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Discrete Solutions of Electric Power Systems Based
on a Differentiation Matrix and a Newton Method

Norberto Garcia, Member IEEE

Abstract—A time-domain approach based on a discrete rep-
resentation of the differentiation operation is presented in this
paper to compute periodic steady-state solutions of electric power
systems. The finite-dimensional representation of the derivative
operator reproduces the exact derivative of a trigonometric poly-
nomial. The time-domain representation of the electric network
in terms of ordinary differential equations is transformed into
a nonlinear algebraic formulation and solved using a Newton
algorithm, where the unknowns of the algebraic equations are
the samples of the state variables. Besides, the incorporation of
sparse techniques improves the efficiency of the discrette-time
solution in terms of storage and computational effort. Test cases
incorporating nonlinear devices such as transformers, electric
arc furnaces and STATCOMs are presented to illustrate the
effectiveness of this method. Comparative results are reported
using the well-known finite-difference method.

Index Terms—Periodic solution, Newton method, differentia-
tion matrix, finite-difference method, sparse techniques.

I. INTRODUCTION

LOOKING for solutions to nonlinear problems in the
power systems field is an important and permanent pur-

suit. Althought Brute Force (BF) methods [1] can be used to
obtain the periodic steady-state of an electric circuit through
straightforward integration of ordinary differential equations
(ODEs) till the initial transient response dies-out, this method
has been questioned because of potential drawbacks such as
slow convergence due to poor system damping [2], harmonics
[3] and other characteristics of the system [4]. Therefore,
shooting methods [5], extrapolation methods [6] and Newton
methods based on the Poincaré map [7] have been proposed for
the fast time domain computation of the periodic steady-state
solution of nonlinear networks.

In addition, a variety of methods have been developed to
determine the steady-state response of nonlinear systems by
approximating the derivative operator. A discrete-time method
to compute the steady-state of nonlinear autonomous systems
is presented in [8], which is based on a Gear method and a
polynomial fitting procedure. An extension of this method has
been proposed in [9] to determine the steady-state response
of switched nonlinear circuits. Besides, a discrete-time rep-
resentation of the derivative has been introduced in [10] to
locate limit cycles of non-autonomous systems. However, no
analyses associated to important aspects such as convergence
properties, storage requirements and computational effort have
been provided for this method in the latter contribution.
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Continuing on these developments, the aim of this paper is
to present a Discrete-Time Solution (DTS) method to obtain
numerical approximations to the steady-state of electric power
networks based on the use of a differentiation matrix and a
Newton method. A direct method for solving sparse systems of
equations is incorporated to the Newton-Raphson (NR) method
in order to improve the efficiency of the DTS approach in terms
of time and storage. Results obtained with the DTS method
are compared with the well-known finite-difference method.

II. DISCRETE-TIME SOLUTION

Considering a trigonometric polynomial of degree r

p (t) = a0 +
r∑

q=1

aq cos (qt) +
r∑

q=1

bq sin (qt) (1)

which includes N = 2r + 1 coefficients, the computation of
these coefficients for a set of N data points defined as x (tj)
can be perform with a Lagrange formulation for polynomial
interpolation,

p (t) =
N∑

j=1

x (tj)
N∏

m=1,m !=j

sin 1
2 (t − tm)

sin 1
2 (tj − tm)

(2)

Assuming that the trigonometric polynomial p (t) is periodic
with period 2π, then it can be evaluated at the discrete points
−π < t1 < t2 < · · · < tN ≤ π. The differentiation matrix for
the trigonometric polynomial (2) can be obtained as,

ṗ (ti) =
N∑

j=1

Dijx (tj) (3)

for i = 1, 2, · · · , N . It has been demonstrated in [10] that
the differentiation matrix D with dimensions N × N has the
entries,

Dij =






N
1
2

∑
cot ti−tm

2 , i = j, i $= m
m=1

1
2 q̇ (ti) csc ti−tj

2 , i $= j

(4)

where

q (t) =
N∏

m=1

sin 1
2 (t − tm)

sin 1
2 (tj − tm)

(5)

Given a set of equally spaced discrete-time samples ti =
−π + 2πi

N , the entries of matrix D are defined as,
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Dij =

{
0, i = j
1
2

(−1)i+j

sin π
N (i−j) , i $= j

(6)

A. Newton-Raphson method
Considering a system of dimension n defined as,

ẋ = f(x, t), (7)

which has periodic properties

f(x, t) = f(x, t + T ) (8)

with x = [x1 x2 . . . xn]T and f = [f 1 f2 . . . fn]T . Let x̃ be
a column vector of unknowns x̃ = [x̃1 x̃2 . . . x̃n]T of order
nN , where x̃1 x̃2 . . . x̃n are vectors of dimension N containing
a sequence of points that represent the samples of the state
variables. The sequence of points are equidistant and located at
time instants tN = [h, 2h, · · · Nh], where h = T

N is the time
step and N is an odd integer. Hence, (7) can be transformed
into a set of nonlinear algebraic equations using (6) as follows,





D 0 · · · 0
0 D · · · 0
...

...
. . .

...
0 0 · · · D









x̃1

x̃2
...

x̃n




=





f̃1 (x̃, tN )
f̃2 (x̃, tN )

...
f̃n (x̃, tN )




(9)

or in compact form,

Hx̃ = f̃ (10)

where f̃ =
[
f̃1 f̃2 . . . f̃n

]T
and f̃1 f̃2 . . . f̃n are column vectors

of dimension N, which are obtained by evaluating the functions
f1 f2 . . . fn at the discrete points x̃. This system represents a
set of nN nonlinear equations with nN unknowns.

Substracting the left-hand side of (10) on both sides, then
the resulting system

G [x̃] = 0 (11)

can be solved using a Newton-Raphson (NR) algorithm. The
computation of the Jacobian matrix by blocks for the nonlinear
problem (11) can be defined with the notation,

Jm =





J11 J12 · · · J1n

J21 J22 · · · J2n
...

...
. . .

...
Jn1 Jn2 · · · Jnn




(12)

where each entry is a N × N matrix described as,

Jkl =





−diag

(
∂fk
∂x̃l

)
+ D for k = l

−diag
(

∂fk
∂x̃l

)
for k $= l

(13)

for k = 1 . . . n and l = 1 . . . n.
The term %x̃ involved in the Newton-Raphson method is

represented as,

%x̃m = −Hx̃m + f̃m (14)

and the Newton procedure applied to (11) has the form,
[
x̃m+1

]
= [x̃m] + [Jm ]−1 [%x̃m] (15)

where m represents the number of Newton’s iterations for m =
0, 1, 2, . . .. The initial guess for the Newton method x̃0 =
[x̃1 x̃2 . . . x̃n]T is determined after solving (7) for an initial
number of cycles with a conventional integration method.

B. Sparse technique
The Newton-Raphson method implemented in this work

for the DTS approach produces a sparse matrix equation.
The application of a direct method for sparse systems to the
solution of the set of nonlinear algebraic equations provides
an efficient procedure in both storage and time. Taking into
account that the term nN may be several hundred for the
Jacobian matrix of size nN×nN , the incorporation of sparsity
techniques is crucial for the feasibility of the DTS method for
solving practical high-dimensional systems. Therefore, a basic
sparse matrix storage routine is implemented in this work,
where the sparse matrix is stored as a concatenation of the
sparse vectors representing its columns. An integer array of
row indices and a floating point array of nonzero elements are
defined for each sparse vector. Furthermore, a third array saves
the index of the leading element for each one of the sparse
vectors [11]. For the nonlinear formulation J∆x̃ ′ = ∆x̃, the
vector ∆x̃ is not sparse but the Jacobian matrix J is normally
highly sparse. Due to the fact that the jacobian J is square, a
LU decomposition and a forward-backward substitution with
∆x̃ are implemented.

III. TEST CASES

Three test cases are presented in this section to show the
applicability of the DTS method, where the tolerance error to
locate the steady-state is set to 1.0e−10. The elapsed times are
measured in a computer at 1.67 GHz and 1GB RAM memory.
Furthermore, results obtained with the well-known finite-
difference method (FD) are compared with those obtained with
the DTS method. The FD method iterates a sequence of points
{x1, . . . , xN} until xk ≈ φh (xk−1, tk−1) for k = 1, . . . , N
[1]. In this work, the FD method is implemented with a
Trapezoidal rule algorithm and the resulting set of nonlinear
algebraic equations are solved with a Newton method.

A. Electric arc furnace
An electric arc furnace is fed with a 1.0 pu voltage source

through a step-down transformer represented with an induc-
tance of 0.52 pu. The model of the electric arc furnace used
in this work is a general dynamic model in the form of a
differential equation based on the principle of conservation of
energy [12]. The differential equation for the arc is defined as,

K1r
n1 + K2r

dr

dt
=

K3

rm1+2
i2 (16)

The arc voltage is given by,

v =
K3

rm1+2
i (17)



3TABLE I
MISMATCHES DURING CONVERGENCE OF THE ELECTRIC ARC FURNACE.

m DTS method
63 127 255

1 1.868e-02 6.820e-02 2.757e-02
2 2.075e-02 2.813e-03 9.046e-04
3 2.950e-03 1.869e-05 7.096e-06
4 8.208e-06 1.764e-10 1.504e-10
5 8.158e-11 4.829e-15 4.329e-15

FD method
1 1.318e-01 3.242e-02 2.840e-02
2 2.910e-02 5.284e-03 2.708e-04
3 2.074e-03 4.354e-05 7.062e-07
4 7.620e-06 2.039e-08 9.130e-13
5 3.926e-10 6.661e-16
6 5.551e-16

TABLE II
MISMATCHES DURING CONVERGENCE OF THE POWER NETWORK.

m DTS method
7 15 31 63

1 4.330e-01 5.508e-01 5.466e-01 7.264e-01
2 5.391e-04 2.904e-04 2.094e-04 1.940e-04
3 6.180e-07 2.129e-07 4.959e-08 5.393e-08
4 1.369e-12 6.131e-14 1.221e-14 5.828e-15

FD method
1 4.367e-01 5.858e-01 5.574e-01 7.274e-01
2 2.425e-02 3.800e-03 1.300e-03 3.518e-04
3 1.640e-03 1.352e-05 1.046e-06 1.224e-07
4 7.932e-06 2.878e-10 1.054e-12 2.415e-14
5 1.998e-10 3.206e-15
6 4.041e-14

where the constants K1, K2, K3, n1 and m1 define the
operating point of the electric arc furnace. The parameters used
in this test case are reported in the Appendix.

Table I summarizes the number of Newton-Raphson itera-
tions (m) required to achieve the periodic steady-state. It can
be observed that the DTS method needed 5 iterations, whilst
the FD method required 6, 5 and 4 iterations. The elapsed times
needed by the DTS and FD method are {0.18, 0.62, 2.48}
and {0.52, 0.88, 1.57} seconds, respectively, for a number of
samples {63, 127, 255}. Fig. 1 shows the steady-state solution
of the arc voltage obtained with the DTS method and N=127.

B. Single-phase electric network
A single-phase electric power network containing a trans-

mission line system and a transformer at its receiving-end ter-
minal is presented in this section. Considering the differential
length of a single-phase transmission line, with per unit length
electric parameters r, l, g and c distributed perfectly along the
line, then the expressions for the voltages and currents at any
point of the line are [13],

∂v

∂χ
= ri + l

∂i

∂t
(18)

∂i

∂χ
= gv + c

∂v

∂t
(19)

The partial derivatives equations (PDEs) can be transformed
into a set of ODEs by discretizing the line with respect to the
distance χ. The equivalent lumped parameter circuit for the
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Fig. 1. Discrete-time solution for the arc voltage.

j-th section of the transmission line is defined by the set of
ODEs,

i̇j = (vj − Rij − vj+1) /L (20)

v̇j+1 = (ij − Gvj+1 − ij+1) /C (21)

where the data for the lumped parameters are listed in the
Appendix.

On the other hand, the equivalent circuit for the unloaded
single-phase transformer is described as,

i̇p = (vj+1 − (Rp + Rc) ip + Rcim) /Lp

λ̇m = Rc (ip − im)
(22)

where Rp and Lp are the resistance and inductance of the pri-
mary side of the transformer and Rc represents the core losses.
The saturation characteristic of the single-phase transformer is
represented by means of a polynomial defined as,

im = 0.001λm + 0.0006λ19
m pu (23)

Table II shows the number of iterations of the NR method
and the maximum mismatches during convergence for a
transmission system with 63 sections and a transformer at
its receiving-end terminal. Four iterations of the NR method
are needed using the DTS method, whilst the FD method
required 6, 5 and 4 iterations with a number of samples N =
{7, 15, 31, 63}. The NR method shows quadratic convergence
for the DTS method, while the convergence of the FD method
degradates with N < 31.

Fig. 2(a) shows the time domain solution of the volt-
age at the receiving-end terminal of the transmission line.
It can be observed that the sending-end voltage is free
of distortion, whilst the receiving-end voltage is distorted
due to the operation of the transformer at its nonlinear re-
gion. Furthermore, the densities of the Jacobian matrix using
N={7,15,31,63} are DDTS = {0.010, 0.0088, 0.0083, 0.0081}
and DFD = {0.0066, 0.0031, 0.0015, 0.00074} for the DTS
and FD method, respectively. Figure 2(b) summarizes the
elapsed times needed by the DTS and FD methods with and
without using sparsity techniques. It can be appreciated that
speedup factors of nearly 30 and 85 are achieved with the DTS
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Fig. 2. Discrete solution for a).- the receiving-end voltage and b). - elapsed
times to calculate the steady-state solution.

and FD methods including sparsity techniques and N = 63.
Meanwhile, speedup gains of 7 and 3 are measured with
N = 7 for the DTS and FD methods, respectively. Therefore,
the DTS method is faster than the FD method for N < 31
with and without sparsity techniques.

C. Three-phase STATCOM

A simple three-phase system including an equivalent trans-
mission line and a synchronous, three-phase, STATic COM-
pensator (STATCOM) is presented in this section. The STAT-
COM model comprises the Voltage Source Converter (VSC)
based on a square-wave switching scheme and the coupling
transformer, which is modelled as a linear impedance (see
Fig. 3). The objective of the STATCOM is to either supply
or absorb active power to maintain constant the DC capacitor
voltage and exchange reactive power with the point of common
coupling (PCC). The STATCOM control system (not shown)
maintains the DC capacitor voltage at 2.0 pu and the voltage
at the point PCC at 1.0 pu.

The VSC used in the STATCOM model is a three-phase six-
pulse bridge. Neglecting losses in the semiconductor switches,
the VSC model can be represented with the following voltage
and current relationships [12] ,

PCC

SHUNT                          STATCOM                                       LOAD
CAPACITOR                             

LR

VSC shunt

Fig. 3. Block diagram of STATCOM.




eab

ebc

eca



 =




sa

sb

sc



 vdc (24)

and

idc =
[

ia ib ic
]




sa

sb

sc



 (25)

where
sa, sb, sc switching functions that govern the VSC
eab, ebc, eca line voltages on the secondary side of the

transformer
ia, ib, ic AC currents of the VSC
vDC DC capacitor voltage
The ordinary differential equation of the DC capacitor is,

dvdc

dt
=

1
C

idc (26)

where C is the capacitance associated to the DC side.
Table III summarizes the total number of NR iterations

needed to compute the steady-state solution. It can be appre-
ciated that only two iterations are needed by the DTS and
FD method using a set of samples {33, 69, 123, 189}. Figs.
4(a) show the discrete-time solution obtained with N=69 for
the current through the STATCOM coupling transformer. As
expected, the AC currents are highly distorted due to the VSC
switching pattern. On the other hand, Fig. 4(b) summarizes the
elapsed times needed to calculate the steady-state solution for
the DTS and FD methods using the sparse matrix techniques. It
can be appreciated that the DTS approach is faster than the FD
method for N<63 with and without using sparse techniques.

IV. CONCLUSIONS

A discrete-time domain method based on a finite dimen-
sional representation of the derivative and a Newton method
has been presented in this paper to determine the periodic
steady-state solution of electric power networks. Sparse matrix
techniques are applied to improve the DTS method efficiency
in time and storage when solving practical problems. It must be
brought into attention the fact that the DTS approach demands
important memory resources to allocate the arrays involved
in this methodology. However, this problem is overcome
with the application of sparsity techniques. The DTS method



5TABLE III
MISMATCHES DURING CONVERGENCE OF THE THREE-PHASE STATCOM.

m DTS method
33 69 123 189

1 7.868e-01 6.460e-01 5.649e-01 5.175e-01
2 3.153e-14 1.172e-13 1.292e-13 5.773e-14

FD method
1 2.518e+00 2.529e+00 2.532e+00 2.531e+00
2 1.161e-13 1.207e-13 6.248e-13 1.072e-12

shows better convergence properties and speed up factors than
the FD method for a number of samples up to 31 and 63
for a single-phase network and a three-phase system with a
STATCOM, respectively. Both methods require a trajectory to
be specified by a sequence of points and a Newton-Raphson
to iterate till the sequence satisfies a set of nonlinear algebraic
equations. Nevertheless, the FD method requires to satisfy an
integration formula, whilst the DTS method satisfies the set
of differential equations transformed into a set of nonlinear
algebraic equations.

APPENDIX

The parameters used to solve the test cases presented in this
work are listed in the per unit system.

Electric arc furnace
K1 = 0.08, K2 = 0.005, K3 = 3, n1 = 2 and m1 = 0.
Transmission line lumped parameters
R = 0.03 pu, G = 1.0e − 09 pu, L = 0.001 pu and C =

1.0e − 08 pu.
Transformer
Rp = 0.005 pu, Rc = 100 pu and Lp = 0.075 pu.
Three-phase STATCOM
R = 0.01, L = 0.01
Cpcc = 0.1, Rload = 1.0, Lload = 0.01
Rstatcom = 0.01, Lstatcom = 0.15, Cstatcom = 100
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