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Abstract-- AUTOMATIC generation control (AGC) has been 

used for several years to meet the objective of maintaining the 
system frequency at nominal value and the net tie line power 
interchange from different areas at their scheduled values. One of 
the main components of AGC is Load frequency control (LFC), 
one of the major requirements in providing reliable and quality 
operation in multi-area power systems. In interconnected large 
power systems, variations in frequency can lead to serious large 
scale stability problems.  

A new model derived from [3] with substantial modifications is 
presented in this paper. One principal modification concerns the 
turbines and consists of the creation of aggregate turbine for each 
type of turbine, another important modification is the 
consideration of several types of turbines participating in the 
secondary control, and the final modification is the consideration 
of aggregate generation coefficient in forming the rotor angle 
input of the tie-line model. 
 

Index Terms—AGC, LFC, Power System Control, Frequency 
Control, Tie-Line, Power Exchage 

I.  NOMENCLATURE 

∆P  - vector of node active power increments, 

∆δ  - vector of node voltage angle increments. 

H  - Jacobian of the active power as function of voltage 
angles 

GA∆P , GB∆P  - vector of node active power increments 

corresponding to generator }G{ A  and }G{ B  

GA∆δ , GB∆δ  - vector of node voltage angle increments 

corresponding to generator }G{ A  and }G{ B  

GA1 , GB1  - unit vectors, 

A∆δ , B∆δ  - common generator angle increments of 

subsystems A and B. 
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II.  INTRODUCTION 

UTOMATIC generation control (AGC) has been used for 
several years to meet the objective of maintaining the 

system frequency at nominal value and the net tie line power 
interchange from different areas at their scheduled values. One 
of the main components of AGC is Load frequency control 
(LFC), one of the major requirements in providing reliable and 
quality operation in multi-area power systems. In 
interconnected large power systems,  variations in frequency 
can lead to serious large scale stability problems. Frequency is 
one of the stability criteria for large-scale stability of power 
networks. For stable operation, constant frequency and active 
power balance must be provided. Frequency is depending on 
active power. Any change in active power demand/generation 
at power systems is reflected throughout the system by a 
change in frequency. In interconnected power networks with 
two or more areas, the load frequency control scheme has to be 
with two main control loops. These are primary control and 
secondary control. Primary control is achieved by the turbine 
governing system. In this loop, frequency maintenance at the 
scheduled value cannot be successful. The second control loop 
is used to control active power at the tie line between 
neighboring areas. A new model derived from [3] with 
substantial modifications is presented in this paper. One 
principal modification concerns the turbines and consists of 
the creation of aggregate turbine for each type of turbine, 
another important modification is the consideration of several 
types of turbines participating in the secondary control, and the 
final modification is the consideration of aggregate generation 
coefficient in forming the rotor angle input of the tie-line 
model. The paper is divided into 3 main sections. Section III is 
consecrated to a general description of AGC. Section IV 
describes the aggregate turbine modeling. Section V presents 
the power system model, in which the modified tie-line model 
is presented in details. A few conclusions are given in Section 
VI. 

III.  THE AGC MODEL 

Generally, the load–frequency control is accomplished by 
two different control actions in interconnected two-area power 
systems: (a) the primary speed control, accomplished by 
governors which adjust the turbine valve/gate to bring the 
frequency back to the nominal or scheduled value. and (b) 
supplementary or secondary speed control actions. The 
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primary speed control performs the initial vulgar readjustment 
of the frequency. By its actions, the various generators in the 
control area track a load variation and share it in proportion to 
their capacities. The speed of the response is only limited by 
the natural time lags of the turbine and the system itself. The 
output of each unit at a given system frequency can be varied 
only by changing its load reference, which in effect moves the 
speed-droop characteristic up and down. This control is 
considerably slower and goes into action only when the 
primary speed control has done its job. Response time may be 
of the order of one minute. The speed-governing system is 
used to adjust the frequency. A block diagram of the load-
frequency control is presented in Fig. 1. 

A model of power system AGC includes a classical integral 
secondary controller that sets the turbine reference power of 
each area. Power flows throughout the tie line between areas. 
Control and balance of the power flows at the tie line are 
required for supplementary frequency control. Also, damping 
of oscillations at the tie line is another requirement for 
successful control of frequency and active power generation. 
The easiest way of doing this is with the linear combination of 
the local frequency variation in each area and the tie line 
power variations as the input of each integral controller, which 
is called the area control error (ACE). 
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Fig. 1.  Load–frequency control 

IV.  THE TURBINE MODEL 

A model of power system is created considering the 
phenomena which should be taken into account. Most of the 
times a model is simplified. One of the well-known methods of 
simplification of mathematical models of power systems is the 
aggregation of certain power system elements, which has a 
very slight influence on the accuracy o the model obtained 
[1][6]. In case of turbines the model aggregation process 
depends on generator aggregation, and in particular on the type 
of aggregation used for simplifying the generator mathematical 
model.   

The parameters of an equivalent turbine controller and the 
equivalent turbine for a given group of turbines can be 
obtained by fitting the transfer function frequency 
characteristics of different turbines belonging to a defined 
group to the transfer function frequency characteristic of the 
equivalent turbine. More information about frequency 
characteristic fitting is given by [5][6]. 

Nonlinearities of the turbine and governor models can be 
neglected in case of small disturbances analysis. The transfer 

function of each turbine and governor model are calculated for 
discrete values within the interval of frequency between 0.01 
to 10 Hz. Then the transfer functions of different can be 
connected as it is shown on Fig. 2. The transfer function of the 
aggregated turbine is the sum of all transfer functions of 
coherent turbines of the same type. 
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Fig. 2.  An example of equivalent model of governor-turbine system 

V.  THE POWER SYSTEM MODEL 

The power system model can be replaced by a 1st order 

transfer function ( )(PS sG )[2,3], which represents the 

equivalent model of coherent synchronous generators 
described by their rotor swing equations [4]. These 
assumptions make also possible the derivation of a 
mathematical model of two similar systems, the procedure of 
which is as follows: 

• Elimination of all variables related to load nodes 
except terminal nodes of tie-line transmission lines,  

• Aggregation of variables related to generating units, 
which aggregation should be performed separately for 
each subsystem 

• Determination of terminal voltage angle deviations at 
the ends of each tie-line using the deviations of 
equivalent emf’s of the subsustems. 
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 Fig. 3.  Block diagram of the LFC o f a Power System [2] 
 

The model of power system interconnection will be derived 
based on the well-known incremental equation 

∆δ H∆P =  (1) 

which describes the power system assuming that the node 
voltage modules are constant, and the vectors of which the 
equation are composed are the following:  
∆P  - vector of node active power increments, 



 3

∆δ  - vector of node voltage angle increments. 








∂
∂=
δ
P

H  - Jacobian of the active power as function of 

voltage angles 

A.  The incremental model elimination stage 

Eliminating a few nodes will transforms the network model 
into a new model form composed  of equivalent branches. The 
elimination of load nodes in the incremental model leads to the 
formation of equivalent synchronising active powers given by 
the equation (2). 

The matrix equation (1) of the power system presented in 
Fig. 4a can be written in the following form: 
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Fig. 4.  Different stages of the equivalent power system 
creation  

The most left side of the matrix equation contains symbols 
of nodes, which the different variables of active power and 

voltage angle incremental vector refer to. The vectors GA∆P , 

GB∆P  correspond to the generator }G{ A  and }G{ B  

active power increments, whereas  GA∆δ , GB∆δ  

correspond to their rotor angle increments, respectively. They 
also represent the emf’s angle increments of the different 
generators. 

No active power increments correspond to the load nodes 
a,b of the tie-line terminal nodes. Their increments are equal to 

zero, which is equivalent to say that 0LA =∆P , 0LB =∆P  

and 0ba == P∆P . The variables LA∆δ , LB∆δ  are no 

longer interesting for further analysis and can be eliminated. 
Any amount of variables of any matrix equation can be 

eliminated using the following well-known relationship by 
means of partial matrix inversion. The following matrix 
equation 
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can be transformed into the following form  
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For the particular case, in which 0x =2 , the matrix 

equation (4) can be written as follows: 

( ) 121
1

2212111  yaaaax −−=  (5) 

The matrix 21
1

221211 aaaa −−  is called the partially inverted 

matrix.  The matrices of the columns corresponding to the 

eliminated vector 2y  of the expression given by (2) 

correspond to the column matrices LA∆δ , LB∆δ , 

respectively. After having used the same transformation as for 
(5) in (2) the following form of this matrix equation is 
obtained: 
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(6) 

The square matrix of (6) is divided into the respective 
submatrices considering the necessity of performing a further 
operation, which is the aggregation procedure. 

B.  The aggregation in the incremental model  

Aggregating a group of generating nodes of the admittance 
model is equivalent to connect  those nodes so that an 
equivalent node is obtained [4]. For the incremental power 
system this consists of summing  the adequate synchronising 
active powers, resulting from the above-presented analysis. 

If the coherence condition is fulfilled the angle changes of 
each subsystem are the same (co-rotation of all rotors of the 
same subsystem), which can be expressed as follows: 

GAAGA 1∆δ ∆δ=    and   GBBGB 1∆δ ∆δ=                     (7) 

where GA1 , GB1  are unit vectors, whereas A∆δ , B∆δ  

are the common generator angle increments of subsystems A 
and B. In the admittance model these increments are the emf’s 
angle variations of the equivalent generators. (Fig. 4b, c). 

By definition the equivalent generator active power 
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variation is equal to the sum of the active power changes of all 
generators belonging to the replaced group. This can be 
expressed as follows: 
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Considering (7) and (8) and after performing a few simple 
transformations of (6) the resulting matrix equation is 
expressed as follows: 
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Where all the elements are scalar and are given by the 
following matrix expressions: 

GAAA
T
GAAA 1H1=H   

GBAB
T
GAAB 1H1=H   
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T
GAAa H1=H   
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T
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(11) 

and 

GAaAaA 1H=H   

GBaBaB 1H=H  

GAbAbA 1H=H   

GBbBbB 1H=H  

(12) 

Some of the matrix equation (6) elements are equal to zero 
because not all the nodes of the system shown in Fig. 4a have 
direct connection between one another, therefore: 

0HH == T
BAAB   

0HH == T
bAAb  

0HH == T
aBBa   

(13) 

Having regard to this fact a part of the matrix equation (10) 
are equal to zero. Therefore the matrix equation can be 
rewritten as follows: 
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The matrix equation (14) describes the equivalent network 
shown in Fig. 4c The Jacobian of (14) elements  correspond to 
synchronizing active power between nodes of the equivalent 
network shown in Fig. 4c. 

C.  The tie-line synchronising  power model 

Relationships between tie-line terminal voltage aU , bU  

angle deviations ( a∆δ , b∆δ ) and equivalent emf’s 

AE , BE  angle deviations ( A∆δ , B∆δ ) are interesting for 

further considerations (Fig. 4c). The bottom  row of the matrix 
equation (14) gives the following expression: 
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Then the following expression is derived from a slight 
transformation of (15) 
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where: 

( ) aAaa
1

abbabbaaaa HHHHHH −−+=κ

( ) bBab
1

abbabbaaab HHHHHH −−−=κ

( ) aAab
1

abbabbaaba HHHHHH −−−=κ

( ) bBbb
1

abbabbaabb HHHHHH −−+=κ  

(18) 

The tie-line active power of the system shown in Fig. 4c is 

in function of the angle difference baab δδδ −= . If the 

power losses at both sides of the transmission line are 
neglected the active power at both line ends are the same and 
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is given by the following expression: 
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The tie-line active power variation can then be expressed as 
follows: 
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is the tie-line synchronising power. It is worthwile 
remembering that the expression (21) appears also in the 
matrix expression (2). 

The matrix expression (17) can be expressed as follows: 

BabAaaa ∆δ∆δ∆δ κκ +=  

BbbAbab ∆δ∆δ∆δ κκ +=  
(22) 

then:  

( ) ( ) BabAbaaabaab ∆δ∆δ∆δ∆δ∆δ bbκκκκ −+−=−=  (23) 

Substituting the angle difference ba ∆δ∆δ −  of (20) by the 

equivalent expression (23) gives: 

( ) ( )[ ]BbbabAbaaaabW ∆δ∆δHP κκκκ −+−=∆  (24) 

That means that the tie-line power deviation can be expressed 
by the emf’s angle variations of both power systems. 

 
Considering the primary and secondary control, an 

approximate analysis of load frequency control after a sudden 
load unbalance occurring in one or two systems can be carried 

out. The unbalance is indicated as (s)A
0∆P  or (s)B

0∆P  (Fig. 

5). They are introduced as an additional input to the sum 

blocks )(A

PS
sG  and )(B

PS
sG , representing the power systems 

of areas A and B(Fig. 5).  Block elements marked as 
“TURBINES A” and “TURBINES B” (Fig. 5). are composed 
of different types of turbines as shown in Fig. 2. 
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Fig. 5.  The load-frequency control model for a two-area power system 

VI.  CONCLUSION 

Substantial modifications of the Kundur model [4] allows to 
assess the real contribution of each power system in a new 
power model presented in this paper. One principal 
modification introduced in this paper concerns the turbine 
model - an aggregate turbine for each type of turbine, another 
important modification is the consideration of several types of 
turbines in the AGC model, and the final modification is the 
consideration of aggregate generation coefficient in forming 
the rotor angle input of the tie-line model. The mathematical 
model has shown more details about the procedure to be 
followed for considering the participation of aggregated 
models of turbines and generators on the formation of the 
feedback signal as an input for the tie-line model.  

Test results of a 3-system LFC model obtained from the 
above-presented derivation is presented in Fig. 6. The 
simulated contingency is a sudden unbalance between load and 
generation in the system A (200MW). It could be seen that 
after a few long-period oscillations, frequency and tie-line 
power return to their original level due to the intervention of 
the generators of System A. it can be seen that the deviation of 
power is completely recovered by the generators of this area 
(Generation power A). The main problem in this regulation is 
the amplitude of oscillations during the transient state. This 
could be solved by using special stabilizing devices, the 
analysis of which is presented in [7] in details. 
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Fig. 6. Tests results of the modified AGC power system model 
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