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Abstract—We present two stochastic models optimizing a
hydro-thermal power system; the first from the perspective 6

Pardalos

TABLE |

SYMBOLS USED FORBOTH MODELS: VARIABLES AND DATA

a global system and the second from a sub-system’s (country’

or utility) perspective within a liberalized market. Particularly

CO2 emission quotas and CO2 certificate prices are taken into
account. The first model seeks to compute the electricity system
marginal price as well as the CO2 emissions marginal price
by minimizing the expected system’s cost of operation. In the
second model, the expected revenues of the sub-system within
a liberalized electricity market while considering stochastic
inflows, electricity, fuel and CO2 prices are maximized. The
above-mentioned stochastic variables are represented via joint
scenarios. The resulting stochastic linear program will be solved
via hybrid SDP/SDDP.

Index Terms—CO2 portfolio management, CO2 market price,
CO2 quota, CO2 emission trading, energy, power systems opti-
mization, SDDP, Stochastic Linear Programming

I. NOMENCLATURE

The nomenclature of this article is summarized in Table |.
All data are given in capital letters while the variables arg

denoted in small letters. Thé captures the stochastic or
random aspects of the data.

Il. INTRODUCTION

HE EU power system faces important problems of COR

emissions excess with respect to the Kyoto treaty. As

is widely known, CO2 is one of the most important inhibitors

on the global warming phenomenon, for which the EU hg

been campaigning actively the last years. We can obseifve

actions that are taken in all countries attempting to opzmi

the operation of the plants subject to the maximization of

profits or the minimization of costs while considering theZZO
emissions. In addition, in order to improve the balancing g
CO2 emissions, most of the countries are participating in
‘cap and trade’ mechanism where utilities and other indesstr
can optimize their CO2 allocation.

In 2005, the EU power system generation consisted of 54%

thermal, 31% nuclear and 15% of renewable energy sourg

(EU 27). The thermal percentage, which accounts for the CQ2
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Symbol Type H Unit H Meaning
CtPjP(g) stoch. data|| €/MWh || cost for power production
at thermal plantj at stage
t
PCO2,bm . . :

p (&) || stoch. data|| <€/ton price for buying CO2 emis-
sion allowances via a tradf
ing market at stage

PtCOQ‘Sm(g) stoch. data|| €/ton price for selling CO2 emis-
sion allowances via a tradf
ing market at stage

P (&) stoch. data|| €/MWh price for selling power atf|
staget

GIWFP (&) stoch. data|| MWh || generated power by wing
turbinew in staget

A (6) stoch. data|| m3/sec || water inflow in hydro reser-
voir ¢ during staget
Dy det. data MWh power demand at stage
pi det. data || MWh/ power coefficient for hydro|
(m3/sec) || plants
B; det. data €/ton CO2 emissions per MWH
produced at thermal plagit
CCO2.f det. data €/ton CO2 emission fine/cost fo
exceeding the CO2 emis|
sion allowance
CcCOZp det. data €lton cost for a project in a coun
try with no Kyoto target for
i the allowance of 1 ton COZ
It pcoza det. data €/ton CO2 emission allowance
per annum
S 9tj variable MWh power generation of ther
mal plantj in time stage
t
02 bm variable tons || CO2 emissions allowance
bought in a trading marke
etCOQ’f variable tons CO2 emissions allowance
f ‘bought’ via fines
q eJo%sm variable tons CO2 emissions allowance
sold in a trading market
etCOQ'p variable tons CO2 emissions allowance
‘bought’ via a project from
a country with no Kyoto
es target
Vs variable m3/sec || water reservoir level of hy-
dro plant: at the end of
staget
Ugq variable m3/sec || water used for power gent
eration of hydro plant in
staget
Sti variable m3/sec || water spillage for hydro
planti in staget
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emissions, is related to a series of stochastic paramatels shave to pay a fine of 108/CO2 t emissions and their names
as price of coal, fuel and gas. The latter affect heavily there published.
operation of the system and its optimization from a techinica The EU ETS is partitioned in three phases:

and financial point of view. Furthermore, for such a large phase 1. January 2007 - December 2007; test phase
system as the EU one, there are additional constraints thaphase 2. January 2008 - December 2012; coincides with
come from the electricity transmission system and the gas the first commitment period of the Kyoto Protocol;
network that have to be considered appropriately. the EU target for greenhouse gas emissions reduction
is at 8% of the 1990 level
A. CO2 Emission Trading Phase 3. Ja.nuary 2013 - December 2020. .
In the following two models, the four years period of phase
Climate change is recognized as a global problem apdof the EU ETS is considered.
can only be solved globally. Hence, it is not important at
which exact location the greenhouse gas emissions reductgp Main Concept
is achieved, but more importantly, that the reduction isedion
a cost efficient way. Therefore, emission trading schemes ha Electricity companies within an emission trading schene fo
been developed, giving greenhouse gases a ‘price’ - makinétpz allowances face new challenges, managing their piartfol
a tradable good. Carbon dioxide, CO2, is identified as one @fassets in an optimal way. The need for optimization tools
the key drivers of global warming. was also empirically shown in [7] where a simulation of CO2
The power stations had the largest fraction with 21.3% 8fices was performed. _ o
the anthropogenic annual greenhouse gas emissions in 200d:n€ goal of the two presented mathematical optimization

among 8 different sectors, with the second largest being tfi@dels in this paper is the optimal operation of a hydro-
industrial processes with 16.8% [1]. thermal system or subsystem within a CO2 trading scheme.

1) Kyoto Protocol: The Kyoto Protocol [2] was adoptedAS the CO2 prices are not known in advance, they are treated

on December 11th, 1997 in Kyoto, Japan. It entered inf$iNg stochastic. o _
force on February 16th, 2005. The Kyoto Protocol can be Nevertheless, data such as electricity and CO2 prices have a
seen as a milestone in fighting global warming, as it comm#@ther short historical record in relation to the hydro davail-
industrialized countries to reduce greenhouse gas emissio able.. The latter Igads to JOII"I'[. scenarios and hence transiti
The Kyoto Protocol aims to reduce emissions of six greeﬂlatr'ces of questionable quality. . -
house gases: CO2, methane, nitrous oxide, hydrofluoroc rln order to overcome the above mentioned dificulty we
bons, perfluorocarbons, and sulphur hexafluoride [3]. Gree’%"’?” _calgulate through a fundamental approaph - operation
house gas emissions in the EU have to be reduced by 8%0&4@'2@0” of the entire systgm - the.COZ prices gnd elec-
1990 levels during the first commitment period from 2008 tg'(_:'ty prices _that result from hlstonc_al inflow scengmdsel .
2012 [3]; overall the emissions have to be reduced by 5. Jrice scenarios and demand that will be used as inputs. This
on 1990 levels [4] eads to a ‘fake’ history of CO2 prices and electricity psice

The Kyoto Protocol offers the following three market-base%"".pturlng the _correlatlon betwegn the CO2 prices, elgmrlc
prices, hydro inflows and fuel prices [8], allowing calcirgt

mechanisms — the so calléd/oto mechanisms - . .
&y the transition matrices for the Markov Chains.

« Emissions Tradingr “the carbon market”: Article 17 of  Therefore, we first consider an entire energy system. This
the Kypto Protocol allows countries to trade their excesgstem is highly interconnected, CO2 trading is activerdlie
capacity. _ a CO2 quota for each sub-system (country or utility) and the

« Joint Implementatior{J) andClean Development Mech- g h_systems can import/export electricity and exchang@ CO
anism (CDM): Part of the emission reduction can begriificates among them. Such a system is given in Europe with
achieved by conducting emission-reducing projects e EyU Emission Trading Scheme. The goal of this model is
other industrialized countries with Kyoto targets (JI) ang, forecast the electricity and CO2 prices for the wholeeyst
in countries without targets (CDM). for a set of inflow and fuel price joint scenarios. Howevee th

2) EU Emission Trading Scheméefhe European Union electricity and CO2 price forecast depend on each stage and

(EU) Emission Trading Scheme (ETS) is the largest multstate of the stochastic modeék., it depends on the inflow and
national emission trading scheme in the world [5]. The goverfuel joint scenario as well as the time stage considered.
ments of the EU Member States agree national emission cap#s it is for computational reasons not possible in a model
and allocate the allowances to their industrial operat@so- for the whole system to look at a country level in a great
called “national allocation plans”; the distribution obe has detail, a second model has to explore all the details for
to be made carefully [6]. Plant operators have to monitor améch country separately. Hence, once the electricity pacel
annually report their CO2 emissions and they have to retutme CO2 prices are calculated, they are combined with the
the used emission allowances of CO2 in each year; althougfow and fuel price scenarios. The latter joint scenarims a
the CO2 emissions are given for several years in advanceused as input to a revenue maximization algorithm applied
order to avoid annual anomalies. Those installations whith each sub-systeni,e., country or utility. Hence, this lat-
have allowances left over can sell them in the market or sae model will make use of the electricity and CO2 prices
them for future use. Those that exceed their total emissiocaiculated in the whole system model, thus, calculating the



sub-systems optimal operation through maximization of the
system’s expected revenues. The latter is similar to cerisig
the cost minimization of a sub-system such as a country
in Europe subject to its stochastic variables and elettrici . PP CO2,f CO2,f
. ; E c Y 09% Tt
demand. Nevertheless, in case of Europe, since we dea . Z:Z: i (89 zt: “
with a highly interconnected system with a common CO2 ‘

trading mechanism, the calculation of the electricity ar@C +choz,pe?oz,p 1)
certificate prices cannot take place without considerirg th -
entire system.
Yy S.t. D; — Z GEZ,P (f) = Z gtj + Z Pille; vt (2)
w J 7
Vi1 = Ve — Uti — Sti + Agi (§) Vi, (3)
Z Z ngtj o Z (67(5302& + eSOQA,p) S ECO2,a (4)
C. Literature Review tg Lt )
+ other (linear) operational constraints (5)
gier O ef PP ui, vy s > 0 Yt gyd (6)

In [9], the authors consider different stochastic models fo
the spot price dynamics of CO2 emission allowances in the
short-term. A multi-period stochastic optimization modiei

CO2 emissions trading planning of a combined heat and power o )
producer is given in [10]. The electricity demand given by the demand foredast

However. according to the existi tate of the art .minus the power generated by the wind turbines, has to be
wevel, N9 XISting s et by either producing the electricity via thermal plants,

cqmputauone}l FOOl.S development;, there is no literature Br via hydro plantsp;u,;, stated in constrains (2). The water
mid-term optimization models taking into account stocittastb lance constraints for stagand hydro plant is given in (3)

CIOZ Prices, and esp;]ec@ly”not 02 treatlng'COZ Prices allfiih the stochastic water inflowd;; (£). Constraint (4) models
electricity prices stochastically at the same time. the emission allowances. CoefficigBf converts the generated
This paper is organized as follows. In Section Ill, welectricity of the thermal plants to the emitted CO2, while
present a mathematical programming model for expected coatiablese.’ ' and e °*? give additional CO2 allowances
minimization of a system taking into account CO2 emissiongought’. The coefficientC©2f in the objective function (1)
An expected profit maximization approach for a sub-systefgflects a fine for exceeding the CO2 emission target/quote
is presented in Section IV. The solution methodology foECO2a The coefficientC©%P is assumed to be given and
both models is presented in Section V. We conclude witepresents the cost for switching to cleaner technologgicele
Section VI. the cost in the objective function (1) are given by the sum of
the expected cost of thermal power generation, the fines for
exceeding the CO2 emissions and the cost for investments in
cleaner technologies.

I1l. OPERATION COSTMINIMIZATION AND CO?2 FRICE The marginal electricity price and marginal CO2 emission

CALCULATION OF A SYSTEM IN THE MiD TERM HoRIzon  Price per stage are then given as the dual (or Lagrange)
multiplier of the demand constraints for electricity andtio#

CO2 balance constraint for CO2 prices.

The objective of optimization is the minimization of the Examples for linear operational constraints are mini-
expected operational cost of a system in the mid-term horizanum/maximum volume storage, minimum/maximum outflow,
Technical specifications of the system, fuel prices, watgrinimum/maximum turbining capacity, maximum spillage,
inflows, power demand, and CO2 emission quotas have tom#imum irrigation outflow, minimum/maximum generation
taken into consideration by the model. for each thermal plant, and minimum/maximum fuel consump-

We consider a given hydro-thermal system where the fﬁ. A detailed discussion of the operational constrag#s

prices and inflows are stochastic. Decisions can be made found in [11].
the operation of the thermal and hydro power plants. Examples for systems discussed here are closed systems

The time horizon of the model is 4 years with time stagé’gith respect to a CO2 trading market or the _Wh0|e globe.
of 1 week or 1 month, depending on the size of the model fence, Europe can be seen as such a system with the European
be solved. Trading Scheme as a CO2 trading market. In this case, the

_ o fine C©92f could be a fine defined by an international treaty,
The model will enable us to calculate the electricity systeme_, the Kyoto Protocol, whileCO2P are the cost of adopting

marginal price and the CO2 emission system marginal priggy2 emission reductions in countries having no CO2 emission
per time period (stage). reduction targets defined by the Kyoto Protocol [2] or thet cos

The problem can be formulated as the following stochastfior switching to a clean technology such as carbon storage
linear program [12].



IV. NET PROFIT MAXIMIZATION OF A SYSTEM IN THE

The objective of optimization is the maximization of t
expected net profit, revenue - operational cost, of a po

MID-TERM HORIZON

water balance constraints are given by constraints (8) laed t
CO2 allowances are modeled via constraint (10).
Countries within an interconnected system and large com-

ﬁ%anies with a rich portfolio of assets are examples for syste

here such a model applies. The goal is to operate its system,

sub-system in the mid-term. Technical specifications of trée

system, fuel prices, water inflows, CO2 emission quotas,
CO2 certificate prices have to be taken into consideration

the model.

We consider a given hydro-thermal system where the elec-
tricity prices, fuel prices, inflows and CO2 prices are sts:h

Eub-system belonging to a system, in an optimal way while

; ing CO2 emissions into account.

V. SOLUTION APPROACHMETHODOLOGY

An overview of stochastic programming models in energy

tic. Decisions can be made on the operation of the thermgd their solution techniques are presented in [13]. Survey
and hydro power plants and fuels as well as CO2 certificatggicles on solution methods for hydro-thermal optimiaati
can be bought and sold.
The time horizon of the model is 4 years with time stages Stochastic Dynamic Programming (SDP) has been used
of 1 week or 1 month.
The model will enable us to operate the system in an optimdbwever, the so-called cruse of dimensionality [19] drdve t

— revenue maximal —

way.

are given in [14], [15].
initially to solve these type of stochastic programs [168}{

development of decomposition methods [11], [20]. Stodbast

The problem can be formulated as the following stochastisual Dynamic Programming (SDDP) is a combination of
linear program

max

S.t.

B[22 (nie
JrZZPt
+ZPCO25m

§ : CO2,b: CO2,b
— Pt *m et ypm

Ctj é)) gtj +

pzutz

COZ sm

t
. Z CCO2,f6tco2,f .
t
_ Z CCOQ,petCOQ,p (7)
t
Vet1i = Vs — Uts — Sti + Agi (€) Vi, i (8)
CO2,bm Co2,f coz,
Z Z Bjge; — Z (et +e +e p) +
tj t
+ ZetCOQ,sm S ECOQ,a (9)
+ other (linear) operational constraints (10)
CO2,sm _CO2,bm _CO2,f CO2,p
Gtjs € = ) €t = ) Ut
Vi, Sti > 0 Vt, g, i (11)

Nested Benders’ decomposition and SDP [21]. SDDP was
developed in 1991 and it is still state of the art in solving
hydro-thermal systems.

Nevertheless, considering jointly stochastic inflows amnal f
spot prices the approach of nested Benders decomposition
is not applicable due to the shape of the polyhedral. More
specifically, the fuels state variables are present in the ob
jective function and the inflows state variables are in the
constraints. In the case of this article’s application,yirsg
the state variables within the objective function, the otije
function varies concavely. In contrast, varying the RHShaf t
constraints, the objective function varies convexly. Hettte
SDDP method is not applicable.

We will solve the models presented above using the algo-
rithm of hybrid stochastic dynamic programming and stoehas
tic dual dynamic programming [22], [23]. The latter algbnt
can handle stochastic variables that are both in the obgecti
function and the set of constraints while preserving a conve
future benefit function.

Solution methods for mathematical models talking into
account both stochastic inflows and stochastic fuel prices
have not been reported in the literature. Similarly, theraa
literature for solution methodologies for CO2 stochastices
and fuel stochastic prices.

For the cost minimization model, presented in Section lll,
we will model inflows using an SDDP approach and fuel

In the case of a power sub-system in the liberalized marketjces using an SDP approach. All stochastic variables will
the objective is to maximize expected profits, rather thaatmebe represented by joint scenarios that according to theehark
ing the electricity demand and minimizing the generatiost.co structure can be considered as correlated or uncorrelated.
The profits for 1 MWh electricity generation from thermabrder to achieve the discretization of fuel prices we wile us
plants is given byP; (&) — CtFJ’P, the stochastic electricity price appropriate clustering methods that will define the various
in the spot market at stageminus the generation cost forstates of fuel prices for the SDP algorithm.

thermal plantj at staget. As no generation cost for electricity For the revenue maximization model,

presented in Sec-

from the hydro plants applies, the profits for the generatibn tion IV, we will model inflows using an SDDP approach and
1 MWh associated with hydro plant are given byP,(¢).
For the sub-system considered, a CO2 market is assunstéachastic variables will be represented by joint scesahat
to be existing, where CO2 emission rights can be traded atcording to the market structure can be considered as cor-
the stochastic sales prlce #°°%™ per ton CO2 and the related or uncorrelated. In order to achieve the discrédiza

stochastic buy price QP

O2,bm

electricity, fuel and CO2 prices using an SDP approach. All

per ton CO2 at stage The of electricity, fuel and CO2 prices, we will use appropriate



clustering methods that will define the various states of fug7]

prices for the SDP algorithm.

A. CO2 Quota Interpreted as Reservoir

(8]
El

Stochastic dual dynamic programming is a tailored algo-

rithm for (linear) stochastic modeling, with the capacity t[10

consider stochastic, sequential and time dependent pnsble
such as hydro reservoirs and financial options. In both fétamu

tions, introduced in Section Il and IV, the CO2 quotas can HE
interpreted in this reservoir framework as follows: At sifiec

time periods,e.g. every January 1st, CO2 quotas are issueid?l

filling the CO2 reservoir. During a certain period of tineeg.

yearly, we use the CO2 quotas until the reservoir is empty and
we have to use another, infinite, CO2 reservoir, modeling tHeél

penalty for exceeding the CO2 quota. For each case we exceed

the CO2 quota reservoir, the balance constraint is activatg 4

For the first problem — cost minimization of a system —
Lagrangian multiplier of the CO2 balance constraint is
CO2 marginal system price.

VI. CONCLUSION

the
the

(15]

(16]

In this paper we present the concept of two models that aI 2l
proach the complex mechanism of today’s electricity marke
We consider the influence of electricity, fuel and CO2 pricd$s]

in the operation of energy systems.

For reasons of model size, we tackle the problem by sepa-
rating into a system and into a subsystem problem allowing us

in first place to calculate the interrelated factors of thetamn

(19]

such as electricity and CO2 prices and then calculate thet exgg;

operation of sub-systems such as a country or a utility.

We approach the problem solution through the hybrrig1
SDDP/SDP methodology for reason of problem size, com-

bination of stochastic variables and time-coupling.

This work is part of an ongoing research. Hence, the next!

step will be the development of the exact methodology

and

mathematical implementation of the two above mentionézb]
models within the framework of the SDDP algorithm. Specific
focus should be given on the computational efficiency thhoug
the clustering methods and the calculation of transitioftrima

ces.
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