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Abstract—We present two stochastic models optimizing a
hydro-thermal power system; the first from the perspective of
a global system and the second from a sub-system’s (country
or utility) perspective within a liberalized market. Particularly
CO2 emission quotas and CO2 certificate prices are taken into
account. The first model seeks to compute the electricity system
marginal price as well as the CO2 emissions marginal price
by minimizing the expected system’s cost of operation. In the
second model, the expected revenues of the sub-system within
a liberalized electricity market while considering stochastic
inflows, electricity, fuel and CO2 prices are maximized. The
above-mentioned stochastic variables are represented via joint
scenarios. The resulting stochastic linear program will be solved
via hybrid SDP/SDDP.

Index Terms—CO2 portfolio management, CO2 market price,
CO2 quota, CO2 emission trading, energy, power systems opti-
mization, SDDP, Stochastic Linear Programming

I. NOMENCLATURE

The nomenclature of this article is summarized in Table I.
All data are given in capital letters while the variables are
denoted in small letters. Theξ captures the stochastic or
random aspects of the data.

II. I NTRODUCTION

T HE EU power system faces important problems of CO2
emissions excess with respect to the Kyoto treaty. As it

is widely known, CO2 is one of the most important inhibitors
on the global warming phenomenon, for which the EU has
been campaigning actively the last years. We can observe
actions that are taken in all countries attempting to optimize
the operation of the plants subject to the maximization of
profits or the minimization of costs while considering the CO2
emissions. In addition, in order to improve the balancing of
CO2 emissions, most of the countries are participating in a
‘cap and trade’ mechanism where utilities and other industries
can optimize their CO2 allocation.

In 2005, the EU power system generation consisted of 54%
thermal, 31% nuclear and 15% of renewable energy sources
(EU 27). The thermal percentage, which accounts for the CO2
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TABLE I
SYMBOLS USED FORBOTH MODELS: VARIABLES AND DATA

Symbol Type Unit Meaning

CPP
tj

(ξ) stoch. data e/MWh cost for power production
at thermal plantj at stage
t

P
CO2,bm
t (ξ) stoch. data e/ton price for buying CO2 emis-

sion allowances via a trad-
ing market at staget

P
CO2,sm
t (ξ) stoch. data e/ton price for selling CO2 emis-

sion allowances via a trad-
ing market at staget

Pt(ξ) stoch. data e/MWh price for selling power at
staget

GWP
tw (ξ) stoch. data MWh generated power by wind

turbinew in staget

Ati(ξ) stoch. data m3/sec water inflow in hydro reser-
voir i during staget

Dt det. data MWh power demand at staget

ρi det. data MWh/
(m3/sec)

power coefficient for hydro
plant i

Bj det. data e/ton CO2 emissions per MWh
produced at thermal plantj

CCO2,f det. data e/ton CO2 emission fine/cost for
exceeding the CO2 emis-
sion allowance

CCO2,p det. data e/ton cost for a project in a coun-
try with no Kyoto target for
the allowance of 1 ton CO2

ECO2,a det. data e/ton CO2 emission allowance
per annum

gtj variable MWh power generation of ther-
mal plant j in time stage
t

e
CO2,bm
t variable tons CO2 emissions allowances

bought in a trading market

e
CO2,f
t variable tons CO2 emissions allowances

‘bought’ via fines

e
CO2,sm
t variable tons CO2 emissions allowances

sold in a trading market

e
CO2,p
t variable tons CO2 emissions allowances

‘bought’ via a project from
a country with no Kyoto
target

vti variable m3/sec water reservoir level of hy-
dro plant i at the end of
staget

uti variable m3/sec water used for power gen-
eration of hydro planti in
staget

sti variable m3/sec water spillage for hydro
plant i in staget
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emissions, is related to a series of stochastic parameters such
as price of coal, fuel and gas. The latter affect heavily the
operation of the system and its optimization from a technical
and financial point of view. Furthermore, for such a large
system as the EU one, there are additional constraints that
come from the electricity transmission system and the gas
network that have to be considered appropriately.

A. CO2 Emission Trading

Climate change is recognized as a global problem and
can only be solved globally. Hence, it is not important at
which exact location the greenhouse gas emissions reduction
is achieved, but more importantly, that the reduction is done in
a cost efficient way. Therefore, emission trading schemes have
been developed, giving greenhouse gases a ‘price’ - making it
a tradable good. Carbon dioxide, CO2, is identified as one of
the key drivers of global warming.

The power stations had the largest fraction with 21.3% of
the anthropogenic annual greenhouse gas emissions in 2000;
among 8 different sectors, with the second largest being the
industrial processes with 16.8% [1].

1) Kyoto Protocol: The Kyoto Protocol [2] was adopted
on December 11th, 1997 in Kyoto, Japan. It entered into
force on February 16th, 2005. The Kyoto Protocol can be
seen as a milestone in fighting global warming, as it commits
industrialized countries to reduce greenhouse gas emissions.

The Kyoto Protocol aims to reduce emissions of six green-
house gases: CO2, methane, nitrous oxide, hydrofluorocar-
bons, perfluorocarbons, and sulphur hexafluoride [3]. Green-
house gas emissions in the EU have to be reduced by 8% on
1990 levels during the first commitment period from 2008 to
2012 [3]; overall the emissions have to be reduced by 5.2%
on 1990 levels [4].

The Kyoto Protocol offers the following three market-based
mechanisms – the so calledKyoto mechanisms:

• Emissions Tradingor “the carbon market”: Article 17 of
the Kyoto Protocol allows countries to trade their excess
capacity.

• Joint Implementation(JI) andClean Development Mech-
anism (CDM): Part of the emission reduction can be
achieved by conducting emission-reducing projects in
other industrialized countries with Kyoto targets (JI) and
in countries without targets (CDM).

2) EU Emission Trading Scheme:The European Union
(EU) Emission Trading Scheme (ETS) is the largest multi-
national emission trading scheme in the world [5]. The govern-
ments of the EU Member States agree national emission caps
and allocate the allowances to their industrial operators via so-
called “national allocation plans”; the distribution of those has
to be made carefully [6]. Plant operators have to monitor and
annually report their CO2 emissions and they have to return
the used emission allowances of CO2 in each year; although
the CO2 emissions are given for several years in advance in
order to avoid annual anomalies. Those installations which
have allowances left over can sell them in the market or save
them for future use. Those that exceed their total emissions

have to pay a fine of 100e/CO2 t emissions and their names
are published.

The EU ETS is partitioned in three phases:

Phase 1. January 2007 - December 2007; test phase
Phase 2. January 2008 - December 2012; coincides with

the first commitment period of the Kyoto Protocol;
the EU target for greenhouse gas emissions reduction
is at 8% of the 1990 level

Phase 3. January 2013 - December 2020.

In the following two models, the four years period of phase
2 of the EU ETS is considered.

B. Main Concept

Electricity companies within an emission trading scheme for
CO2 allowances face new challenges, managing their portfolio
of assets in an optimal way. The need for optimization tools
was also empirically shown in [7] where a simulation of CO2
prices was performed.

The goal of the two presented mathematical optimization
models in this paper is the optimal operation of a hydro-
thermal system or subsystem within a CO2 trading scheme.
As the CO2 prices are not known in advance, they are treated
being stochastic.

Nevertheless, data such as electricity and CO2 prices have a
rather short historical record in relation to the hydro dataavail-
able. The latter leads to joint scenarios and hence transition
matrices of questionable quality.

In order to overcome the above mentioned difficulty we
shall calculate through a fundamental approach - operation
optimization of the entire system - the CO2 prices and elec-
tricity prices that result from historical inflow scenarios, fuel
price scenarios and demand that will be used as inputs. This
leads to a ‘fake’ history of CO2 prices and electricity prices,
capturing the correlation between the CO2 prices, electricity
prices, hydro inflows and fuel prices [8], allowing calculating
the transition matrices for the Markov Chains.

Therefore, we first consider an entire energy system. This
system is highly interconnected, CO2 trading is active, there is
a CO2 quota for each sub-system (country or utility) and the
sub-systems can import/export electricity and exchange CO2
certificates among them. Such a system is given in Europe with
the EU Emission Trading Scheme. The goal of this model is
to forecast the electricity and CO2 prices for the whole system
for a set of inflow and fuel price joint scenarios. However, the
electricity and CO2 price forecast depend on each stage and
state of the stochastic model;i.e., it depends on the inflow and
fuel joint scenario as well as the time stage considered.

As it is for computational reasons not possible in a model
for the whole system to look at a country level in a great
detail, a second model has to explore all the details for
each country separately. Hence, once the electricity prices and
the CO2 prices are calculated, they are combined with the
inflow and fuel price scenarios. The latter joint scenarios are
used as input to a revenue maximization algorithm applied
to each sub-system,i.e., country or utility. Hence, this lat-
ter model will make use of the electricity and CO2 prices
calculated in the whole system model, thus, calculating the
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sub-systems optimal operation through maximization of the
system’s expected revenues. The latter is similar to considering
the cost minimization of a sub-system such as a country
in Europe subject to its stochastic variables and electricity
demand. Nevertheless, in case of Europe, since we deal
with a highly interconnected system with a common CO2
trading mechanism, the calculation of the electricity and CO2
certificate prices cannot take place without considering the
entire system.

C. Literature Review

In [9], the authors consider different stochastic models for
the spot price dynamics of CO2 emission allowances in the
short-term. A multi-period stochastic optimization modelfor
CO2 emissions trading planning of a combined heat and power
producer is given in [10].

However, according to the existing state of the art in
computational tools developments, there is no literature on
mid-term optimization models taking into account stochastic
CO2 prices, and especially not on treating CO2 prices and
electricity prices stochastically at the same time.

This paper is organized as follows. In Section III, we
present a mathematical programming model for expected cost
minimization of a system taking into account CO2 emissions.
An expected profit maximization approach for a sub-system
is presented in Section IV. The solution methodology for
both models is presented in Section V. We conclude with
Section VI.

III. O PERATION COST M INIMIZATION AND CO2 PRICE

CALCULATION OF A SYSTEM IN THE M ID TERM HORIZON

The objective of optimization is the minimization of the
expected operational cost of a system in the mid-term horizon.
Technical specifications of the system, fuel prices, water
inflows, power demand, and CO2 emission quotas have to be
taken into consideration by the model.

We consider a given hydro-thermal system where the fuel
prices and inflows are stochastic. Decisions can be made on
the operation of the thermal and hydro power plants.

The time horizon of the model is 4 years with time stages
of 1 week or 1 month, depending on the size of the model to
be solved.

The model will enable us to calculate the electricity system
marginal price and the CO2 emission system marginal price
per time period (stage).

The problem can be formulated as the following stochastic
linear program

min E

[

∑

t

∑

j

C
PP
tj (ξ) gtj +

∑

t

C
CO2,f

e
CO2,f
t +

+
∑

t

C
CO2,p

e
CO2,p
t

]

(1)

s.t. Dt −
∑

w

G
WP
tw (ξ) =

∑

j

gtj +
∑

i

ρiuti ∀t (2)

vt+1i = vti − uti − sti + Ati (ξ) ∀t, i (3)
∑

t

∑

j

Bjgtj −
∑

t

(

e
CO2,f
t + e

CO2,p
t

)

≤ E
CO2,a (4)

+ other (linear) operational constraints (5)

gtj , e
CO2,f
t , e

CO2,p
t , uti, vti, sti ≥ 0 ∀t, j, i (6)

The electricity demand given by the demand forecastDt,
minus the power generated by the wind turbines, has to be
met by either producing the electricity via thermal plants,gtj ,
or via hydro plants,ρiuti, stated in constrains (2). The water
balance constraints for staget and hydro planti is given in (3)
with the stochastic water inflowAti (ξ). Constraint (4) models
the emission allowances. CoefficientBj converts the generated
electricity of the thermal plants to the emitted CO2, while
variablese

CO2,f
t and e

CO2,p
t give additional CO2 allowances

‘bought’. The coefficientCCO2,f in the objective function (1)
reflects a fine for exceeding the CO2 emission target/quote
ECO2,a. The coefficientCCO2,p

t is assumed to be given and
represents the cost for switching to cleaner technology. Hence,
the cost in the objective function (1) are given by the sum of
the expected cost of thermal power generation, the fines for
exceeding the CO2 emissions and the cost for investments in
cleaner technologies.

The marginal electricity price and marginal CO2 emission
price per staget are then given as the dual (or Lagrange)
multiplier of the demand constraints for electricity and ofthe
CO2 balance constraint for CO2 prices.

Examples for linear operational constraints are mini-
mum/maximum volume storage, minimum/maximum outflow,
minimum/maximum turbining capacity, maximum spillage,
minimum irrigation outflow, minimum/maximum generation
for each thermal plant, and minimum/maximum fuel consump-
tion. A detailed discussion of the operational constraintscan
be found in [11].

Examples for systems discussed here are closed systems
with respect to a CO2 trading market or the whole globe.
Hence, Europe can be seen as such a system with the European
Trading Scheme as a CO2 trading market. In this case, the
fine CCO2,f could be a fine defined by an international treaty,
i.e., the Kyoto Protocol, whileCCO2,p are the cost of adopting
CO2 emission reductions in countries having no CO2 emission
reduction targets defined by the Kyoto Protocol [2] or the cost
for switching to a clean technology such as carbon storage
[12].
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IV. N ET PROFIT MAXIMIZATION OF A SYSTEM IN THE

M ID-TERM HORIZON

The objective of optimization is the maximization of the
expected net profit, revenue - operational cost, of a power
sub-system in the mid-term. Technical specifications of the
system, fuel prices, water inflows, CO2 emission quotas, and
CO2 certificate prices have to be taken into consideration by
the model.

We consider a given hydro-thermal system where the elec-
tricity prices, fuel prices, inflows and CO2 prices are stochas-
tic. Decisions can be made on the operation of the thermal
and hydro power plants and fuels as well as CO2 certificates
can be bought and sold.

The time horizon of the model is 4 years with time stages
of 1 week or 1 month.

The model will enable us to operate the system in an optimal
– revenue maximal – way.

The problem can be formulated as the following stochastic
linear program

max E

[

∑

t

∑

j

(

Pt(ξ) − C
PP
tj (ξ)

)

gtj +

+
∑

t

∑

j

Pt (ξ) ρiuti +

+
∑

t

P
CO2,sm
t (ξ) e

CO2,sm
t −

−
∑

t

P
CO2,bm
t (ξ) e

CO2,bm
t −

−
∑

t

C
CO2,f

e
CO2,f
t −

−
∑

t

C
CO2,p

e
CO2,p
t

]

(7)

s.t. vt+1i = vti − uti − sti + Ati (ξ) ∀t, i (8)
∑

t

∑

j

Bjgtj −
∑

t

(

e
CO2,bm
t + e

CO2,f
t + e

CO2,p
t

)

+

+
∑

t

e
CO2,sm
t ≤ E

CO2,a (9)

+ other (linear) operational constraints (10)

gtj , e
CO2,sm
t , e

CO2,bm
t , e

CO2,f
t , e

CO2,p
t , uti,

vti, sti ≥ 0 ∀t, j, i (11)

In the case of a power sub-system in the liberalized market,
the objective is to maximize expected profits, rather than meet-
ing the electricity demand and minimizing the generation cost.
The profits for 1 MWh electricity generation from thermal
plants is given byPt(ξ)−CPP

tj , the stochastic electricity price
in the spot market at staget minus the generation cost for
thermal plantj at staget. As no generation cost for electricity
from the hydro plants applies, the profits for the generationof
1 MWh associated with hydro planti are given byPt(ξ).
For the sub-system considered, a CO2 market is assumed
to be existing, where CO2 emission rights can be traded at
the stochastic sales price ofP

CO2,sm
t per ton CO2 and the

stochastic buy price ofPCO2,bm
t per ton CO2 at staget. The

water balance constraints are given by constraints (8) and the
CO2 allowances are modeled via constraint (10).

Countries within an interconnected system and large com-
panies with a rich portfolio of assets are examples for systems
where such a model applies. The goal is to operate its system,
a sub-system belonging to a system, in an optimal way while
taking CO2 emissions into account.

V. SOLUTION APPROACHMETHODOLOGY

An overview of stochastic programming models in energy
and their solution techniques are presented in [13]. Survey
articles on solution methods for hydro-thermal optimization
are given in [14], [15].

Stochastic Dynamic Programming (SDP) has been used
initially to solve these type of stochastic programs [16]–[18].
However, the so-called cruse of dimensionality [19] drove the
development of decomposition methods [11], [20]. Stochastic
Dual Dynamic Programming (SDDP) is a combination of
Nested Benders’ decomposition and SDP [21]. SDDP was
developed in 1991 and it is still state of the art in solving
hydro-thermal systems.

Nevertheless, considering jointly stochastic inflows and fuel
spot prices the approach of nested Benders decomposition
is not applicable due to the shape of the polyhedral. More
specifically, the fuels state variables are present in the ob-
jective function and the inflows state variables are in the
constraints. In the case of this article’s application, varying
the state variables within the objective function, the objective
function varies concavely. In contrast, varying the RHS of the
constraints, the objective function varies convexly. Hence the
SDDP method is not applicable.

We will solve the models presented above using the algo-
rithm of hybrid stochastic dynamic programming and stochas-
tic dual dynamic programming [22], [23]. The latter algorithm
can handle stochastic variables that are both in the objective
function and the set of constraints while preserving a convex
future benefit function.

Solution methods for mathematical models talking into
account both stochastic inflows and stochastic fuel prices
have not been reported in the literature. Similarly, there is no
literature for solution methodologies for CO2 stochastic prices
and fuel stochastic prices.

For the cost minimization model, presented in Section III,
we will model inflows using an SDDP approach and fuel
prices using an SDP approach. All stochastic variables will
be represented by joint scenarios that according to the market
structure can be considered as correlated or uncorrelated.In
order to achieve the discretization of fuel prices we will use
appropriate clustering methods that will define the various
states of fuel prices for the SDP algorithm.

For the revenue maximization model, presented in Sec-
tion IV, we will model inflows using an SDDP approach and
electricity, fuel and CO2 prices using an SDP approach. All
stochastic variables will be represented by joint scenarios that
according to the market structure can be considered as cor-
related or uncorrelated. In order to achieve the discretization
of electricity, fuel and CO2 prices, we will use appropriate
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clustering methods that will define the various states of fuel
prices for the SDP algorithm.

A. CO2 Quota Interpreted as Reservoir

Stochastic dual dynamic programming is a tailored algo-
rithm for (linear) stochastic modeling, with the capacity to
consider stochastic, sequential and time dependent problems
such as hydro reservoirs and financial options. In both formula-
tions, introduced in Section III and IV, the CO2 quotas can be
interpreted in this reservoir framework as follows: At specific
time periods,e.g. every January 1st, CO2 quotas are issued,
filling the CO2 reservoir. During a certain period of time,e.g.
yearly, we use the CO2 quotas until the reservoir is empty and
we have to use another, infinite, CO2 reservoir, modeling the
penalty for exceeding the CO2 quota. For each case we exceed
the CO2 quota reservoir, the balance constraint is activated.
For the first problem – cost minimization of a system – the
Lagrangian multiplier of the CO2 balance constraint is the
CO2 marginal system price.

VI. CONCLUSION

In this paper we present the concept of two models that ap-
proach the complex mechanism of today’s electricity markets.
We consider the influence of electricity, fuel and CO2 prices
in the operation of energy systems.

For reasons of model size, we tackle the problem by sepa-
rating into a system and into a subsystem problem allowing us
in first place to calculate the interrelated factors of the system
such as electricity and CO2 prices and then calculate the exact
operation of sub-systems such as a country or a utility.

We approach the problem solution through the hybrid
SDDP/SDP methodology for reason of problem size, com-
bination of stochastic variables and time-coupling.

This work is part of an ongoing research. Hence, the next
step will be the development of the exact methodology and
mathematical implementation of the two above mentioned
models within the framework of the SDDP algorithm. Specific
focus should be given on the computational efficiency through
the clustering methods and the calculation of transition matri-
ces.
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