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Abstract—We present a new Particle Swarm Optimization 

(PSO) for optimal radial network reconfiguration. Network 
reconfiguration is a combinatorial problem. The combination of 
search space increases exponentially with the number of switches. 
Fixed loop coding structure is introduced to reduce the number 
of combinations. The feature of this method is to introduce 
mutation operation for discrete decimal problem to PSO. This 
method, discrete decimal PSO with mutation (DDM-PSO), is 
applied to a test system with 37 nodes and 63 branches. The 
proposed method improves the maximum arrival number at the 
optimal solution from 8 to 17 compared to PSO without mutation 
in twenty trials. This number of DDM-PSO is also more than that 
of GA, 10. These results show the effectiveness of our method. 
 

Index Terms—combinatorial problem, distribution network, 
Genetic algorithms, loss minimization, mutation, Particle swarm 
optimization, radial network, reconfiguration 

I.  INTRODUCTION 

he electric power industry has been extensively 
deregulated. In Japan ten vertically integrated utilities 

operate and manage the power system for their regions. Their 
share of the retail utility market in their regions is more than 
96%, but during the early 2000’s there was an increase in the 
share of the retail market held by new suppliers. In recent 
years fossil fuel prices have greatly increased and global 
warming has forced utility providers to reduce the levels of 
their CO2 emissions. To be competitive under these conditions 
as well as to establish a “Low carbon society”, utilities must 
reduce their operating costs and improve their energy 
efficiency. One way to do this is by minimizing the amount of 
power lost in distribution systems. In fiscal year 2007, 
transmission and distribution power losses from net generation 
output to demand were 4.9 % , and 47.6 TWh. 

The problem of how to minimize this loss is a large-scale 
mixed integer-programming one and the related problem of 
reconfiguration concerns large-scale combinatorial problems. 
The amount of losses depends on the distribution 
configuration changed by the status of the section switches. 
To ensure that a power system can be rapidly restored and to 
ensure its reliability, distribution systems are operated on a 
radial configuration. The use of the radial reconfiguration 
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method is the key for a variety of processes involved in the 
operation of distribution systems: loss minimization, load 
balancing, and service restoration. 

Various reconfiguration methods using meta-heuristics 
have been proposed to minimize losses. The genetic algorithm 
(GA) was first proposed by Nara [1] for radial distribution 
network reconfiguration. There are some coding methods to 
reconfigure radian networks by using GA. Nara [1] has 
proposed the use of open switches to do this and Fukuyama, et 
al [2,3] has proposed the use of upstream nodes. Sawa, et al 
[4]-[6] has proposed using open switches lined up with an 
order of loop number, the fixed loop method. This method has 
been in practical use [7]. Recently particle swarm optimization 
(PSO) [8] has been considered a realistic and powerful way to 
search for and obtain the global or quasi-global optimums and 
use them to optimize power systems [9]. A binary PSO [10] is 
applied to the radial reconfiguration problem [11]. 

To find the best way to optimize a radial configuration, we 
propose using a new method that involves the discrete decimal 
mutant PSO (DDM-PSO) and the fixed loop method. We 
applied the method to a test system and show the result here. 
 

II.  CODING STRUCTURE OF INDIVIDUALS  

The coding method for the status variable is one of the key 
issues to apply radial network reconfiguration methods to PSO. 
An example of a network is shown in Fig. 1. This network 
contains 9 nodes and 11 branches. Node 1 is a source node. 
When a network has n nodes and m branches, a necessary 
condition is for the radial network to open )1( +− nm  
branches but this is not a sufficient one.   
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Fig. 1.  Example of network. 

A.   Switch State Method 
The most simple topology representation for a network is 
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binary coding of each network branch. Usually open branch 
and closed states are 0 and 1 respectively. This method is used 
to code an example network as Table I. The dimension of this 
vector equals the number of branches. The combination 
number of this method is 2m and is shown below.  

Combination number = 211 = 2048 
When this method is applied to GA, a crossover operation 

is likely to makes infeasible individuals. 
 

TABLE I 
 Switch state method. 

Branch No. 1 2 3 4 5 6 7 8 9 10 11

Switch state 1 1 1 1 0 0 1 1 1 1 0

 
 

B.  Upstream Node Method  
 This method uses a decimal coding method shown in 

Table II. The element of this vector shows an upstream node 
number in the neighboring node. Node 1 is the power source 
node such as a generator or substation. Therefore, there is no 
source node. The second and column number, 1, is a source of 
node 2. The third column number, 1, is a source of node 3 and 
so on. The dimension of this vector equals to )1( −n . An 
upstream node is selected from one of nodes in the neighbors. 
As shown in Fig. 1, 4 nodes have 2 branches and the other 4 
nodes have 3 branches in their neighbors. 

 Combination number = 129632 44 =×  
 

TABLE II 
Upstream node method. 

Node No. 1 2 3 4 5 6 7 8 9

Upstream node No. - 1 1 2 8 3 4 7 6

 
 

C.  Open Branch Method 
 This method selects )1( +− nm  branches to open. This 

method codes example network as Table 3. The order of the 
open branch number has no meanings. Therefore, both vectors 
of 5,6 and, 11 and 6, 11, and 5 have the same meaning in 
Table III (a) and 3 (b) respectively. The number of 

)1( +− nm branches is selected from m branches. Therefore, 
the number of combination is shown below.  

Combination number = 311  = 1331 
 

TABLE III   
Open branch method. 

 (a) Open branch No. 5 6 11 
 

(b) Open branch No. 6 11 5 

 

D.   Fixed Loop Method 
The “Fixed Loop Method” [3-6] is the improved method 

from the “Open Branch Method” [1]. In this method, the order 
of the open branch numbers is important. First )1( +− nm  
loops are decided in a network on the basis of the following 
rules. To make all radial networks expressible, every branch 
must be a member of loops more than once and also, to make 
one coding data to one network configuration correspondence, 
be a member no more than twice. Each loop should be made 
to have fewer branches to minimize the amount of searching 
space needed. Each loop is assigned a serial number. The 
number of each open branch is lined up with the order of the 
loop number. 

On the basis of these rules, loops #1, #2, and #3 are made 
as shown in Fig.1. This method codes the example network as 
shown in Table IV. 

Loops #1, #2, and #3 have 6, 4, and 4 branches 
respectively, as shown in Table V.  

The number of combination is shown below.  
Combination number = 96446 =××  
For the small network in Fig. 1, this number is ten times 

less than those of other methods [1-3]. For a real distribution 
network, this difference increases at almost an exponential 
rate on the basis of the number of branches or nodes. This 
method is the most effective way to reduce the searching 
space. When applied to GA, we showed that this method 
reduced less infeasible solution than the switch state and the 
open branch method [4]. 

 
TABLE IV 

 Fixed loop method. 

Loop No. 1 2 3 

Open branch No. 6 11 5 
 
 

TABLE V 
 Loop constructed branches. 

Loop No. Loop constructed branches 

#1 1 3 5 6 4 2

#2 6 8 11 9 - -

#3 5 7 10 8 - -

 
 

III.  IMPLEMENTATION OF DISCRETE DECIMAL MUTANT PSO 
FOR RECONFIGURATION 

A.  Continuous PSO 
Particle swarm optimization is an evolutionary computation 

technique developed by Kennedy and Eberhart [8]. Its search 
mechanism is shown in Fig. 3. It is an effective methodology 
in evolutionary computation that is similar to GA in that the 
system is initialized with a population of random solutions. In 
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addition, it searches for the optimum by updating generations, 
and population evolution is based on the previous generations. 
In PSO, the solutions, called particles, are searched through 
the problem space by following the current optimal particles. 
Each particle adjusts its new position on the basis of both its 
own and its companion’s searching experience. The updating 
velocity of the particles is accomplished by the following (1) 
that calculates (k+1)-th iteration velocity 1+k

iV  for each 
particle based on its previous velocity k

iV , the particle's 
position ipbest  at which the best fitness so far has been 
achieved, and the population global position gbest  at which 
the best fitness so far has been achieved.  Equation (2) updates 
each particle’s position 1+k

ix  in the solution hyperspace.  
In this way, continuous PSO optimizes the i-th particle’s 

position vector ix  with real numbers. Each vector has n-th 
dimensional space where n is the size of space of a given 
problem. For example, the position of i-th particle is described 
by n-th dimensional vector ),,,( 21

k
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i xxx ⋅⋅⋅⋅⋅=x , where 

n,,2,1 ⋅⋅⋅⋅⋅=i . 
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Fig. 2.  Searching image of PSO 
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where  

k
iV : velocity vector of particle i at generation k; 

w : inertia weight; 
21,CC : acceleration constants; 

rand : random number between 0 and 1; 
k
ix : position vector of particle i at generation k; 

ipbest : best position vector of particle i until at 
generation k; 

gbest : best position vector of the group until at 
generation k. 

 

B.   Bounded Position and Velocity for Particle 
The relationship between the real number and the branch 

number is shown in Fig. 3. The fixed loop method uses 
decimal variables. Therefore, a real variable is related to a 
decimal number. The figures and parenthetic figures in Fig. 3 
are absolute branch numbers and relative branch numbers 
respectively. Equations (3), (4), and (5) show how each 
particle is made to approach to ipbest  and gbest . Equation (3) 
means that each particle position ix  is bounded from 0 to π2 . 
As shown in Fig. 4, there are two rotation directions, ijVΔ  
and ijVΔ for velocity. Equations (4) and (5) mean that each 
particle deviations from ipbest  and gbest are set to from 

π− to π  to minimize those of absolute values. If this 
deviation is large, the second and the third terms in (1) are 
also large and these terms may then make particle position 
rotate more than one turn. This does not make each particle 
approach ipbest and gbest . 
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Fig. 3.  Relationship between position’s real number and branch number. 
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Fig. 4.  Difference of velocity for rotation direction. 

 

C.  Discrete Decimal Mutant PSO (DDM-PSO) for 
Reconfiguration 

Each particle position is decided by (1) – (5) and each 
individual makes a radial configuration network.  Each open 
branch in each particle is then mutated if the random number 
value, rm, is less than the mutation probability Pm. For example, 
one of open branches is relative No. 3 in Loop 1 and, as 
shown in (6), a new open branch selects on the basis of a 
random number value, rb. Loop 1 has 6 branches and the 
selection probability for each branch is equal.  
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IV.  CASE STUDIES 

Loss minimization, load balancing, and service restoration 
are problems involved in selecting a radial network that 
minimizes their objectives. An optimizing structure using PSO 
and GA is shown in Fig. 5. We selected an objective function 
on the basis of the problem and considered various constraints. 
We set the evaluation function for the radial network shown in 
(7). A penalty was added if constraints were not satisfied for 
the solutions. 

 

functionPenaltyfunctionObjective
functionEvaluation

+=
      (7) 

 
We applied this method to the radial reconfiguration 

problem. This was done to minimize the deviation between the 
feeder power flow and the feeder capacity. We considered 
only the radial network constraint. The objective function is 
shown under for a test network shown in Fig. 6. The penalty 
function was zero. The simulation condition is shown in Table 
VI. 
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i
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where  
iP : power flow of branch i. 
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Fig. 5.  Radial reconfiguration solving structure using PSO and GA. 

 
 

The source node was number 0. Feeder capacities, F1, F2, 
and F3 were 226, 161, and 279 respectively. This test network 
had 37 nodes and 63 branches. Therefore, a radial network 
needed to make 27 loops and open one of branches in each 
loop. The combination number of this test network was 
2.0E+16. One of the optimal radial networks is shown below. 
The optimal solution was to divide the network into the three 
areas to feed power from feeders F1, F2, and F3. There are 
various other optimal solutions that used different open 
branches in the area from Fig. 5. For example an open branch 
in Loop #3 is changed from branch 9 to 4. The objective 
function value is one at the optimal solution. That of the 
second minimum solution, the suboptimal solution, is three. 
There are three suboptimal solutions based on Fig. 6 as shown 
in Table VII.  
 
 

#5

#4

0

#1

#2

F3=279

F1=226

F2=161

#7

#6

#3

#27

1 3

7 8 9

13 14 15

20 21

2

19

26 27

31 32 33

25

4 6

10 11 12

16 17 18

23 24

5

22

29 30

34 35 36

28

1 3

7 8 9

13 14 15

20 21

2

19

26 27

31 32 33

25

4 6

10 11 12

16 17 18

23 24

5

22

29 30

34 35 36

28

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

#8

 
Fig. 6.  Test network. 
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 To solve this problem, we applied PSO and GA. The 
number of individuals is 50. The calculation terminates after 
the 500th generation. There were twenty trials using different 
random variables. 
 
 

TABLE VI 
Condition of Simulation 

Parameter Value 

Number of particles 50 

Number of dimensions 27 

Total number of iteration 500 

Optimal solution value 0 

Suboptimal solution value 1 

Number of branches 63 

Number of nodes 37 

 
 

TABLE VII 
Suboptimal Solutions 

Status changed branches Suboptimal 
solution Loop No. 

Close Open 

#1 5 6 

#4 11 16 1 

#5 17 11 

#5 17 12 

#10 23 28 2 

#11 29 23 

#2 60 61 

#24 55 49 3 

#25 50 55 

 
 

V.  RESULTS 

The simulation results are shown in Table VIII. The 
maximum arrival numbers at the optimal solution were 10, 8, 
and 18 for GA [4], discrete decimal PSO without mutation 
(DD-PSO) and DDM-PSO respectively. The maximum arrival 
numbers at more than the suboptimal solution were 18, 11, 
and 20. The arrival number at the optimal solution is shown in 
Fig. 8. The mutation probability Pm is 0.1. The inertia weight 
w is 0.8 for both DD-PSO and DDM-PSO. For DDM-PSO, 
the arrival number decreases on the basis of the increase in the 
acceleration constant. On the other hand for DD-PSO, the 
arrival number increases with the acceleration constant. The 
average evaluation function value in twenty trials is shown in 
Fig. 9. This value of DDM-PSO was less than that of DD-PSO 
in almost all generations. 

These results show that using DDM-PSO is more effective 
than DD-PSO and GA. 

 
TABLE VIII 

Simulation Results 

 GA DD-PSO DDM-PSO

Mutation probability Pm 0.6 0.0 0.1 

Acceleration constant C1 ---- 2 0.5 

Acceleration constant C2 ---- 2 1.5 

Inertia weight w ---- 0.8 0.8 

Number of optimal solutions 10 8 17 

Number of suboptimal solutions 8 3 3 
Number of more than 
suboptimal solutions 18 11 20 
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Fig. 8.  Relationships between acceleration and optimal arrival number. 
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Fig. 9.  Changes in generations between DDM-PSO and DD-PSO. 
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VI.  CONCLUSION 

We have developed an innovative radial network 
reconfiguration method using the discrete decimal mutant 
PSO (DDM-PSO). The feature of this method is to introduce 
mutation operation and a fixed loop coding structure. This 
method was applied to a test system with 37 nodes and 63 
branches. The proposed method improves the maximum 
arrival number at the optimal solution from 8 to 17 compared 
to PSO without mutation. This shows the effectiveness of the 
developed method. 

 In the future, we would like to apply loss minimization 
problems for a distribution network. 
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