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Abstract—The research of weakness ties in graphs such as

interconnected electrical transmission grids is a ajor concern in
large infrastructures’ studies. Some novel methodobies which
are developed in advanced topics of complex systemisidies and
graph theory may be applied to the electrical grid.Indeed, in
order to identify the potential cuts of large interconnected
networks such as the interconnected European UCTEetwork
first synchronous area, spectral partitioning and ¢her graph
weakness assessment have been studied. The usehef third
eigenvalue is indeed unconventional, but it lead® tuseful results,
allowing a new analysis of the last event which dplthe UCTE
into three autonomous areas. Potentials and limitef this study
are also presented.

Index Terms—Complex Networks, Electrical Infrastructure,
Spectral Partitioning, Interconnected power system.

. INTRODUCTION

The graph partitioning methods allows researcherntd
the weakness arcs on a graph. Consequently, iktidied
graph represents a real network, it becomes pesdibl
evaluate the weak lines linking strong subgraphsoreM
specifically, when this infrastructure is an elaett grid, the
knowledge of those tie lines can be useful in fastiog where
a load cascading may happen in a case of a larigelance
between different network areas. In addition, ibws the
resulting islanded areas to be determined. Thidyspermits,
thanks to the knowledge of the actual network, ezitbome
new lines or some countermeasures that may help
independent sub-networks to successfully resist the
disturbance to be planed. It can also be used dbreging
some degraded operational modes..

The knowledge of a minimal cut for splitting thetwerk is
also useful information for avoiding the propagatiof
disturbances such as the cascading phenomenaislcabe,
this study allows the network to be preventivelyitsimto
different areas and their autonomous operationetglbnned.
This situation is very similar to the previous ormt the
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splitting is planned.

When the graph is a social network, these methoelsised
to determine communities (or well connected grouphgn, it
is possible to characterize every individual ancethiar they
are plainly in a social group or at the border iffedent sub-
groups. Some methods are also often used in coddw some
load balancing for parallel computing or to desigome
telecommunication networks [1].

This paper presents several useful methods of graph

partitioning applied to large networks such as agrogrid.

These splits should help, on the one hand, theatgarto find

operating measures to successfully operate asymohso
networks. On the other hand, they should help thaners to
build essential additional lines to reinforce styathe grid.

The first section describes three different matherah
methods for splitting graphs. The second sectianvstthe test
example (benchmark) on which the developed methaate

applied. This benchmark is the UCTE first synchumarea.
The third section presents the obtained results.fdarth part
shows the results analysis and discussions. A faeation

concludes on the advantages of the methods fostady and
some perspectives.

Il.  GRAPHPARTITIONING

The problem of graph partitioning is considereclassical
in computer science. It consists in finding a beéhpartition
of a graph so that the number of vertices in eachip nearly
the same and the number of links between thesereliff sub-
tBﬁrts (cut-edges) is minimized. This problem iswn to be
NP-complete [1]. Different methods were developeddlve
this problem and three of them were studied and bel
presented in this paper.

A. Spectral Partitioning

The spectral method leads generally to better tesbhhn
heuristic methods that look only for solutions elds an initial
partitioning and thus usually stick to a local minim [1]. This
method, in comparison with others methods, is fast
efficient to cut the graph into two parts. Howevigris not
adapted for splitting graphs in any number (différérom
two). Eigenvalues of different matrices can be usefhcency

e-mail: matrix A, Laplacian matrix L or normal matrix N. &tuse of



those two last matrices is considered more effictkan the
first one and for this study only the method witle Laplacian
matrix was used.

B. Girvan and Newman Algorithm

This algorithm was first described in reference Bfd
improved in [5]. It is based on the hierarchicalistéring.

This method, sometimes called min-cut theorem, waghere are two classes of hierarchical clusteriggi@merative

proposed at the early 1970s and popularized i1 998s [1].

methods and divisive methods. The first ones consis

Consider a graplG composed ofh nodes. Its adjacency applying a merge sequence from tkenodes to lead to the

matrix A is defined as:

if nodes i and j are connectedf; =1

Eqg. 1
else A, =0

Its diagonal matrix is composed of elemengs D

Eqg. 2

with k; the degree of the node i. The Laplacian matrixof3]
the graphL is defined as:
L=D-A Eq. 3

This matrixL has a size ofixnand thereforen eigenvalues

w; with n eigenvectors; associated. Theses eigenvalues hav&raph

the property to be all real and positive:

Oido.n-1w 20 Eq. 4

complete graph. On the contrary, the divisive mashoonsist
in splitting the complete graph té different parts. The result
can be represented with a hierarchical tree or algradn that
shows the subgraphs at each step of the aggloowrati
division according to the method. Agglomerative moels are
traditionally more used because of its fast contmnia
However, a problem of this method is that genereibtated
nodes are merged only at the end of the processsii
methods are not subjected to this phenomenon.

Girvan and Newman algorithm is based on a divisive
method. It is an iterative method which consists@moving
gradually edges with the highest betweenness waitié the
graph is split in different subgraphs. The edgevbehness
represents the part of smallest paths (geodedis)phetween
all the nodes going through this specific edgeafid [5]..

The partitioning algorithm is the following:

1) Compute the betweenness coefficient for all edgfehe

2) Remove the edges with the highest coefficient

3) Repeat 1) and 2) until all edges are deleted

The betweenness coefficient calculation for allesdgt each
step is computational intensive but it appears thiat step is

The smallest eigenvalue is zera,p(= 0) and have as very important to perform a high-quality partitiogi Because

eigenvectory = (1,1, ... , 1)

Under the hypothesis that the graph
connected, this zero eigenvalue is unique; otherwibe
multiplicity of this zero eigenvalue is equal teethumber of

of the need to compute all geodesic paths betweem nodes

is completeBt each loog, this algorithm leads to important computing

time. Indeed, in the worst case, computing the behmess
coefficient needO(In) with | the number of links and the

connected subgraphs. The eigenvalues can be samtednumbers of nodes, so the total algorithm ne@&) or O(r’)

ascending order. The eigenvector associated with fitist
strictly positive eigenvalue, i.e. the smallest 1zeno

on sparse graphs. With currents CPU, this compldeéds to
restrict to graphs below 10 000 nodes.

eigenvalue is;. The partition is made according to the sign of In order to choose the best division of the whalecpss, a

the component of the eigenvalue associated witih eade:
one subgraph with all nodes corresponding to atigesi
component and the other subgraph with all
corresponding to a negative component. If the sikdhe
network is very large, it can be convenient to catepnly the
second eigenvector with some special methods, rfstaince
Lanczos algorithm because the used matrices amsespao
summarize, the partitioning algorithm is the follog:
1) Compute the Laplacian mattixof the graptG

2) Compute pairs W, V), respectively eigenvalues and

eigenvectors of

3) Sort pairs\W; vi) with ascending order faw;

4) Selectv,, the second element vf

5) Determinatdv,, components index of, > 0 andivyp,
component index of, < 0

6) Build G, the subgraph o6 composed with nodeisy,
andG,, the subgraph d& composed with nodesg,,

measure of the partition’s quality so-called modtyds used.
This measure is computed from a symmetrical m&rf size

nodds with k the number of current subgraphs. The eleregrmuf

this matrix is the fraction of all the edges in tiph which
link a node in the subgrapho a node in the subgraphFor
this calculation, all the edges of the initial gnare used, even
those removed during the partitioning.

g; is the fraction of internal edges of the subgraph

ZQi =Tr(E)

Eg. 5

Equation 5is the fraction of internal edges of subgraphs

whereTr(E) is the trace of matrix E.

Eg. 6

8, :Zqi
J

Equation 6 is the fraction of edges connected te th



subgraph. The modularity is then defined with equation 7:  commercial or security reasons. For establishing itodel,
only public available data where used. The hypabese:
— _ 2)_-|- = » only lines with a voltage above 220 kV are consder
- ( —a?)=TrE)-|E y g
Q Z G4 B ” ” Ea. 7 » series resistance, shunt admittance and seriegitapa
when they exists, are ignored. Only series reaetdsc

with |E?|, the sum of the element of the maftfx considered,;

The maximal value o® is 1 and high values of modularity®  series reactance is computed from lines length aith
indicate that more accurate is the partition intdbggaphs, impedance of 0.312/km for the 220 kV lines and 0.28
nevertheless this bound of 1 is never reached (Bhers Q/km for the 380 kV lines (at 50 Hz);
measures of the partition’s quality exist, but thise is the ¢ all breakers are considered in their closed states.
most used. The resulting data are available at the refere@e [

C. Improved Spectral Algorithm
A possible extension of the spectral bi-partitighpresented
in sectionA. was introduced in [6]. The principle is to use not
only the first non-zero eigenvaleéthe Laplacian matrixout
theD first ones and their associated eigenvectors. ;Témrh
node of the graph is represented by a point indinensional
Space. ' o A. Spectral Partitioning

The coordinates of ﬂ."s point correspond t_o them”ts When the network is split into only two parts, f@posed
.Of this nod_e for each elgenva_lue. The assomatfdr_leapomts min-cut follows roughly the east border of Francihwhis
is made with a measure of distance. In referentes[Shown neighbor countries. It begins with the French-Bstgborder,

thatt the _anbglﬂar ti'Sta?ﬁ e,EW|t|h d_the d‘.”“lg'e be%@r? wo continues towards the south to the French-SwissFaadch-
vectors, is better than the Euclidian distance. Istances |10 borders (see Fig. 1).

between each point are computed, they are grouggditer.

Various possibilities are available in order toidefdistance
between two points groups. It can be defined asrimmal
value of the distance set between two points béhgnip each
group 6ingle linkage clustering the maximal valuecomplete
linkage clusteriny or the mean value gfoup average
clustering.

Reference [6] claims that none of these methodsbeas
proved better than the others. Nevertheless, tisé dne has
the drawback to lead to the clustering of distamings, but
linked together through an intermediary’s chains Italled the
chaining property

During the whole process, the modularity, as deffifue the
previous method, is used to measure the partitigmaity and Feeri s - = 2
therefore to choose the best value for the dimerBiand the =~ .. . "%
optimal cut number. 4 INA

IV. RESULTS

The three algorithms presented in section Il we@ied on
the UCTE first synchronous area graph. For thik,tdse
software NetworkX [7], developed in the Los Alanitational
Laboratory, was used and also Matlab for the \azifon.

I1l.  DESCRIPTION OF THEBENCHMARK

The benchmark is a test system corresponding tartagh Fig 1. First cut of the UCTE network usiugeingenvector
the European transmission network. It is, more @sfig, the
first synchronous area of the UCTE (Union for the-C This weakness of the UCTE network is well known and
ordination of Transmission of Electricity). corresponds almost to the interconnection lineswéen
It includes 18 countries: Portugal, Spain, Fra@elgium, France and its East neighbors.
Luxembourg, Germany, Netherlands, Switzerland, yltal A try with the third eigenvalue, i.e. the secona zero, was
Denmark (continental part), Czech Republic, Austriadlso made. Hence, the graph is cut in tree pahs fifst cut is
Slovenia, Poland, Slovakia, Hungary, Croatia apéw of the along the Pyrenees, weakness well-known of the UCTE
Bosnia and Herzegovina. It was established by ZQimng network for its numerous congestions. The secondegins
and Janusz Bialek in [2]. in North at the border between the Netherlands tred
The test system is composed of 1254 nodes, 1944 éind Germany, goes south east to cross Austria, goesughr
378 generators. This model is approximate due te thlungary and Slovenia and finally Croatia. The miscare
unavailability of the exact data. Indeed, electricansmission shown in bold green on Fig. 2.
companies do not publish complete information for



Fig 2. 'Second cut of the UCTE network usin@igenvector

It appears, on this specific case and even if tiETE
network is larger than our benchmark, that thistifan
corresponds to the real cut that happens during\tkaing of
the 4 November 2006 [8] as shown on Fig. 3. Thesgcut
does not appear between France and Spain, mayb dioe
fast and deep response of the Spanish operatorthirdearea
which occurs during the event is not modeled irs ttudy.
The use of this eigenvalue is absolutely unconweeati but it
leads to interesting results.

O Area 1 under-frequency
O Area 2 over-frequency
Hl Area 3 under-frequency

=
Fig 3. Splitting of the UCTE network during th& Movember

2006 eventyww.ucte.orgecredits)

B. Girvan and Newman Algorithm

UCTE Netxwork -- Girvan and Newman Algorithm
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Fig 4. Variation of the modularity

The modularity variation is presented in Fig. 4.
Modularity’s maximum is reached for 21 cuts andviue is
Qmax= 0.8692represented with a vertical line on the figure.

The resulting graph partitioning is depicted on. Big

Fig 5. UCTE network partitioning with the Girvamd
Newman algorithm

C. Improved Spectral Algorithm

The Euclidian distance was tested until 20 eigetovecand
the angular one with only two eigenvectors. Fotheease, all

The algorithm was applied on the UCTE network unti‘he clustering methods previously presented werdiet.

obtaining 182 subgraphs, as shown in figure 4.

Indeed, the modularity is globally decreasing afiout
twenty cuts, it is useless to do the calculatiomsil uhe
complete disintegration of the graph in 1254 orediparts.
Nevertheless, it is useful not to stop at the firgtximum,
because it can happen that this one is only Idadwed by a
second peak which is the global maximum.

In order to better visualize the representationgph’s
nodes projected in the eigenvectors space, the gfldhe
points corresponding to the eigenvectors comportagdeen
made. The Fig. 6 shows the plane with the secayeheector
in abscissa and the third in ordinate.

When only two eigenvectors are considered, theidiaal
distance provides better results than with the Emglistance.
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Fig 6. Projection on the v2/v3 plane Fig 7. Improved spectral partitioning with 14 eigectors and

. . group average clustering for the UCTE network
The table | presents the results for all the stlidiases in

Euclidian distance computation. The bold valuesesgnt the
maximum value for the modularity index.

V. ANALYSIS AND DISCUSSION
There are many limitations to the above study. flfisé one

TABLE | comes from the scale and the border of the netwadeed,

MODULARITY INDEX AND TOTAL AREA NUMBER DEPENDING ONTHE onIy the first synchronous area was studied WHHE teal

FIGERVEL OR BUMBER ARD THE CLUSTERNG ME THOD infrastructure is, in fact, larger. As the problewonsists in

single linkage complete linkage group average o ’ . ’ ger. . p . -
D clustering clustering clustering splitting the graph into parts of equivalent sittes choice of
dimension || modularity zone modularity zone modularity zone .
index | amount | index | amount | index | amount the limits of the network provokes the result.

2 070124 | 135 0,8275 29 0,83064 28 In a regular use of the first method, only thetfiten zero
3 0,69747 116 0,84102 27 0,84909 27 H H i H H
4 07774 T 127 T 0’83875 o 0’54535 5 eigenvalue is computed. For partmonlr_\g in moranth_vvo
5 0,72935 84 0,84409 29 0,84796 41 parts, the method is usually applied again on tigaph in a
6 0,70761 126 0,83841 21 0,84548 44 R : o
> o136 T 26 055075 s 05530 30 recursive way. Thus, finally there_azésub_graphs, witm the
8 069223 | 120 | 0,85205 29 0,84955 44 number of times the method is applied. Indeed, lezgu
190 84512232 17065 8:335% gj 8:3353 g; structures generally split into only two parts atle step. For
11 0.45163 105 | 0.85038 37 0.85805 31 instance a sheet of paper submitted to n forcdivsily tear
12 062103 | 126 | 084621 | 22 | 086244 | 25 in two distinct parts. However, if the number oftsaexpected
13 0,61041 119 0,84509 27 0,86159 26 . . . . .
14 048208 | 121 | 0,84182 28 0.86563 25 to be obtained finally is not known in advancesthiethod
15 045831 96 0,85034 35 0,86192 30 does not allow the number of needed iterative stepbe
16 0,44793 112 0,84871 36 0,85766 23 . L. . . .
20 0.6057 126 0.85788 33 0.86165 31 determined. Moreover, although the partitioningniade in an

optimal way at each step, there is no guaranteethleafinal
Single linkage clustering results are not so goomhmared partitioning is globally optimal.

to the two others methods. The best result withcihmaplete The two other methods, while following the modubari
linkage clustering is obtained with 8 eigenvecttins, resulting index, the amount of independent communities iy Varge.
graph is composed of 29 subgraphs and the modulaiite is There are very few data to validate such resulthel previous
Qumax= 0.85205.Nevertheless, the best result for the improvedisturbance # November 2006) is only considered, the
spectral algorithm was obtained with the group ager targeted number of sub-areas pointed out therfieshod as a
clustering and 14 eigenvectors. There are thenuB§raphs Very promising one. These were only premises ofi siiedies
and Qna= 0.86563. The corresponding partitioning is but contingency analysis researchers should betal@ealuate
illustrated in Fig. 7. In all cases, this methoksults are not more deeply such interesting research path. Theeeeiness
so good compared to those of the Girvan and Newmg&waluation gives result which can be closer to ad|dow
algorithm withQp.x= 0.8692 evaluation in specific test case. More informatimay be

found in [5] about such comparison.



VI. CONCLUSION

system allows obtaining some

information in order to forecast splitting phenormaeof the
network or also to establish some countermeashetscould
avoid larger disturbances or cascading propagation.

Three different methods that originally come froomputer

science and sociology were presented and evalliatéde

context of electrical power systems. These mettsbdsv that
using state of the art algorithms applied to lasgstems such
as power grids may obtain unexpected and promigisigits.

The main limitation of this kind of methods is thhey are

based on purely topological criterion and that they purely

static,

in the sense that dynamic phenomena are

considered. Nevertheless, complex network theoaniactive
research area and other methods can overcoménthtegtion.

(1]

(2]

(3]

(8]
9]

VIl. REFERENCES

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-Hwanga,
Complex networks: Structure and dynamics, Physigonts, vol.424,
no.4-5, pp.175-308, 2006.

Z. Qiong, J.W. Bialek, Approximate model of Europeaterconnected
system as a benchmark system to study effectsoskdyorder trades,
IEEE Transactions on Power Systems, vol.20, nqp2/§2-788, May
2005.

V. Rosato, S. Bologna, F. Tiriticco, Topological operties of
highvoltage electrical transmission networks, HlecPower Systems
Research, vol.77, pp.99-105, 2007.

M. Girvan, M. E. J. Newman, Community structure social and
biological networks, Proceedings of the Nationahdemy of Sciences,
2002.

M. E. J. Newman, M. Girvan, Finding and evaluatiogmmunity
structure in networks, Physical Review E, 2004.

L. Donetti, M. A. Mufioz, Detecting Network Commugeg: a new
systematic and efficient algorithm, J. Stat. Me2®04.

A. Hagberg, D. Schult, P. Swart, NetworkX: Pythooft®are for the
Analysis of Networks, http://networkx.lanl.gov/, Kh@matical
Modeling and Analysis, Los Alamos National Laborgt@005.

UCTE, Final Report — System Disturbance on 4 Noven2®06, Union
for the Co-ordination of Transmission of Electycifanuary 2007.
http://www.see.ed.ac.uk/~jbialek/Europe_load_flow/

VIIl. BIOGRAPHIES

Benoit Rozel (S'06) received his Master in electrical
engineering in 2006 from the Grenoble Institute of
Technology, France. He is currently preparing &Pht the
Grenoble Electrical Engineering laboratory (G2Elabput
the security of critical infrastructures and mospezially
about modeling the interdependencies between them.

Raphael Caire (M'04) received his Dipléme d’Etudes
Approfondies (DEA) and Doctorat de I'INPG degregsnf
the Institut National Polytechnique de GrenobleR® in
2000 and 2004. He had been working in Power Elpittro
field, in USA at the Center of Power Electronic ®&ys
(CPES) in 2000 and within several EDF researchetsnin

associate professor at Grenoble Institute of Teldgyo
(Grenoble-InP) at the Ecole d'ingénieurs en Enefgie et

The study of graph partitioning applied to a large

interconnected useful

not

Germany and in France from 2004 to 2006. He is now

Environnement (ENSE3) in the Grenoble Electrical
Engineering laboratory (G2Elab). His research isteed
on the impacts, production control of dispersedegation
on distribution system, distribution network areltiures
and critical infrastructures.

Nouredine Hadjsaid (SM'05) received his Diplome
d’Etudes Approfondies (DEA) and Doctorat de I'INPG
degrees from the Institut National Polytechnique de
Grenoble (INPG) in 1988 and 1992. From 1988 to 19@3
served as a research and teaching assistant dctble
Nationale Supérieure d’'Ingénieurs Electriciens den@ble
(ENSIEG) and at the Laboratory d’Electrotechnique d
Grenoble (LEG). He is now a full time professor fpssor

at Grenoble InP at the Ecole Nationale Supérieuze d
'Energie, Eau et Environnement (ENSE3) of Grenoble
Institute of Technology and with the Grenoble Hieet
Engineering laboratory (G2Elab). His is also theebtior of

a common research center between EDF, Grenobléutest
of Technology and Schneider Electric (IDEA). Hisearch
interests are power system operation and security.

Jean-Pierre Rognonis a Professor at the "Institut National
Polytechnique de Grenoble (INPG)" and in the Ecole
Centrale de Lyon. He is the former head of the katwire
d'Electrotechnique de Grenoble (LEG). His researateal
with electrical system control and fault detectiamd
isolation.

Carolina Tranchita received her MSc. degree in electrical
engineering from Universidad de los Andes in Col@mb
She received a Doctorat degree in 2008 from thgtuhs
National Polytechnique de Grenoble in France anel th
Universidad de los Andes. She is now a temporanyiter

at Grenoble InP at the Ecole d'Ingénieurs pouretfie,
'Eau et I'Environnement de Grenoble (ENSE3) in the
Grenoble Electrical Engineering laboratory (G2Elalyjer
research interests are modeling and securing alritic
infrastructures and expert systems applicationgpomwer
systems.



