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Abstract—The research of weakness ties in graphs such as 

interconnected electrical transmission grids is a major concern in 
large infrastructures’ studies. Some novel methodologies which 
are developed in advanced topics of complex systems studies and 
graph theory may be applied to the electrical grid. Indeed, in 
order to identify the potential cuts of large interconnected 
networks such as the interconnected European UCTE network 
first synchronous area, spectral partitioning and other graph 
weakness assessment have been studied. The use of the third 
eigenvalue is indeed unconventional, but it leads to useful results, 
allowing a new analysis of the last event which split the UCTE 
into three autonomous areas. Potentials and limits of this study 
are also presented. 
 

  
Index Terms—Complex Networks, Electrical Infrastructure, 

Spectral Partitioning, Interconnected power system. 

I. INTRODUCTION 

The graph partitioning methods allows researchers to find 
the weakness arcs on a graph. Consequently, if the studied 
graph represents a real network, it becomes possible to 
evaluate the weak lines linking strong subgraphs. More 
specifically, when this infrastructure is an electrical grid, the 
knowledge of those tie lines can be useful in forecasting where 
a load cascading may happen in a case of a large unbalance 
between different network areas. In addition, it allows the 
resulting islanded areas to be determined. This study permits, 
thanks to the knowledge of the actual network, either some 
new lines or some countermeasures that may help the 
independent sub-networks to successfully resist to the 
disturbance to be planed. It can also be used for achieving 
some degraded operational modes..  

The knowledge of a minimal cut for splitting the network is 
also useful information for avoiding the propagation of 
disturbances such as the cascading phenomena. In this case, 
this study allows the network to be preventively split into 
different areas and their autonomous operation to be planned. 
This situation is very similar to the previous one, but the 
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splitting is planned. 
When the graph is a social network, these methods are used 

to determine communities (or well connected groups). Then, it 
is possible to characterize every individual and whether they 
are plainly in a social group or at the border of different sub-
groups. Some methods are also often used in order to do some 
load balancing for parallel computing or to design some 
telecommunication networks [1]. 

This paper presents several useful methods of graph 
partitioning applied to large networks such as a power grid. 
These splits should help, on the one hand, the operators to find 
operating measures to successfully operate asynchronous 
networks. On the other hand, they should help the planners to 
build essential additional lines to reinforce smartly the grid. 
The first section describes three different mathematical 
methods for splitting graphs. The second section shows the test 
example (benchmark) on which the developed methods were 
applied. This benchmark is the UCTE first synchronous area. 
The third section presents the obtained results. The fourth part 
shows the results analysis and discussions. A final section 
concludes on the advantages of the methods for our study and 
some perspectives. 

II.  GRAPH PARTITIONING 

The problem of graph partitioning is considered as classical 
in computer science. It consists in finding a balanced partition 
of a graph so that the number of vertices in each part is nearly 
the same and the number of links between these different sub-
parts (cut-edges) is minimized.  This problem is known to be 
NP-complete [1]. Different methods were developed to solve 
this problem and three of them were studied and will be 
presented in this paper.  

A. Spectral Partitioning 

The spectral method leads generally to better results than 
heuristic methods that look only for solutions close to an initial 
partitioning and thus usually stick to a local minimum [1]. This 
method, in comparison with others methods, is fast and 
efficient to cut the graph into two parts. However, it is not 
adapted for splitting graphs in any number (different from 
two). Eigenvalues of different matrices can be used: adjacency 
matrix A, Laplacian matrix L or normal matrix N. The use of 

Complex Network Theory and Graph 
Partitioning: Application to large 

interconnected networks 
B. Rozel, Student Member, IEEE, R. Caire, Member, IEEE,  

N. Hadjsaid, Senior Member, IEEE, J-P. Rognon, C. Tranchita 



 
 

2 

those two last matrices is considered more efficient than the 
first one and for this study only the method with the Laplacian 
matrix was used. 

This method, sometimes called min-cut theorem, was 
proposed at the early 1970s and popularized in the 1990s [1]. 

Consider a graph G composed of n nodes. Its adjacency 
matrix A is defined as: 

 

if nodes i and j are connected 1=ijA  

else 0=ijA  
Eq. 1 

 
Its diagonal matrix is composed of elements Dii: 
 

iii kD =  Eq. 2 

 
with ki the degree of the node i. The Laplacian matrix [3] of 

the graph L is defined as: 
 

ADL −=  Eq. 3 
 
This matrix L has a size of nxn and therefore n eigenvalues 

wi with n eigenvectors vi associated. Theses eigenvalues have 
the property to be all real and positive:  

 

010 ≥−∈∀ iw,n...i  Eq. 4 

 
The smallest eigenvalue is zero (w0 = 0) and have as 

eigenvector v0 = (1, 1, … , 1). 
Under the hypothesis that the graph is completely 

connected, this zero eigenvalue is unique; otherwise, the 
multiplicity of this zero eigenvalue is equal to the number of 
connected subgraphs. The eigenvalues can be sorted in 
ascending order. The eigenvector associated with the first 
strictly positive eigenvalue, i.e. the smallest non-zero 
eigenvalue is v1. The partition is made according to the sign of 
the component of the eigenvalue associated with each node: 
one subgraph with all nodes corresponding to a positive 
component and the other subgraph with all nodes 
corresponding to a negative component. If the size of the 
network is very large, it can be convenient to compute only the 
second eigenvector with some special methods, for instance 
Lanczos algorithm because the used matrices are sparse. To 
summarize, the partitioning algorithm is the following: 

1) Compute the Laplacian matrix L of the graph G 
2) Compute pairs (w; v), respectively eigenvalues and 

eigenvectors of L 
3) Sort pairs (wi; vi) with ascending order for wi 
4) Select v1, the second element of v 
5) Determinate iv1p, components index of v1 > 0 and iv1n, 

component index of v1 < 0 
6) Build Gp, the subgraph of G composed with nodes iv1p 

and Gn, the subgraph of G composed with nodes iv1n 

B. Girvan and Newman Algorithm 

This algorithm was first described in reference [4] and 
improved in [5]. It is based on the hierarchical clustering. 
There are two classes of hierarchical clustering: agglomerative 
methods and divisive methods. The first ones consist in 
applying a merge sequence from the N nodes to lead to the 
complete graph. On the contrary, the divisive methods consist 
in splitting the complete graph to N different parts. The result 
can be represented with a hierarchical tree or dendogram that 
shows the subgraphs at each step of the agglomeration or 
division according to the method. Agglomerative methods are 
traditionally more used because of its fast computation. 
However, a problem of this method is that generally isolated 
nodes are merged only at the end of the process. Divisive 
methods are not subjected to this phenomenon. 

Girvan and Newman algorithm is based on a divisive 
method. It is an iterative method which consists in removing 
gradually edges with the highest betweenness value until the 
graph is split in different subgraphs. The edge betweenness 
represents the part of smallest paths (geodesic paths) between 
all the nodes going through this specific edge [1] and [5].. 

The partitioning algorithm is the following: 
1) Compute the betweenness coefficient for all edges of the 

graph 
2) Remove the edges with the highest coefficient 
3) Repeat 1) and 2) until all edges are deleted 
The betweenness coefficient calculation for all edges at each 

step is computational intensive but it appears that this step is 
very important to perform a high-quality partitioning. Because 
of the need to compute all geodesic paths between the n nodes 
at each loop l, this algorithm leads to important computing 
time. Indeed, in the worst case, computing the betweenness 
coefficient needs O(ln) with l the number of links and n the 
numbers of nodes, so the total algorithm needs O(l2n) or O(n3) 
on sparse graphs. With currents CPU, this complexity leads to 
restrict to graphs below 10 000 nodes. 

In order to choose the best division of the whole process, a 
measure of the partition’s quality so-called modularity is used. 
This measure is computed from a symmetrical matrix E of size 
k, with k the number of current subgraphs. The element eij of 
this matrix is the fraction of all the edges in the graph which 
link a node in the subgraph i to a node in the subgraph j. For 
this calculation, all the edges of the initial graph are used, even 
those removed during the partitioning. 

eii is the fraction of internal edges of the subgraph i. 
 

∑ =
i

ii ETre )(  Eq. 5 

 
Equation 5 is the fraction of internal edges of subgraphs 

where Tr(E) is the trace of matrix E. 
 

∑=
j

ijj ea  Eq. 6 

Equation 6 is the fraction of edges connected to the 
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subgraph i. The modularity is then defined with equation 7: 
 

( ) 22 )( EETraeQ
i

iii −=−=∑  Eq. 7 

 
with ||E2||, the sum of the element of the matrix E2. 
The maximal value of Q is 1 and high values of modularity 

indicate that more accurate is the partition into subgraphs, 
nevertheless this bound of 1 is never reached [5]. Others 
measures of the partition’s quality exist, but this one is the 
most used. 

C. Improved Spectral Algorithm 

A possible extension of the spectral bi-partitioning presented 
in section A. was introduced in [6]. The principle is to use not 
only the first non-zero eigenvalue of the Laplacian matrix, but 
the D first ones and their associated eigenvectors. Then, each 
node of the graph is represented by a point in a D-dimensional 
space.  

The coordinates of this point correspond to the components 
of this node for each eigenvalue. The association of the points 
is made with a measure of distance. In reference [6] is shown 
that the angular distance, with the angle between the two 
vectors, is better than the Euclidian distance. When distances 
between each point are computed, they are grouped together.  

Various possibilities are available in order to define distance 
between two points groups. It can be defined as the minimal 
value of the distance set between two points belonging to each 
group (single linkage clustering), the maximal value (complete 
linkage clustering) or the mean value (group average 
clustering).  

Reference [6] claims that none of these methods has been 
proved better than the others. Nevertheless, the first one has 
the drawback to lead to the clustering of distant points, but 
linked together through an intermediary’s chain. It is called the 
chaining property.  

During the whole process, the modularity, as defined for the 
previous method, is used to measure the partition’s quality and 
therefore to choose the best value for the dimension D and the 
optimal cut number. 

III.  DESCRIPTION OF THE BENCHMARK 

The benchmark is a test system corresponding to a part of 
the European transmission network. It is, more especially, the 
first synchronous area of the UCTE (Union for the Co-
ordination of Transmission of Electricity).  

It includes 18 countries: Portugal, Spain, France, Belgium, 
Luxembourg, Germany, Netherlands, Switzerland, Italy, 
Denmark (continental part), Czech Republic, Austria, 
Slovenia, Poland, Slovakia, Hungary, Croatia and a part of the 
Bosnia and Herzegovina. It was established by Zhou Qiong 
and Janusz Bialek in [2].  

The test system is composed of 1254 nodes, 1944 lines and 
378 generators. This model is approximate due to the 
unavailability of the exact data. Indeed, electrical transmission 
companies do not publish complete information for 

commercial or security reasons. For establishing this model, 
only public available data where used. The hypotheses are: 
• only lines with a voltage above 220 kV are considered; 
• series resistance, shunt admittance and series capacitors, 

when they exists, are ignored. Only series reactance is 
considered; 

• series reactance is computed from lines length with an 
impedance of 0.31 Ω/km for the 220 kV lines and 0.28 
Ω/km for the 380 kV lines (at 50 Hz); 

• all breakers are considered in their closed states. 
The resulting data are available at the reference [9]. 

IV.  RESULTS 

The three algorithms presented in section II were applied on 
the UCTE first synchronous area graph. For this task, the 
software NetworkX [7], developed in the Los Alamos National 
Laboratory, was used and also Matlab for the verification.  

A. Spectral Partitioning 

When the network is split into only two parts, the proposed 
min-cut follows roughly the east border of France with his 
neighbor countries. It begins with the French-Belgian border, 
continues towards the south to the French-Swiss and French-
Italian borders (see Fig. 1). 

 

 
Fig 1.  First cut of the UCTE network using v1 eingenvector 

 
This weakness of the UCTE network is well known and 

corresponds almost to the interconnection lines between 
France and its East neighbors.  

A try with the third eigenvalue, i.e. the second non zero, was 
also made. Hence, the graph is cut in tree parts. The first cut is 
along the Pyrenees, weakness well-known of the UCTE 
network for its numerous congestions. The second cut begins 
in North at the border between the Netherlands and the 
Germany, goes south east to cross Austria, goes through 
Hungary and Slovenia and finally Croatia. The min-cuts are 
shown in bold green on Fig. 2.  
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Fig 2.  Second cut of the UCTE network using v2 eigenvector 

 
It appears, on this specific case and even if the UCTE 

network is larger than our benchmark, that this partition 
corresponds to the real cut that happens during the evening of 
the 4 November 2006 [8] as shown on Fig. 3. The second cut 
does not appear between France and Spain, maybe due to the 
fast and deep response of the Spanish operator. The third area 
which occurs during the event is not modeled in this study. 
The use of this eigenvalue is absolutely unconventional, but it 
leads to interesting results. 

 

B. Girvan and Newman Algorithm 

The algorithm was applied on the UCTE network until 
obtaining 182 subgraphs, as shown in figure 4.  

Indeed, the modularity is globally decreasing after about 
twenty cuts, it is useless to do the calculations until the 
complete disintegration of the graph in 1254 one-sized parts. 
Nevertheless, it is useful not to stop at the first maximum, 
because it can happen that this one is only local, followed by a 
second peak which is the global maximum. 
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Fig 4.  Variation of the modularity 

 
The modularity variation is presented in Fig. 4. 

Modularity’s maximum is reached for 21 cuts and its value is 
Qmax = 0.8692 represented with a vertical line on the figure. 

The resulting graph partitioning is depicted on Fig. 5. 
 

 
Fig 5.  UCTE network partitioning with the Girvan and 
Newman algorithm 

 

C. Improved Spectral Algorithm 

The Euclidian distance was tested until 20 eigenvectors and 
the angular one with only two eigenvectors. For each case, all 
the clustering methods previously presented were studied. 

In order to better visualize the representation of graph’s 
nodes projected in the eigenvectors space, the plot of the 
points corresponding to the eigenvectors components has been 
made. The Fig. 6 shows the plane with the second eigenvector 
in abscissa and the third in ordinate. 

When only two eigenvectors are considered, the Euclidian 
distance provides better results than with the angular distance. 

 

 
Fig 3.  Splitting of the UCTE network during the 4th November 
2006 event (www.ucte.org credits) 
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Fig 6.  Projection on the v2/v3 plane 

 
The table I presents the results for all the studied cases in 

Euclidian distance computation. The bold values represent the 
maximum value for the modularity index. 

 
TABLE I 

MODULARITY INDEX AND TOTAL AREA NUMBER DEPENDING ON THE 

EIGENVECTOR NUMBER AND THE CLUSTERING METHOD 

modularity 
index

zone 
amount

modularity 
index

zone 
amount

modularity 
index

zone 
amount

2 0,70124 135 0,8275 29 0,83064 28
3 0,69747 116 0,84102 27 0,84909 27
4 0,71774 127 0,83879 31 0,84538 28
5 0,72935 84 0,84409 29 0,84796 41
6 0,70761 126 0,83841 21 0,84548 44
7 0,68136 126 0,85075 29 0,85702 39
8 0,69223 120 0,85205 29 0,84955 44
9 0,56685 105 0,84821 36 0,84926 31
10 0,46805 76 0,85087 24 0,85737 23
11 0,45163 105 0,85038 37 0,85805 31
12 0,62103 126 0,84621 22 0,86244 25
13 0,61041 119 0,84509 27 0,86159 26
14 0,48208 121 0,84182 28 0,86563 25
15 0,45831 96 0,85034 35 0,86192 30
16 0,44793 112 0,84871 36 0,85766 23
20 0,6057 126 0,85788 33 0,86165 31

single linkage 
clustering

complete linkage 
clustering

group average 
clusteringD 

dimension

 
 
Single linkage clustering results are not so good compared 

to the two others methods. The best result with the complete 
linkage clustering is obtained with 8 eigenvectors, the resulting 
graph is composed of 29 subgraphs and the modularity value is 
Qmax = 0.85205. Nevertheless, the best result for the improved 
spectral algorithm was obtained with the group average 
clustering and 14 eigenvectors. There are then 25 subgraphs 
and Qmax = 0.86563. The corresponding partitioning is 
illustrated in Fig. 7. In all cases, this method’s results are not 
so good compared to those of the Girvan and Newman 
algorithm with Qmax = 0.8692. 

 

 
Fig 7.  Improved spectral partitioning with 14 eigenvectors and 
group average clustering for the UCTE network 

V. ANALYSIS AND DISCUSSION 

There are many limitations to the above study. The first one 
comes from the scale and the border of the network. Indeed, 
only the first synchronous area was studied while the real 
infrastructure is, in fact, larger. As the problem consists in 
splitting the graph into parts of equivalent size, the choice of 
the limits of the network provokes the result. 

In a regular use of the first method, only the first non zero 
eigenvalue is computed. For partitioning in more than two 
parts, the method is usually applied again on the subgraph in a 
recursive way. Thus, finally there are 2n subgraphs, with n the 
number of times the method is applied. Indeed, regular 
structures generally split into only two parts at each step. For 
instance a sheet of paper submitted to n forces will firstly tear 
in two distinct parts. However, if the number of parts expected 
to be obtained finally is not known in advance, this method 
does not allow the number of needed iterative steps to be 
determined. Moreover, although the partitioning is made in an 
optimal way at each step, there is no guarantee that the final 
partitioning is globally optimal. 

The two other methods, while following the modularity 
index, the amount of independent communities is very large. 
There are very few data to validate such results. If the previous 
disturbance (4th November 2006) is only considered, the 
targeted number of sub-areas pointed out the first method as a 
very promising one. These were only premises of such studies 
but contingency analysis researchers should be able to evaluate 
more deeply such interesting research path. The betweenness 
evaluation gives result which can be closer to a load flow 
evaluation in specific test case. More information may be 
found in [5] about such comparison. 
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VI.  CONCLUSION 

The study of graph partitioning applied to a large 
interconnected system allows obtaining some useful 
information in order to forecast splitting phenomena of the 
network or also to establish some countermeasures that could 
avoid larger disturbances or cascading propagation. 

Three different methods that originally come from computer 
science and sociology were presented and evaluated in the 
context of electrical power systems. These methods show that 
using state of the art algorithms applied to large systems such 
as power grids may obtain unexpected and promising results.  

The main limitation of this kind of methods is that they are 
based on purely topological criterion and that they are purely 
static, in the sense that dynamic phenomena are not 
considered. Nevertheless, complex network theory is an active 
research area and other methods can overcome this limitation. 
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