
Multi-deme Parallel Genetic Algorithm in
Reliability Analysis of Composite Power Systems

Lingfeng Wang and Chanan Singh,Fellow, IEEE

Abstract—Intelligent search based techniques such as genetic
algorithm (GA) have been proposed to deal with reliability
evaluation of complex power systems recently. In this type of
methods, the guided search is carried out on a population
scale trying to find all the dominant failure states, based on
which different reliability indices can be calculated accordingly.
However, the process may be time-consuming when power flow
analysis is involved in deciding the status of a system statein
complex power systems such as composite systems. To speed
up the computing process, parallel implementation of GA is
proposed in this study by using multi-deme based search, where
multiple subpopulations are distributed in different processors.
In this way, simultaneous search is achieved through parallel
implementation. An IEEE reliability test system is used for
simulation studies. It turns out that the proposed parallelmethod
is effective in increasing the computing efficiency of GA when it
is used for reliability evaluation of composite power systems.

Index Terms—Genetic algorithm, parallel computation, re-
liability evaluation, multi-deme parallelization, computational
efficiency, intelligent search, composite power system, hash table.

I. I NTRODUCTION

Due to uncertainties in electric power systems, probabilistic
reliability evaluation is becoming more commonly used [1].
The methods for reliability analysis of electric power systems
can be broadly classified into analytical and computational
methods. The former demands strict mathematical analysis,
which usually circumvents exhaustive enumeration using de-
vices such as state truncation, state merging, and implicit
enumeration in order to improve the evaluation efficiency.
In some way, the latter can be divided into Monte Carlo
simulation (MCS) and Artificial Intelligence (AI) based itera-
tive computations. MCS has turned out to be very effective
in dealing with highly complex power systems through its
random sampling mechanism. It treats the problem as a
series of experiments, and estimates reliability indices by
simulating the actual process using probability distributions
of state residence times. However, MCS may become less
efficient when its convergence criteria are different to fulfill
in certain evaluation scenarios. For instance, when MCS is
used to deal with highly reliable systems, its efficiency may
become low since a large number of system states need to
be sampled and evaluated. Especially, when a time-consuming
flow analysis is needed to determine the status of each sampled
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system state, MCS will be quite time-consuming. To avoid
this difficulty, artificial intelligence based methods suchas
intelligent search has been proposed for reliability evaluation
[2-8], and it has shown to be able to outperform MCS in some
scenarios in terms of solution quality and computing cost. In
this work, we will use a common intelligent search algorithm
termed Genetic Algorithm (GA) [9] for reliability analysisof
composite power systems, which include both generation and
transmission systems.

Parallel implementation of iterative algorithms is an effec-
tive way to increase the computational efficiency [10]. Fromits
mechanism, GA is a typical iterative computation procedure,
thus it is quite suitable for parallel computing. Various parallel
topologies can be used to partition the GA tasks. For instance,
because the evaluation of each individual (system state) is
independent of one another, GA can be parallelized based
on genetic operations. This parallelization scheme has turned
out to be quite effective in reliability evaluation of composite
power systems [7]. In this work, we will use a different paral-
lelization scheme to deal with the problem. Instead of usinga
single population, here multiple sub-populations (multi-deme)
will be distributed into multiple processors for searchingfor
meaningful system states simultaneously. And the genetic
exchange between different sub-populations will be introduced
so as to enhance the search efficiency in each processor.

The remainder of the paper is organized as follows. Loss of
load state identification using DC flow analysis is introduced
in Section II. In Section III, the multi-deme parallel GA is
discussed. Section IV presents the inner working of GA-based
reliability evaluation for composite power systems including
state representation, computing flow, and hash table based state
storage. Simulation results are presented in Section V. Finally,
the paper ends up with the conclusion and future research
directions.

II. L OSS OFLOAD IDENTIFICATION

Loss of Load Probability (LOLP) may be the most com-
monly used reliability index in current power industry practice.
Therefore, this study will focus on the LOLP estimation
using GA-based method. For this purpose, the loss of load
status of system states of interest should be identified. In
this investigation, DC flow analysis is used to identify loss
of load status, which intends to minimize load shedding at
each bus subject to a set of constraints. The result of the
objective function minimization can then be used to determine
if a system state is loss-of-load or not. The problem can be
stated as follows [8]:
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Minimize:
Nb
∑

i=1

Ci (II.1)

Subject to:

B̂θ + G + C = D (II.2)

G ≤ Gmax (II.3)

C ≤ D (II.4)

bÂθ ≤ Fmax
f (II.5)

−bÂθ ≤ Fmax
r (II.6)

G, C ≥ 0 (II.7)

θ unrestricted (II.8)

where
Nb: Number of buses;
Nt: Number of transmission lines;
C: Nb-vector of bus load curtailments;
Ci: i-th element ofC, i.e., unsatisfied demand at busi;
D: Nb-vector of bus demands;
Gmax: Nb-vector of available generation at buses;
Fmax

f : Nt-vector of forward flow capacities of transmission
lines;
Fmax

r : Nt-vector of reverse flow capacities of transmission
lines;
G: Nb-vector of dispatched generation at buses;
θ: Nb-vector of bus voltage angles;
b: Nt×Nt primitive matrix of transmission line susceptances;
Â: Nt × Nb element-node incidence matrix;
B̂: Nb × Nb augmented node susceptance matrix= ÂT bÂ.

If the objective function in the above formulation is zero,
the power system state does not result in loss-of-load. If the
objective function is greater than zero, then the system state
does constitute loss-of-load.

III. M ULTI -DEME PARALLEL GA

Parallel processing is a natural way to handle
computationally-expensive problems. There are several
parallelization topologies which may be used to partition
all the tasks for computation speedup [11]. For example,
master-slave parallelization is based on the partition of genetic
operations. It uses only a single population, where fitness
function evaluation and/or genetic operations are carried
out in a parallel manner. Here, the generation process is
decoupled from the evaluation process in GA. Depending on
different operation strategies, this parallelization scheme can
be implemented in synchronous or asynchronous mode.

On the contrary, the multiple-deme parallelization scheme
used in this study is based on partition of the entire population,
where several subpopulations (demes) are distributed in mul-
tiple processors. There are several migration topologies which
can be used to move (copy) individuals from one deme to
another, such as ring, star, hypercube, 2D/3D mesh, and torus.
Figures 1 shows the parallelization scheme of ringe topology
used in this study. In this parallelization topology, migration

is carried out between two neighboring demes in a certain
direction. It is also possible that there are several variants
for each parallelization topology. For instance, the migration
between demes may be bi-directional.

Deme 1

Deme N Deme 2

Deme 4 Deme 3

Direction of Migration

Fig. 1. Ring topology of multi-deme parallel GA.

The parallel GA based on multi-deme evolution is not only
the parallelization implementation of traditional sequential
GA, it can also be regarded as a new class of GA. This is
because in the parallel GA, speciation is allowed in multiple
populations, which is the process where different populations
evolve towards different optimal solutions. This characteristic
is very promising to increase the evaluation efficiency in our
problem. Here GA can be more appropriately seen as a scanner
instead of a single-solution searcher, since its task is to find
out a set of meaningful states instead of a single optimal or
sub-optimal solution. When it is used for optimization, the
intermediate solutions found in the search process lead to the
final solution. Somehow different from this function, when it is
used as a scanning tool in our problem, all the eligible system
states found during the search contribute to the final solution.
Thus, when GA is parallelized by multiple subpopulations
for the scanning purpose, its search efficiency is expected to
be improved more significantly than that when it is used for
optimization tasks.

Here is a bit concise conceptual comparison between dif-
ferent parallel methods of reliability analysis from the per-
spective of their information communication mechanisms in
the sampling process. In the parallel Monte Carlo Simulation
(MCS), the computing task in each slave processor is indepen-
dently executed and there is no information communication
or exchange between them. This is also true for master-slave
parallel GA. However, in the population partition scheme of
parallel GA (i.e., multi-deme parallel GA), migration opera-
tions are conducted between some computing tasks in multiple
processors in order to improve the evaluation efficiency. This
feature is especially useful for our problem, where GA is
used for scanning the state space. In the following simulation
work, we will be focusing on this parallelization method by
comparing its performance with other topologies.
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IV. M ULTI -DEME GA BASED RELIABILITY EVALUATION

FOR COMPOSITEPOWER SYSTEMS

Intelligent search has shown its promise in dealing with
reliability evaluation of power generation systems [2-8].In
this study, a commonly used intelligent search procedure
termed genetic algorithm will be used for reliability evaluation
of composite power systems, which include both generation
and transmission systems. The composite power systems are
much more complicated since the transmission topologies and
capability should also be considered to determine if loss of
load is caused. To determine the loss of load status of each
system state, a flow calculation is usually needed, which may
demand a significant computing load when the number of
system states under evaluation is large. In this section, we
will show how reliability evaluation can be accomplished using
parallel GA for achieving higher computing efficiency.

A. State Representation

In GA, a population is made up of a set of chromosomes
(i.e., individuals). In this problem, each individual can be
regarded as a system state. Note that the identical generators
connecting to the same bus are put in the same group for
the convenience of computation. For loss-of-load state identi-
fication, a composite power system state can be characterized
by availability statuses of generators and transmission lines.
Thus, the system state is encoded by a set of binary numbers
as follows:

Xi = [Pi1, . . . , Pik, . . . , Pin, TLi1, . . . , TLik, . . . , TLit]
(IV.9)

wherePik is the status of generationk for statei, TLik is the
status of transmission linek for statei, n is the number of
generators, andt is the number of transmission lines. Each bit
takes the value of “1” or “0”: the former indicates an up status
of a generator/line, and the latter represents a down status.

B. Computational Flow

There are three stages inherent in any reliability evalu-
ation methods: state selection, state evaluation, and index
calculation. There is no exception in intelligent search based
reliability evaluation method. However, in this method, the
first two stages are somehow interwoven. GA is used to select
system states with high failure probability (i.e., dominant
failure states) based on its optimization mechanism. In this
process, optimal power flow is carried out to determine the
loss of load status of each selected state, which is needed to
determine the fitness of each state. Those failure states of high
probability will have high chances to be selected in the GA
search process. The state selection is guided by the results
from state evaluation. In this way, both system state selection
and evaluation are needed to find dominant failure states in the
intelligent search process. Thus, the first two stages cannot
be explicitly separated since they interact with one another
throughout the search. All the derived eligible failure states
are saved for the subsequent index calculation, which is the
third stage in reliability evaluation. The data-flow diagram of
this method is shown in Figure 2. The major steps of using this

method for reliability evaluation with regards to the maximum
load level is described in the following.

Initialization

Fitness Evaluation

Probability 

Calculation

Duplicate Checking 

in Hash Table 

Save Meaningful 

States in Hash 

Table

Genetic Operations
( Selection, Crossover, 

Mutation, Migration, 

etc.)

Stopping 

Criteria 

Satisfied?

Stop GA in This 

Processor

No

Yes

Fig. 2. Computational procedure of GA-based reliability evaluation

• Step 1: Create a population of individuals in a random
fashion. The states of generators and lines are initialized
by binary numbers.

• Step 2: Evaluate each individuali based on the defined
objective function (probability of not satisfying load with
respect to the maximum load demandLmax).
The objective function value of statei can be calculated
as follows:

– To reduce the number of load flow calculations, here
the probability of system state is calculated first:

Pi =

gt
∏

j=1

pj (IV.10)

wheregt is the total number of generators and trans-
mission lines. For the generators,pj can take one
of the following two values: ifj-th generator is up,
thenpj = 1− FORj ; Otherwise, thenpj = FORj .
FORj is the forced outage rate (FOR) of generator
j. Likewise, the state of each transmission line can
also be included in the probability calculation based
on its availability. If the state probability is less than
the specified threshold (a small value below which
the corresponding states are neglected), it is assigned
a very small fitness value for reducing its chance of
participating in subsequent GA operations. This is
because it is a small-probability system state which
contributes very trivially to the reliability index no
matter it is a success or failure state.

– Query the hash table to determine if it is an existing
system state. If it is, a small value will be assigned
as its fitness.

– Determine the loss of load status for statei with
respect to the maximum load levelLmax using the
load flow procedure discussed in Section II.
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– If there is no load curtailment for the system state,
the fitness of its corresponding individual is assigned
a very small value in order to reduce its chance to
contribute to the next generation, since it represents
a success state. The probability of the failure statei
can be calculated using (IV.10).

– Calculate the number of equivalent states of the
evaluated failure statei, which can be obtained
through the permutations in each group:

Copyi =

(

G1

O1

)

. . .

(

Gj

Oj

)

. . .

(

Gn

On

)

(IV.11)

where Oj is the number of “ones” in groupj of
lengthGj .

– The fitness of the failure state is defined as

Fiti = Copyi ∗ Pi (IV.12)

This is the objective function to be maximized by
GA, which is the total loss of load probability of the
system state and its equivalents. We can see that its
value is determined by the state of each generator.

– Save information on the failure states as a record in
the hash table with high lookup efficiency, whose
inner working will be detailed in the following
subsection. Besides each generator status, the stored
information includesPi, Fiti, andCopyi, which will
be used in calculating reliability indices.

– Repeat the above procedure for the remaining in-
dividuals until all of them are evaluated. Before
each evaluation, the individual under consideration
will be checked to ensure it is neither identical nor
equivalent to any previously evaluated ones. If it is a
previously evaluated state, its fitness will be assigned
a very small number so as to eliminate it as quickly
as possible in the following optimization operations.

• Step 3: Increase the iteration number by one.
• Step 4: Check if any stopping criterion is met. If it is,

halt the algorithm; otherwise, proceed to the next step.
• Step 5: Different GA operators are applied for producing

the next generation, and then repeat the procedure from
Step 2 to Step 4 until the stopping criterion is met.

• Step 6: Wait until GA execution in each processor has
ended.

• Step 7: Calculate the reliability index LOLP based on the
achieved state array, which is stored in the hash table.

LOLP =
FS
∑

i=1

Copyi ∗ Pi (IV.13)

whereFS is the number of failure states found out by
the GA.

C. Hash Table Based State Storage and Retrieval

In the proposed method, the derived dominant failure states
are stored in a table, whose size keeps becoming larger as
the search goes on. Each time when a new system state is
evaluated, first it is compared with the existing system states
to see if it has been selected and evaluated. In doing so,

usually a linear search is needed to scan the table from the
first record until any possible identical record is located,which
results in the computational complexity ofO(n), wheren is
the number of records in the table. Furthermore, to compare
two system states, some extra calculations are needed. This
kind of linear search is usually not time-efficient when the
table size becomes large. For instance, for a system state
which has never been selected and evaluated, the entire table
needs to be scanned to determine its uniqueness. In this study,
since extensive interactions are involved, a storage tablewith
high lookup efficiency will greatly improve the computing
efficiency. Thus, to speed up the lookup process, hash table
[12, 13] is used to store the dominant failure states found out
by the parallel GA. Hash table boosts the search efficiency to
O(1), which means that the search effort for a specific record
is constant. Namely, the lookup is not or only affected very
trivially by the table size. Hash function is used to map the
keys (system states) to a unique index (usually an integer) in
most situations. Although there are still small chances forthe
occurrence of collisions when two different keys are mapped
to the same index, the hash table provides various mechanisms
to avoid and resolve this kind of undesirable collisions in order
to ensure each key only corresponds to a single record in the
table. The adoption of hash table is a useful way to render
the record search highly immune to the increasing table size
during the system-state search process.

Extensive table operations are needed in the proposed par-
allel implementation since the table should contain all distinct
system states. They are not a one-time query, instead, they are
continuous interactions. Each time before the processor starts
evaluating a system state, it needs to look up the shared table
to ensure that it is not a previously evaluated one. This is so
done that unnecessary load flow analysis can be avoided for
ineligible and duplicate system states.

V. SIMULATION STUDIES

The IEEE Reliability Test System (RTS) [14] was chosen
to test the proposed method. It has 24 buses (10 generation
buses and 17 load buses), 38 lines and 32 units. The system
annual peak load is 2850 MW and the total installed generating
capacity is 3405 MW. Its one-line diagram is shown in Figure
3. The generation data including generator sizes, numbers,
types, and forced outage rate (FOR) are given in Table I.

TABLE I
GENERATING UNIT DATA .

Unit Size (MW) & Number Unit Type Unit FOR
12 (5) Oil 0.02
20 (4) Oil 0.10
50 (6) Hydro 0.01
76 (4) Coal 0.02
100 (3) Oil 0.04
155 (4) Coal 0.04
197 (3) Oil 0.05
350 (1) Coal 0.08
400 (2) Nuclear 0.12
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Fig. 3. One-line diagram of the IEEE Reliability Test System(RTS).

A. Simulation Results

In this section, we will report some simulation results
obtained from a couple of topologies in the multiple-deme
parallelization method. The total execution time for the syn-
chronous parallel programTp includes four segments: parallel
time, serial time, synchronization time, and communication
time [15]. The parallel time is the time period when all the
processors are executing tasks. Serial time refers to the time
used to execute the tasks which cannot be parallelized. The
synchronization time is that used to wait for other processors to
finish the tasks. The communication time is used to exchange
information between processors. Usually the performance of
a parallel program can be measured by speedupSp and
efficiencyηp, which are defined as follows:

Sp = Ts/Tp (V.14)

ηp = Sp/P (V.15)

whereTs is the total time needed to execute its corresponding
serial program, andP is the total number of processors.

A modified GA [3] is used for the simulation studies. The
crossover rate is 0.85, mutation rate is 0.05, migration rate is
0.1, and deme size is 60. The program stops in each processor
when no new failure states can be searched out for ten
consecutive iterations. The parallel program is implemented
in a 64-processor system with distributed-shared-memory.All
memory is physically distributed, which can be accessed
by all processors as a single shared address space. In the
parallel implementation, message passing interface (MPI)[16]
is used as the communication protocol. Here some simulation
results based on multi-deme parallel GA of ring topology,
master/slave parallel GA, and parallel MCS utilizing different
numbers of processors are listed from Table II to IV.

From the simulation results, we can see that the performance
of multi-deme parallel GA is comparable to or better than
other two parallelization topologies in terms of speedupTp

TABLE II
SIMULATION RESULTSUSING 3 PROCESSORS

Multi-deme GA Master/slave GA Parallel MCS
LOLP 0.1471 0.1469 0.1476
Tp(sec) 632.74 723.7 1011.8
Sp 2.23 1.95 1.93
ηp(%) 74.33 65.00 64.33

TABLE III
SIMULATION RESULTSUSING 7 PROCESSORS

Multi-deme GA Master/slave GA Parallel MCS
LOLP 0.1473 0.1472 0.1467
Tp(sec) 235.95 244.15 337.27
Sp 5.98 5.78 5.79
ηp(%) 85.43 82.57 82.71

and efficiencyηp. As the major parallelization involved in
the latter two parallel algorithms is the distribution of state-
evaluation tasks among multiple processors [7], their results
are quite comparable. Furthermore, we find that the multi-
deme GA consumes the least time, and the solution quality is
also somewhat higher since more failure states are found. It
should be noted there is a master processor in the master/slave
GA and MCS methods which does not conduct sampling,
but there is no such a coordinating processor in the multi-
deme GA. This is also one of the reasons why the multi-deme
GA exhibits higher sampling efficiency than the master/slave
topologies.

B. Some Discussions

In this study, the role of GA is somehow different from
that when it is used for function optimization. As a result, the
GA versions of high convergence performance are not suitable
anymore since it may avoid some non-optimal meaningful
states. There is a tradeoff between the number of system states
sought and search time in this state scanning problem. For this
purpose, diversity preservation should be ensured during the
search process in order to find out as many dominant failure
states as possible in an efficient manner. Besides the hash table
that is used to punish the duplicate states, there are at least a
couple of other possible ways for enhancing the state diversity
in the search process.

• Niching and fitness sharing: The selection pressure in
GA may lead to a population made almost entirely of
replicas of the best individuals found so far. As long
as the optimization continues, more mutants of the best
individuals will be created. From the inner working of
niching and fitness sharing [17], the impact of genetic
shift can be reduced or even eliminated since the shared
fitness of the replicas is reduced when their number
increases. In doing so, other individuals with lower raw
fitness or belonging to less populated niches will have
higher chances to compete for selection and reproduction.

• Different objective functions: From the mechanism of
GA, the search is guided by the specified objective
functions. Thus, the change of objective function will
have a direct impact on the search trajectory. Here we
defined the loss of load probability as the objective
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TABLE IV
SIMULATION RESULTSUSING 15 PROCESSORS

Multi-deme GA Master/slave GA Parallel MCS
LOLP 0.1475 0.1475 0.1484
Tp(sec) 117.19 118.09 164.10
Sp 12.04 11.95 11.90
ηp(%) 80.27 79.67 79.33

function attempting to find out the dominant failure states
which contribute most significantly to the system LOLE.
This has turned out to be an effective definition of
objective function in this problem. However, it is possible
that there are alternative ways to define the objective
function. Especially when other reliability indices need to
be calculated, this may not be the only effective objective
function that can be stipulated. For instance, when the
expected unserved energy needs to be computed, in
some processors the objective function may be defined
as the unserved energy of each system state. In doing
so, the system states leading to high unserved energy
of relatively low probability will have higher chances
to be found out by the search algorithm. Furthermore,
bi-objective optimization procedure can also be used to
enhance the diversity of the solutions found out. For
instance, in [8] two objective functions are defined in
terms of loss of load probability and unserved energy of
each system state.

VI. CONCLUSIONS ANDFUTURE WORK

Reliability evaluation for composite power systems may be
time-consuming when the number of system states is large.
since power flow analysis is involved in deciding the status
of each sampled system state. In this work, parallelization
implementation of genetic algorithm based on multiple sub-
populations is used for reliability evaluation to expeditethe
computing process. For each sub-population, the dominant
failure states are sought out by the search algorithm, which
can later be used for estimating the system’s loss of load
probability. Some measures such as hash tagging are taken
for diversity preservation during the search of these states. As
compared with its sequential counterpart, the parallel method
has turned out to be effective in improving the computing
efficiency and solution quality. One future research direction is
to figure out other schemes in order to find out the meaningful
system states in a more efficient fashion, which may involve
using other objective functions. Meanwhile, the exploration of
other parallelization topologies is also worthwhile sinceit may
lead to even higher computational efficiency.
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