and reserve cost, a multicriteria problem results. 
The risk indices to use must be meaningful for the DM, and 
more than one risk attribute can be used at the same time. The 
alternatives of the multicriteria problem are defined by the 
reserve level. 
          a)  Equivalent Cost Approach 

The equivalent cost function uses a constant trade-off 
between reserve cost and an associated risk measure (e.g. 
EENS). The trade-off μ is the rate at which the DM is ready to 
give up ∆C units of one criterion in exchange for gaining ∆E 
units in the other criterion, while remaining indifferent 
between the two solutions. For example, if the two criteria are 
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EENS and cost, the trade-off can be interpreted as how much 
the DM is willing to pay to decrease the EENS, and would be 
expressed in €/MWh. 

In this approach, we just need to find the reserve level r 
that minimizes the equivalent cost 

( ) ( ) ( )rRiskrCostrCostEq ×+= μ. .  
          b)  Value Function Approach 

In order to capture more complex preference structures 
than the ones behind a constant trade-off, nonlinear value 
functions can be used. We will restrict the approach to 
additive value functions [24], but more complex functions 
could be used. 

The approach consists in building an individual normalized 
value function for each criterion, and then assessing weights 
to build the multi-attribute value function whose maximization 
leads to the preferred reserve level r. Note that, if the 
individual value functions are all linear, the problem reduces 
to the one discussed in the previous section. 

 So, a possible multi-attribute value function for this 
problem would be: 
 
 ( ) ( ) ( ))()(, rEENSvkrCostvkrv EENSEENSCostCostEENSCost ⋅+⋅=  (4) 
 
where and vCost and vEENS are the individual values functions 
for the two criteria and kRisk and kCost are parameters, usually 
know as weights (kCost+kEENS =1). 

The shape of the individual value functions reflects the way 
the DM values the variation of the corresponding attribute. 
The individual value function of the cost is usually linear, 
because the increase in DM satisfaction is independent of the 
attribute level. On the other hand, we may see different 
attitudes regarding EENS: (i) Some DM are very favorable to 
the decrease of the EENS when its level is high, but not so 
favorable when the EENS level is already acceptable or low; 
(ii) Other DM, on the contrary, would intensify their 
willingness to pay for reducing risk when approaching the 
best (lower) levels of EENS. Neither of these attitudes can be 
classified as correct or incorrect – they simply correspond to 
different managing styles and external constraints. 

So, in order to capture the DM attitude regarding risk (in 
this case through EENS), an exponential value function is 
proposed, due to its flexibility: 

 

 ( )
( )

1
1)(

minmax

max

−
−

=
−

−
⋅

b

EENSEENS
rEENSEENSb

EENS e
erEENSv  (5) 

 
In fact, by changing parameter b it is possible to change the 

underlying preference structure. For negative values of b the 
value function models the attitude (i) described earlier, while 
positive values of b correspond to attitude (ii).  

The last step consists of determining the weights kCost and 
kEENS. It must be stressed that these parameters shouldn’t be 
asked explicitly to the DM as the relative importance of the 
criteria, since they also include scaling factors. When using 
predefined value functions, an iterative process is used where 

artificial solutions successively are presented to the DM until 
an indifferent is found. For instance, the indifference between 
solutions A and B leads to vCost,EENS(A) = vCost,EENS(B) that, in 
conjunction with kCost+kEENS=1 turns it possible to compute 
the weights.  

V.  CASE-STUDY 

A.  Description 
The case-study used to demonstrate the methodology is a 

single bus model based on the Portuguese power system. The 
total installed capacity of conventional generation is 10395.8 
MW. Presently the system has 2742 MW of wind power 
capacity. 

The forecasted load curve for the 24 hours period of a 
weekday is shown in Fig. 5, where the peak load is 7600 MW 
at 20:00. The load forecast uncertainty is modeled through a 
Gaussian distribution with standard deviation computed from 
a MAPE of 2%. 

 
Fig. 5.  Forecasted  load  for a 24 hours period 

 
Global system wind power forecasts and uncertainty are 

similar to the ones produced by the ANEMOS platform. For 
this case-study the uncertainty was estimated with a local 
quantile regression [25] using as input the point forecast of a 
single wind farm rescaled for the total system capacity (2742 
MW). 

For testing purposes, a day with a representative pattern of 
the wind generation behavior in Portugal (more wind during 
the night than in the day), was chosen. In Fig. 6 and 7 a 
forecasted distribution for each hour, represented by 21 
percentiles, is depicted for scenarios with high wind 
generation (scenario H) and low wind generation (scenario L).  

 
Fig. 6.  Point forecast and a set of interval forecasts for scenario H 
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Since in Portugal wind energy doesn’t go to the market 
(Iberian Market MIBEL), the market load (conventional 
generation) is the difference between the point forecast of the 
wind generation and the load forecast. The system has 119 
units of conventional generation. 

 
Fig. 7.  Point forecast and a set of interval forecasts for scenario L 

 
In this test, the reserve needs are estimated by the TSO for 

the next day in the daily market session of the MIBEL market.  
We will now apply the methodology to this case study. 

However, for comparison, the following rules will be also 
used: 

Rule A) Secondary reserve given by the UCTE rule plus 
the loss of the largest on-line generating unit [2]. 

Rule B) The rule presently used in Spain to compute the 
reserve needs for the next day [4]. 

Rule C) The rule described in [5] including the standard 
deviation of the COPT. The standard deviation of the wind 
generation was computed directly from the forecasted 
uncertainty. 

B.  Using a risk threshold 
We first simulate a situation where a threshold for the 

LOLE was previously set by the DM. In this case, the reserve 
level can be obtained directly from the risk/reserve curve. In 
Fig. 8 a comparison is depicted between the reserve needs 
obtained using the RMT and rule C for scenario H. The 
contribution of combined conventional generation and load 
uncertainty for the reserve needs is identified (with wind 
generation deterministic forecasts). The threshold for the 
LOLE was 1 min/hour (which corresponds to 2.13σ, in rule 
C), defined by the DM. For the same threshold level, in Fig. 9, 
a comparison is depicted between the RMT and rules A, B and 
C.   

The shape of the reserve needs curve obtained with the 
load and conventional generation uncertainty is similar to the 
load shape. As expected, the integration of the wind 
generation uncertainty in the model leads to an increase in the 
reserve requirements. With this additional uncertainty the 
shape of the reserve needs curve becomes similar to the wind 
generation daily pattern. For situations where more wind 
generation exists in the system additional reserve is needed, 
for the opposite, less reserve is required. 

The reserve needs obtained with rule A have almost the 
same value all day, the only variation being due to the 

capacity of the largest on-line unit. On the other hand, Rule B 
seems to ask for additional reserve in order to deal with the 
wind generation variability. Applying rules A and B does not 
provide the TSO information about the risk he is taking.  

 
Fig. 8.  Reserve needs with and without wind generation uncertainty using 

the RMT and rule C 

 
Fig. 9.  Reserve needs obtained using RMT and rules A, B, C 

  
Rule C allows the definition of the acceptable level of risk. 

The reserve needs without wind uncertainty are almost equal 
to the ones obtained with the RMT. The difference becomes 
significant when the wind uncertainty is added; in this case, 
the results differ significantly. This is due to the Gaussian 
assumption for wind uncertainty incorporated in rule C, which 
is not confirmed.  

In order to analyze the quality of each suggested reserve 
level a Monte Carlo simulation was performed for hour 8:00. 
The quality criterion is the number of loss of load occurrences 
in a simulation with 20000 random samples taken from the 
distributions of each variable. The results are presented in 
Table I. 

TABLE I 
RESULTS OF THE MONTE CARLO SIMULATION FOR HOUR 8:00 

 Loss of load 
occurrences (%) min/hour 

RMT 1.37 0.82 
Rule A 19.21 11.52 
Rule B 1.07 0.64 
Rule C 6.60 3.96 

 
The result obtained with the RMT is consistent with the 

risk threshold defined. Rule C presents a LOLE value higher 
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than the max accepted level. The assumption of a Gaussian 
distribution for wind uncertainty is not adequate, since it leads 
to a higher risk value. This happens because the skewness of 
error distribution is generally positive [8] and therefore the 
density of the distribution is concentrated on the over-
prediction part. If the DM is comfortable with a risk of 1 
min/hour, then rule B leads to an excessive reserve and rule A 
leads to an excessive risk since it is only related with the load. 

The impact of the wind generation uncertainty is also 
assessed by comparing the reserve needs for scenarios H and 
L; depicted in Fig. 10 for a threshold of 1 min/hour. 

 
Fig. 10.  Reserve needs of scenario H and L 

 
As shown in Fig. 10, although wind generation in scenario 

L is lower than scenario H, the reserve needs for scenario L 
are higher when compared with the ones obtained for H. This 
is due to the higher forecasted uncertainty of the scenario L, 
since the inter-quantile range of scenario L is higher. Thus, the 
wind power level has impact on the reserve needs, but the 
main contribution comes from the amount of wind generation 
uncertainty in each hour.  

C.  Risk/Cost Based Decisions 
For simplicity, and without loss of generalization, only 

look-ahead time 8:00 of scenario H is analyzed in this section. 
Each equivalent cost function value defines a family of 

linear indifference curves, set of alternatives that are valued in 
the same way by the decision maker, which describes the 
preference structure of the DM and their slope is the reference 
trade-off value.   

Fig. 11 shows these indifference curves and the candidate 
solutions curve for a reference trade-off of 50 €/MWh. Each 
curve connects all points that are indifferent for the DM, since 
they have the same equivalent cost. The equivalent cost of the 
indifference curves decreases as they are close to the zone 
with minimum cost and risk. 

The preferred solution is the one in the indifference curve 
that has an equivalent cost of 5084.8€ and corresponds to a 
reserve of 512 MW, EENS=27.2 MWh and cost=3724€. Now, 
a different DM, more concerned with the level of EENS, sets 
a greater trade-off of 150 €/MWh, leading to the indifference 
curves depicted in Fig.12. Therefore, the preferred solution 
will be different: more reserve (730 MW); less risk 
(EENS=6.7 MWh) and higher cost (5352€). 

When comparing Fig. 11 and 12, we see that the slope of 

the indifference curve changes according to the preferences of 
the DM, moving the preferred solution along the risk/cost 
curve.  

 
Fig. 11.  Indifference curves of the constant tradeoffs (μ=50 €/MWh) 

 

 
Fig. 12.  Indifference curves of the constant tradeoffs (μ=150 €/MWh) 

 
For more complex preference attitudes, a nonlinear value 

function can be used. For a DM indifferent between 
(5000,60)~(5500,50) and accepting an exponential function 
with b=-4 (see eq.5) for the EENS valuation, the (nonlinear) 
indifference curves depicted in Fig. 13. 

 
Fig. 13.  Indifference curves of the exponential function with b=-4 
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Since the trade-off is not constant, in the area of high 
EENS, a small decrease in EENS offsets a large increase in 
reserve cost (the indifference curves are little sloped), because 
the decision maker is prepared to pay the necessary to avoid 
high values of EENS. By contrast, in the low EENS, a big 
decrease in EENS offsets a small increase in reserve cost, 
since the values of EENS are tolerable by the decision maker, 
he will just pay something if a large decrease of EENS 
happens. In summary, the trade-off in the first area of the 
curve is very high, and in the second is very low. Of course, 
intermediate values of EENS conduct to intermediate values 
of the trade-off. 

 The preferred solution in the indifference curve with 
value 0.9641 and corresponds to a reserve of 340 MW, EENS 
of 62.3 MWh and cost of 2474€.  

VI.  CONCLUSIONS 
This paper describes a methodology developed to support 

TSO in defining on-line the operating reserve needs, taking 
into account conventional generation outages, load forecast 
uncertainty and wind forecast uncertainty. 

The tool is oriented for a deregulated energy market. 
However, the methodology can easily be adapted to other 
reserve definition mechanisms or can be combined with a unit 
commitment procedure. 

The methodology avoids making assumptions on the wind 
forecast distribution. The illustrative example shows the 
correctness of this approach and the difficulties in applying 
rigid decision rules or Gaussian assumptions, when compared 
with calculating on-line the risk associated to a specific 
reserve level. 

Besides the risk/reserve curve computation, the reserves 
management tool addresses the decision making issues, 
namely when cost and risk must be included simultaneously in 
the decision process. The methodology is able to model 
different attitudes and values of the DM, as illustrated in the 
case study, in order to support a rational decision process. 
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