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Abstract-- The subject of this paper is the extension of QSS 

modeling to include low frequency interarea oscillations in 
power system long-term dynamics. All other electromechanical 
oscillations, such as local or intra-area are replaced by equilib-
rium (algebraic) equations. Modal analysis and simulations are 
made on a classical test system of 11 buses and 4 generators. 
The effect of solver parameters and generator models on simu-
lation results is investigated. Modal reduction is applied to 
Automatic Voltage Regulators and Speed Governors resulting 
in four different simplified models. A comparison is made be-
tween extended QSS and detailed modeling, focusing on the 
accuracy of the interarea mode frequency and damping. 
 

Index Terms-- Quasi Steady State approximation, interarea 
oscillations, reduced order modeling, modal reduction. 

I.  INTRODUCTION 
NTERAREA oscillations appear between large intercon-
nected systems and are influenced by the dynamics of 

speed governors and automatic voltage regulators. Damping 
of such oscillations is important for power system stability. 
In order to study these oscillations, usually systems are 
modeled in detail resulting in a high degree of complexity 
and a large amount of data to be collected.  

Quasi-steady-state (QSS) simulation [1], [2] has been 
proven a very efficient method to analyze long-term dy-
namic phenomena, such as those met during on-line and off-
line voltage security assessment applications. The essence of 
this method is to replace short-term dynamics, such as elec-
tromechanical oscillations, with their equilibrium conditions 
and thus transform the differential swing equations to alge-
braic ones that are solved together with network equations 
with efficiency similar to that of the power flow program. In 
this sense QSS simulation combines the efficiency of load 
flow with the advantages of time simulation. 

The subject of this paper is the extension of QSS model-
ing to include also interarea oscillations. The proposed 
method is applied in a small system traditionally used for 
interarea oscillation studies and power system stabilizer 
(PSS) tuning [3], [4]. This system is presented in Fig. 1. 

The paper is structured as follows: In Section II test sys-
tem benchmark scenarios are formed investigating the de-
pendence of simulation results on solution method and gen-
erator modeling accuracy. Section III is divided in two 
parts: in the first, single frequency QSS method [5] is sum-
marized, while in the second part the multi-area formulation 
is presented and analyzed. In Section IV generator, Auto-
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matic Voltage Regulator (AVR) and Speed Governor –
Steam turbine (SG-ST) dynamics are analyzed and simpli-
fied. In Section V the performance of the reduced system is 
evaluated, while in the last Section the conclusions are sum-
marized. 
 

 
Figure 1.  One line diagram of system investigated 

II.  DEPENDENCE OF RESULTS ON GENERATOR MODELING 
AND SOLUTION METHODS 

Before developing the extended QSS simulation method, 
it is necessary to define in this Section a benchmark full 
simulation model (including the appropriate numerical inte-
gration routine), with which to compare the reduced order 
model to be developed. The reason for this is that otherwise 
significant errors not related to the simplifications proposed 
in this paper may be introduced. 

A.  Generator modeling 
Three generator models are compared in this subsection 

with different number of rotor windings, in order to examine 
the effect on electromechanical modes. For this purpose, the 
system of Fig. 1 is simulated with individual generator mod-
els of 6th, 4th, and 3rd order. In the first case three damper 
windings were included in the rotor, in the second case one 
damper winding, while in the third case only the field wind-
ing is represented on the generator rotor. 

The state matrix eigenvalues for these models are pre-
sented in Fig.2 where the black crosses (+) mark the eigen-
values calculated using the 6th order generator models, red 
triangles show those of the 4th order model and blue stars (*) 
the eigenvalues for the 3rd order model.  

As can be observed in Fig. 2, while the local electrome-
chanical oscillation modes behave as expected, i.e. they are 
much better damped for the generator models with more 
damper windings, the interarea mode is less damped when 
more damper windings are modeled. This obviously contra-
dicts the common reasoning that “more damper windings 
will introduce more damping” and it should be attributed to 
some type of modal interaction. It is noted that for other 
operating points of the same system, the above paradox may 
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not be present and more detailed generator models introduce 
in general more damping. 
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Figure 2.  Comparison of eigenvalues for different generator models 
 

In order to verify the linearization results, a 5% load in-
crease in bus 9 was simulated with the three generator mod-
els discussed, and the active power exchanged between the 
two areas is shown in Fig. 3. As seen, all generator models 
respond with almost the same interarea oscillation fre-
quency. Concerning oscillation damping, the more detailed 
the generator models, the lower the damping exhibited, as 
predicted by the interarea mode eigenvalues of Fig. 2. How-
ever, the differences in response are quite small, especially 
between the 4th and 6th order representation and they do not 
affect the overall response considerably.  
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Figure 3.  Interconnection active power flow for different generator models. 
 

Since further detail in generator modeling does not con-
tribute substantially to simulation accuracy, the 4th order 
generator model is taken as benchmark for further compari-
sons in this paper. 

B.  Effect of Solution methods  
Another factor examined here is the accuracy of Matlab-

Simulink numerical integration methods. The results ob-
tained show a significant dependence of simulated responses 
on the specified numerical solution method. The same dis-
turbance described in the previous subsection was simulated 
with two methods, namely ode15 (stiff/NDF) and ode23t 
(stiff/trapezoidal) with relative and absolute tolerance 10-6 
and maximum step size at 0.01. The two solvers produced 

different results as shown in Fig. 4, which shows the active 
power generation of generator 4. The ode15 solution 
method was considered more accurate and was taken as the 
benchmark. The generator model used for this study was the 
3rd order model with full controller representation as in Ta-
ble IV of the Appendix.  
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Figure 4.  Comparison of dynamic response solved with different methods 

III.  QSS ANALYSIS OF MULTI-AREA SYSTEM 

A.  Single Frequency Modeling  
Before introducing the proposed modeling approach for 

interarea oscillations, we will review the modeling of fre-
quency dynamics and primary governor control in QSS 
simulation [5]. Following Singular Perturbation Analysis 
[2], system dynamics are decomposed into two components. 
The first component, x includes slow (long-term) state vari-
ables and the second one (y) includes fast (short-term) vari-
ables, for which the differential equations are substituted by 
algebraic equilibrium conditions: 

( , )x f x y=           (1) 
0 ( , )g x y=           (2) 

In this approach mechanical power output of each prime 
mover is considered as a (long term) state variable, while 
the electrical power output of generators is an algebraic 
variable computed together with the network equations in 
the same numerical solution process. The mismatch between 
the sum of mechanical power and the total electrical genera-
tion is the system mismatch: 

( )mi eiP Pη = −∑             (3) 

The total mismatch η is an algebraic variable that is cal-
culated during the solution of network equations included in 
functions g above. The equation to match this extra variable 
is the angle reference, which in this paper is taken as the 
internal (rotor) angle of the reference machine r. Note that 
this is similar to the assumption of a swing bus, except that 
the swing bus in the traditional load flow formulation covers 
all of the active power mismatch (slack), while in the pro-
posed formulation, the slack is distributed along all genera-
tors in proportion to their inertia constants:  

i
i mi ei

i

H
P P

H
η η= − =

∑
      (4) 

The rotor angle (δi) of every generator (except the refer-
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ence) is described through the following differential equa-
tion: 

1
i i i

o
rεδ δ ω

ω
= = −ω

r

          (5) 

where ωo is the base electrical angular frequency and ωr the 
rotor speed (per unit) of the generator selected as reference. 
It is clear that ωo has a large value, so that ε is small and (5) 
corresponds to fast (short-term) dynamics. By taking ε to 
zero [2], the QSS approximation of (5) becomes: 

iω ω=             (6) 
In other words there is one common frequency for the sys-
tem, while all rotor angles are treated as algebraic variables. 

The frequency (considered common for all the system) is 
treated as a long-term state variable represented by the dif-
ferential equation:  

    
2r

iH
ηω =

∑
          (7) 

 
In Fig. 5 the single frequency QSS simulation model is 

shown in a simplified block diagram, where SG stands for 
turbine and governor.  

 

 
Figure 5.  Simplified block diagram with common frequency assumption.  

 
The system algebraic equations are summarized as fol-

lows: 
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The electrical active and reactive powers produced by 

each generator (PG, QG) are calculated first as functions of 
the algebraic variables (V, θ, δ, Ef), where Ef is the excita-
tion emf (AVR output). The same powers are then calcu-
lated also from power flow equations involving V, θ of all 
buses as PNET, QNET.  

The above system is solved by the Newton-Raphson 
method, using: 

           (9) 

( )
1

( )
1 1
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where JR is the Jacobian matrix JR: 
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and er, is a row vector with 1 only on element r and all the 
other elements zero. 

B.  Extension to multiple coherent groups 
The formulation proposed in this paper extends the de-

composition of the previous paragraph (involving one com-
mon electrical frequency for the entire system) to represent 
multiple areas, each with a different frequency as long-term 
variable. Each predefined area Ak includes a coherent group 
of generators ( i ). The decomposition to coherent 
groups (areas) is supposed to have been defined by one of 
the existing methods, e.g. [6], [7], and will not be discussed 
further in this paper. 

kA∈

Single frequency assumption holds when all electrome-
chanical oscillations can be assumed fast (high frequency) 
with respect to slow variables and stable, having adequate 
damping. However, it is well known that large coherent 
groups oscillate with respect to each other giving rise to 
interarea oscillation of low frequency due to weak coupling 
with other coherent groups (areas). In this sense the dynam-
ics of equation (5) should be re-examined for rotor angle 
variation between different coherent groups. In Fig. 6 a sim-
plified block diagram of a coherent group is presented. 

 
Figure 6.  Simplified block diagram of a coherent group. 
 

In Fig. 6, Pk is the active power flow from area k to the 
reference area, Kk is the equivalent synchronizing coeffi-
cient linking this active power flow to the angle difference 
between these areas considered as coherent groups. For sim-
plicity other coherent groups are not shown in Fig. 6. 

The system of Fig. 6 gives rise to an electromechanical 
oscillation with frequency calculated as: 

0
int

1
2 2

k
erarea

eq

K
f

ω
π

=
Η

       (11) 

As seen in the above equation, in case of large coherent 
groups (Heq  large), connected with weak or stressed ties (Kk 
has a small value), the electromechanical oscillation fre-
quency is low and the large value of ω0 is compensated, as it 
is divided by the equivalent inertia (Heq) and multiplied with 
Kk.  This contradicts the assumption made in (5) and thus 
the rotor angle between coherent groups can no longer be 
considered as a fast (algebraic) variable.  

Within each coherent group k, all intra-area and local os-
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cillations are still neglected (considered fast and stable) and 
all rotor speeds are considered equal to one frequency ωrk as 
in (6).  

In each coherent area, one generator rotor angle δrk is 
taken as an area reference. This allows the solution for the 
area mismatch ηarea_k. One of the area references, e.g. δr1 is 
taken as zero (system reference angle), while all other area 
reference angles become long-term state variables calculated 
by the differential equation: 

1(rk o rk r )δ ω ω ω= −        (12) 

The mechanical power produced by each generator is still 
a state variable as before. Figure 7 presents a simplified 
block diagram of a system with two coherent areas. 

 
 
Figure 7.  Simplified block diagram with multi-area formulation 
 

Each area k has its own mismatch between mechanical 
and electrical power similarly to (3): 

( )_
k

area k mi ei
i A

P Pη
∈

= −∑           (13) 

Equations (8)-(9) are modified in the case of multi-area 
formulation. Variable η becomes a vector, which includes 
all ηarea_k elements. Equation (10), which defines the Jaco-
bian matrix is also modified by adding one row for each 
area similar to the last row of (10). The only non-zero value 
of vector ek corresponds to the reference generator angle 
(δrk) of every coherent group. 

IV.  REDUCING GENERATOR AND CONTROLLER DYNAMICS 
In this Section we examine the possibilities of further 

model reduction after the local and intra-area modes of elec-
tromechanical oscillations have been eliminated. We pro-
ceed step by step, so in the following subsection the reduc-
tion of generator field and exciter dynamics are considered 
first, while we assume full modeling of speed governors and 
turbines. In the second subsection the reduction of the latter 
models is discussed. 

A.  Reduction of generator excitation dynamics 
As discussed in Section III, in standard QSS modeling, 

generator dynamics are replaced with algebraic equilibrium 
equations. The use of (8) implies that, due to fast, high-gain 
AVR, the generator reaches the steady state of its field dy-
namics in the short-term. Under this assumption the follow-
ing algebraic equation  can be used to eliminate Ef in (8): 

( )f ref tE G V V= −          (14) 
where G is the AVR steady-state gain. 

The AVR model used in this paper includes, as shown in 
Fig. 8, a filter with a time constant Tf, the main exciter with 
a gain G and time constant Te, and a differential feedback 
with a gain Kc and a time constant Tc. The transfer function 
of the AVR is thus: 

( )( )
(1 )

1 (1 )(1 )
f c

f e c

E G T s
V T s T s T s GK s

Δ +
=

Δ + + + + c

          (15) 

where ΔV=Vref-Vt, as shown in Fig. 8. 
 

-

+ - 

+ Ef
Vt

1 e

G
T s+

1
c

c

K s
T s+

1
1 fT s+

Vref 

 
Figure 8.  Automatic Voltage Regulator block diagram 

 
The above AVR model can represent two different types 

of AVR, both of which are considered in the sequel: (i) a 
high gain AVR, for which the feedback loop of Fig.8 is 
open (Kc=0), and (ii) an AVR with transient gain reduction 
(Kc≠0).  
    1)  High Gain AVR 

The calculated eigenvalues of the test system with high 
gain AVRs are shown in Fig.9 for different degrees of gen-
erator and AVR model reduction.  
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Figure 9.  Eigenvalues with high gain AVR and different generator models 

 
The standard QSS analysis (green circle), which assumes 

instantaneous field and excitation dynamics (algebraic rep-
resentation) using (14) above, exhibits a very large error in 
the calculation of the interarea mode eigenvalues comparing 
to benchmark scenario (black cross). More specifically, the 
interarea oscillation mode is estimated by algebraic genera-
tor-exciter model as being well damped, while in fact for the 
benchmark system it is unstable. 

In order to correct this major discrepancy, it is necessary 
to include generator excitation field and some form of AVR 
dynamics to the generator model to achieve a better estimate 
of interarea mode stability. So (8) is modified by substitut-
ing Ef with Eq

’, and Xd with Xd
’. The emf behind transient 
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reactance (Eq
’) is now a slow state variable with dynamics 

given by the following differential equation: 
       (17) ' ' ' ' '( ) ( , ,do q q f d d d qT E E E X X i V Eθ= − + − − ⋅ )

Regarding the high-gain AVR two alternative models are 
considered: full AVR modeling (red triangle), and a reduced 
model (blue star), which neglects the filter time constant. 

As seen in Fig. 9, with the generator field dynamics ex-
plicitly represented the interarea mode damping is much 
better estimated. However, even with the full AVR model, 
there is some error introduced in damping, which is due to 
the elimination of the local oscillation modes. In other 
words, in the considered case, the local modes tend to re-
duce the damping of the interarea mode. 

Considering the reduction of the filter time constant, 
even though its value is very small (0.05 s) it is seen to in-
troduce a small, but substantial error in damping estimation. 
This is a problem to consider when deciding on the desired 
degree of model reduction, as we will see also for other con-
troller components. 
    2)  AVR with Transient Gain Reduction (TGR) 

In this paragraph we examine the system with the four 
generator AVRs having transient gain reduction achieved 
through the differential feedback with the values of Table 
IV of the Appendix. 

As before, two levels of AVR simplification are exam-
ined. The first simplification is to neglect the exciter time 
constant Te. Although this time constant is larger than the 
filter time constant (Tf), its contribution to the closed loop 
transfer function is overrun by the differential feedback giv-
ing rise to a pole far from the frequency range of interest, as 
seen in Table I.  

The second simplification, neglects also the time constant 
of the filter, same as in the high-gain AVR. 

In Figs. 10 and 11 the bode diagrams of the AVR transfer 
function are presented. As seen, in the frequency range of 
interarea oscillations (~3 r/s) there is no significant variation 
on the gain for both simplified models. On the other hand, 
the simplifications introduce an error in the transfer function 
phase, especially when neglecting the filter time constant.  
 

TABLE I :AVR POLES AND ZEROS 
 Full AVR Simplification 1 Simplification 2 
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Figure 10.  Bode diagram for gain of full and simplified AVR models 
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Figure 11.  Bode diagram for phase of full and simplified AVR models 

B.  Speed Governor – Steam Turbine Modeling (SG-ST) 
The block diagram of speed governor and steam turbine 

is shown in Fig. 12.  The steam turbine consists of three 
stages. A part of mechanical power (Fhp) is produced by the 
high pressure turbine with a time constant (Thp); steam is 
reheated (time constant Tr), and a second part of mechanical 
power (Fmp) is produced by the medium pressure steam tur-
bine; the remaining part of mechanical power is produced 
by the low pressure steam turbine with time constant (Tbp). 
The corresponding transfer function is:  

2 ( ( ) ) 1
(1 )(1 )(1 )(1 )

hp r bp hp r bp mp bpm

sm hp r bp

F T T s F T T F T sP
T s T s T s T sω

+ + + +Δ
=

Δ + + + +
      (17) 

This transfer function includes also the speed governor 
time constant (Tsm).  

Again two simplifications are proposed: The first ne-
glects the low pressure time constant (Tbp), which eliminates 
a pole and a zero in the transfer function, which are effec-
tively canceling each other. The second simplification ne-
glects also the speed governor time constant. Poles and ze-
ros of SG-ST of full and simplified representation are 
shown in Table II. 

 

  
 
Figure 12.  Speed governor – steam turbine block diagram 
 

TABLE II  
SG-ST POLES AND ZEROS 

 
 Full SG-ST Simplification 1 Simplification 2 
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In Figs. 13 and 14 the bode diagrams of governor-turbine 
transfer functions are presented. As seen, in the frequency 
range of interarea oscillations (~3 r/s) there is no significant 
variation on the calculated gain. On the other hand, the sec-
ond simplification introduces a major error in the transfer 
function phase. 
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Figure 13.  Bode diagram for gain of full and simplified SG-ST models 
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Figure14.  Bode diagram for phase of full and simplified SG-ST models 
 

In order to examine the effect of this phase error in the 
interarea mode damping, the phasor of mechanical torque at 
the interarea oscillation frequency is calculated and shown 
in Fig.15. As seen in this figure, the first simplification does 
not modify the damping torque introduced at the interarea 
oscillation frequency. However, the second simplification 
introduces extra damping to this mode as the projection on 
the Δω axis shows.  
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Figure 15.  Interarea mode damping and synchronizing torques due to gov-
ernor-turbine. 

V.   PERFORMANCE EVALUATION OF THE REDUCED SYSTEM  
We have already seen that the assumption of coherent 

groups introduces a small error, since the local modes con-
tribute to interarea mode damping. In this section we evalu-
ate the overall performance of a reduced order system for 
which we simplify also the controller representation, as de-
scribed above. The test system eigenvalues assuming AVRs 
with Transient Gain Reduction in all generators and the 
governor turbine model described above are shown in 
Fig. 16.  

The results of the eigenvalue analysis are confirmed by 
the simulation of disturbance of section II, which is pre-
sented in Fig. 17. 
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Fig. 16.  Eigenvalue comparison with AVR and SG-ST simplified models. 
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Figure 17.  Active power flow in the tie-line for different representations. 

 
Τhe benchmark in all cases is the system with 4th order 

generator models with full representation of AVR and gov-
ernor/turbines. As can be observed in Table ΙΙΙ and Fig. 17, 
simplification 2 of the AVR (omission of filter time con-
stant) moves slightly the interarea mode to the right (re-
duced damping), but this difference is very small. On the 
other hand, the omission of the governor time constant is 
moving the interarea eigenvalues to the left (additional 
damping). Thus, damping is overestimated if the governor 
time constant is neglected. The effect of model reduction to 
other eigenvalues is relatively small.  

The frequency of the interarea oscillations is accurately 
estimated in all cases, but there is a small error introduced in 
the estimated damping. However, the overall performance 
of the reduced model is acceptable for system studies. 
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One difficulty encountered is that relatively small time 
constants, such as the voltage measurement filter of the 
AVR, or the governor time constant, have a significant im-
pact on interarea oscillation damping and thus they cannot 
be simplified in all cases. This increases the complexity of 
the overall model, which however is still much simpler, as 
all local and intra-area modes have been eliminated. 

 
TABLE ΙΙΙ 

EIGENVALUES FOR DIFFERENT DEGREES OF CONTROLLER SIMPLIFICATION 
 

 Interarea mode Frequency 
(Hz) Damping (%) 

Benchmark -0.185 ± 3.308i 0.5265 5.6 
AVR simp1-
SGST simp1 -0.221 ± 3.252i 0.5176 6.8 

AVR simp2-
SGST simp1 -0.219 ± 3.263i 0.5193 6.7 

AVR simp1-
SGST simp2 -0.312 ± 3.190i 0.5077 9.8 

AVR simp2-
SGST simp2 -0.310 ± 3.201i 0.5094 9.6 

VI.  CONCLUSIONS 
In this paper QSS modeling was extended to include also 

slow interarea oscillations.  Before this, the performance of 
certain Matlab solvers was investigated and it was seen that 
they can introduce significant error in simulation results. It 
was also seen that for the operating point examined, the 
damping of the interarea mode decreases when more damper 
windings are introduced in the generators model.  

Control devices (AVR and governor-turbines) contribute 
significantly in the interarea mode. Models of control de-
vices and turbines can be simplified but certain small time 
constants (in the order 0.05 to 0.10 seconds) have to be 
maintained to achieve good accuracy in interarea mode 
damping. It was seen that this is due to the transfer function 
phase that affects the damping torque components. 

It was seen also that the local electromechanical modes 
neglected in the QSS modeling can contribute to the damp-
ing of the interarea mode. Thus our simplified modeling of 
interarea modes may provide an overestimation of systems 
damping, which, however, remains within acceptable limits. 

In general, the proposed method, avoids the complexity 
of full system modeling by using the QSS method, while on 
the other hand it represents low frequency electromechani-
cal (interarea) oscillations with acceptable accuracy of fre-
quency and damping. The model can be used to increase the 
accuracy of QSS single frequency simulation in autonomous 
systems with interarea modes, as well as for the design of 
stabilizers for interarea modes in large interconnections, 
without the need to include all local and intra-area modes. 

APPENDIX 
In the Appendix parameters are shown in per unit system 

unless otherwise specified. 
 

TABLE IV 
TEST SYSTEM PARAMETERS 

Snom 
(MW) H Xd Xd’ Xq Xq’ 

900 6.5 1.8 0.305 1.7 0.787 
Td Tq     

Generator 
parameters 

9.3224 0.3256     
AVR G Te (s) Tc (s) Tf (s) Kc  

a. TGR 4 0.4  

b. High 
Gain 

50 0.1 
- 

0.05 
0  

Snom 
(MW) R Tsm 

(s)    Speed 
Governor 

900 0.04 0.1    
Pnom 

(MW) Thp(s) Fhp Tr(s) Fmp Tbp(s) 

850 0.2 0.4 4 0.3 0.3 
Flp      

Steam 
Turbines 

0.3      
 

TABLE V 
TEST SYSTEM OPERATING POINT 

 
Bus num-

ber P (MW) Q (MW) V (p.u.) θ (degrees) 

1 700.0 178.9 1.03 26.8 
2 700.0 220.0 1.01 17.1 
3 700.0 168.8 1.03 0.0 
4 718.5 185.0 1.01 -10.2 
5 0.0 0.0 1.007 20.4 
6 0.0 0.0 0.981 10.3 
7 -967 -100 0.965 2.0 
8 0.0 0.0 0.954 -11.8 
9 -1767 -100 0.976 -25.2 

10 0.0 0.0 0.986 -16.9 
11 0.0 0.0 1.01 -6.6 
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