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Abstract – This paper employs a quasi dynamic model for 

transient and long term analysis. The set of equations considered 
permits to calculate the solution by using the Newton-Raphson´s 
method. The simplicity of the model allows one to obtain some 
pieces of information required to take preventive control actions. 
A particular case of interest is the ramp load increase. For this 
sake, a real Brazilian system is employed, so the transient, long 
term and voltage collapse studies are carried out with all limits 
considered.  

Index Terms: load margin, quasi dynamic model, transient and 
long term response. 
 

I. INTRODUCTION 
The literature shows that voltage collapse problems are real 
and the consequences may be dramatic. If the system reaches 
the collapse point as a function of successive load increases, a 
power flow model may be enough to analyse the system 
behaviour [1,2]. In a situation like that, the equilibrium is lost 
in a point identified in the literature as a saddle-node 
bifurcation [3].  
Several researchers have identified voltage collapse point by 
using a static model. The focus is on the identification of the 
system load margin, critical bus, control actions to avoid the 
problem and contingency screening. A power system, 
however, may reach a voltage collapse point as a consequence 
of a contingency. If the transient period is the focus, the 
differential equations involved must be integrated in order to 
assess the system trajectory. On the other hand, if a longer 
term is considered, a quasi dynamic model may be employed, 
as proposed in [4-8]. Based on the fact that the transient 
characteristics may be neglected, the set of equations becomes 
algebraic, enabling one to employ the Newton´s method to 
find the numerical solution.  
 

 
Manuscript received October 29, 2008. This work was supported in part by 

CNPq, CAPES, FAPERJ and FAPEMIG.   
Valerio O. Albuquerque is with Cemig and Unifei. E-mail 

voa@cemig.com.br. 
Rafael C. Leme, B. Isaias Lima Lopes, A C. Zambroni de Souza and 

Otavio A. S. Carpinteiro are with the Federal University of Itajubá. Av.  BPS, 
1303, Pinheirinho, C. P. 50, 37500-903, Itajubá, MG, Brazil  (corresponding 
author. Phone: +5535 36291242; fax: +5535 36291365; e-mail: 
isaias,zambroni@unifei.edu.br).  

The second and last authors are also with the Federal University of Itajubá. 
E-mails: leme, otavio@unifei.edu.br and ppbalestrassi@gmail.com 

 

 
Such an alternative yields accurate results in a much smaller 
computational time. This quasi-dynamic model is used here. 
Using this model enables one to study the following scenario: 
A contingency takes place, and the system is able to sustain 
the impact during the transient period, reaching a stable post 
fault equilibrium point. A low voltage level is detected in 
some buses, and control actions are taken in order to restore 
the acceptable operating conditions. The actions are executed 
according to the sequence: local shunt capacitors switching, 
load tap changes and AVR´s set points adjustment. If, after the 
whole sequence is executed, the voltage level is still low, load 
shedding is triggered. The load shedding strategy adopted in 
this work is based on the existence of a low voltage profile. 
Therefore, frequency deviation is not considered for this 
purpose.  
The contingency considered here consists of a ramp load 
increase, so the system dynamics may be evaluated. This is 
tested with the help of a real Brazilian system with all the 
limits considered. 
   

II. DYNAMIC SYSTEM AND QUASI-DYNAMIC MODELS 
 

The general dynamic model is first introduced. In order to 
link to the quasi-dynamic model, the system behavior is 
decomposed in various time scale, which permits to separate 
the equations and the associated variables as follows: 

 
long-term behavior, consequence of  load evolution: 

( )w tφ=                                 (1)
discrete dynamics, associated with LTC tap and OXL (over 

excitation limiters) : 
)z(k 1) f(x,y,z(k),w+ =                  (2)

transient dynamics, associated with synchronous machines, 
voltage regulators, etc. : 

( , , , )x f x y z w= (3)
topological conditions,  given by the network equations: 
0 ( , , , )g x y z w= (4)
Note that equation (4) represents the network 

characteristics, i.e., the power flow equations. Equation (3) is 
associated with the vectors of transient state variables. 
Equation (1) represents the load evolution in time and 
equation (2) shows the discrete dynamics associated with the 
LTC.  
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As for equation (3), the machine model used here is the 

IEEE (1.1) model. Such a model consists of 4 differential 
equations for each generator. The simple model IEEE Type 1 
represents the voltage regulator.  The model described above 
may be used to trace the system behavior during the transient 
post-fault period. Because this is not the focus of this paper, 
details associated with the integration of the equations will not 
be addressed in this work. The point of concern is the long 
term behavior, which assumes that the system may maintain 
the equilibrium during the transient process. This assumption 
drives one to the following consideration in equation (3):  

 
0 ( , , , )f x y z w=                                        (5)
 
Since transient dynamics are neglected, no numerical 

integration is necessary. Thus, an iterative method is used to 
calculate the state variables, just like in a load flow 
calculation. Hence, a Newton method suffices the analysis. 
The process above may be visualized by the following 
example: 

Assume the set of equations: 
( ) ( ) ( )
( )
( ) 5.0
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cossin1,
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−==
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x
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yxxyxf

 

(6)

If the quasi-dynamic model is employed, the differential 
equation vanishes, and equations (1) become: 

( ) ( )
2

0 1 sin cos

0

x y

x y

= − +

= −  
(7)

The solution may now be obtained according to the 
Newton-Raphson´s method. For this purpose, the Jacobian 
matrix, shown in equation (8), should be calculated. 

( ) ( )cos sin
1 2

f f
x y x y

J
g g y
x y

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ⎡ ⎤− −⎢ ⎥= = ⎢ ⎥∂ ∂ −⎢ ⎥ ⎣ ⎦
⎢ ⎥∂ ∂⎣ ⎦  

(8)

Fig. 1 depicts the total solution (obtained when the 
homogeneous and particular solutions are calculated), and the 
solution for the quasi-dynamic model. Note that as the 
transient period is overcome, the transient and long term 
models provide the same results.   

It is important to stress that, for the long-term period, the 
quasi-dynamic model brings no approximation, since it 
provides exactly the same solution as obtained by the classical 
procedure, as shown in Fig. 1. This leads one to conclude that 
tracing the transient period and jumping to the quasi-dynamic 
model may provide good results. This is discussed next. 

 

Fig. 1 – Transient and long term solutions  
 
III. THE UNIFIED COMPUTATIONAL TOOL FOR TRANSIENT 

AND LONG TERM PERIODS 
From the results depicted in Fig. 1, if one is interested in the 

long term analysis, the quasi-dynamic model provides 
accurate results. If, however, the transient period is focused, 
the integration of the equations is needed. This is effectively 
carried out by the trapezoidal rule, given by: 

[ ]1 1 1 1( , , ) ( , , )
2n n n n n n n n
hx x f x y t f x y t+ + + += + + (9)

where h stands for the step size. The process is accelerated 
if a varying step size is assumed. Manipulating equation (9) 
helps to understand the method proposed in this paper. This 
equation may be written as:  

11 1 1, ,0 ( , ) [ ( , ) ( , )]
2 n nn n n n n n
hF x y x x f x y t f x y t++ + += =− + + + (10)

Applying such a formulation to equation (7) yields: 

1
1 1

2
1 1

1 sin( ) cos( ) ...
0 ( )

...1 sin( ) cos( )2

0 ( )

n n
n n

n n

n n

x yhF x x x
x y

G x x y

+
+ +

+ +

− + +⎡ ⎤
= = − + + ⎢ ⎥− +⎣ ⎦
= = −

 

(11)

The above set is now algebraic, and its Jacobian is given by 

equation (12) (recall that 1nx + is procured, whereas nx  is 
known). In equation (12), the subscript dyn refers to dynamic. 
This formulation enables one to solve this equation by the 
Newton-Raphson´s method.  
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1
2 2

dyn

h f h f
x y

J
G G
x y

∂ ∂⎡ ⎤− +⎢ ⎥∂ ∂⎢ ⎥=
∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎣ ⎦  
 

(12)

Applying equation (12) for the set of equations (7) yields: 
 

( ) ( )1 cos sin
2 2
1 2

dyn

h hx y
J

y

⎡ ⎤− − −⎢ ⎥=
⎢ ⎥

−⎣ ⎦  

(13)

 
Note the similarity between equations (8) and (13). 

Equation (13) considers directly the integration step, enabling 
one to solve the set of equations iteratively. Therefore, the 
length of the integration step is considered into the linearized 
set of equations, but no integration is explicitly carried out. 
Note that the partial derivatives with respect to the static 
variables remain the same. This is the main difference in 
relation to the work presented in [9], since that work focuses 
on taking bigger integration steps as the long-term process is 
triggered. In this paper, the Newton-Raphson´s method is 
directly employed for both formulations, reducing the 
computational load involved in the calculation. The step size 
control follows the same methodology of the numerical 
integration process as presented by the authors in [10]. The 
difference arises when the step size increases (for example 
three or four times the previous step), and the formulation 
migrates from the transient to the quasi-dynamic approach. On 
the other hand, the method proposed in this work migrates 
directly to the quasi-dynamic approach as its period is 
identified [11].   

In this paper, a function based on the rate of successive 
integration points is performed. Depending on the monitored 
conditions for the last three steps, the quasi-dynamic process 
may be triggered. The methodology provides very satisfactory 
results in various configurations, such as load ramp, 
simulation faults and eigenvalues analysis. Note, however, 
that the eigenvalues analysis is carried out for the system 
Jacobian as shown in equation (3), easily obtained from 
equation (12). This avoids the eigenvalues to be sensitive with 
respect to the step size h. Such a consideration enables one to 
obtain the same results as the ones described in [12], when 
tracking the eigenvalues along the time evolution is the focus. 

The time scales along with the system is decomposed is 
presented in [13] so the long-term behavior (consequence of 
load evolution), discrete dynamics (associated with LTC 
(Load Tap Changer) or discrete OXL (Over eXcitation 
Limiter)), transient dynamics (associated with synchronous 
machines), voltage regulators and topological conditions 
(given by the network equations) are clearly detailed [14-15].   

The IEEE (1.1) machine model is used. It consists of 4 
differential equations for each generator. The simple IEEE 
Type 1 model represents the voltage regulator.   

IV.  TANGENT VECTOR AS THE BLOCKING TIME 
IDENTIFICATION 

When the power flow model is used, the system of 
equations may be represented as follows: 

( , ) 0g y λ =                                          (14)
where λ is the system parameter. In a continuation method, 

where the system load margin is the point of concern, λ is the 
load/generation increase factor. This assumes that the system 
may become unstable as a function of successive load 
increases. It may be possible, however, that a stable 
equilibrium point is associated with a low voltage magnitude. 
In such a situation, it may be desirable to increase the voltage 
level. The parameter that takes the system to a new operating 
point, in this case, is a tap change. The partial derivatives of 
Equation (14) with respect to the system parameter λ at an 
equilibrium point j, yield:   

| | | 0j j j
g dy g
y dλ λ

∂ ∂
+ =

∂ ∂
 (15)

Hence, the tangent vector is given by : 
1

| | |j j j
dy g g
d yλ λ

−
⎛ ⎞∂ ∂

= −⎜ ⎟∂ ∂⎝ ⎠
 (16)

Where:  | j
g
y

∂
∂

 = Jacobian matrix at the point j; 

| j
g
λ

∂
∂

 = Partial derivative with respect to the system 

parameter (in this case, tap). Except the entries associated with 
the buses connected to LTC´s, all components of /g λ∂ ∂ are 
zero. 

The model above is derived from the static model. In 
this sense, only the load flow equations are considered, which 
enables one to determine a set of control actions associated 
with a known equilibrium point.  

As the LTC tends to recover the voltage level, its action is 
reflected in a new operating point. This action tends to 
produce a better voltage profile, and a stable operating point 
could be achieved [16]. It is possible, however, that from a 
certain operating point, and such an action produces a 
deteriorating condition, which could, eventually, drive the 
system to voltage collapse. Because Equation (16) shows how 
the state variables change as a function of the system 
parameter, it will be used as an index. The LTC action is 
meant to enhance the voltage level in a bus of interest. For 
normal operating conditions, there is a correspondence 
between the tap position and the voltage variation at the bus 
controlled. This is directly provided by the entry dVint/dλ, 
where int refers to the bus monitored. As long as dVint/dλ has 
the same coherent sign, the voltage level at bus int is correctly 
controlled, and when this sign changes, this action provides an 
opposite effect. This is enough to propose this index to 
monitor the instant of tap blocking. Although the index 
adopted here assumes the tap changer as a continous variable, 
in practice it is considered as a discrete control.  
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Because of this, the tap is blocked at the instant closest to 
the one calculated by the methodology. Note also that the post 
fault equilibrium point obtained is stable. In this sense one 
could argue that such a system is not susceptible to reach 
voltage instability, and the problem focused here regards only 
voltage control. The next section discusses how voltage 
control actions may drive the system to instability. 

Note that it could be argued that a local control would be 
enough to trigger (or stall) tap changing. This is true, and that 
is the reason why the methodology proposed here for blocking 
the tap variation is very simple. Discussing the implications 
associated with this blocking instant, however, may be 
important [11]. Because of that, such a discussion is carried 
out in the next section. 

 

V. LOAD SHEDDING STRATEGY 
 

 If all the measures discussed before are not enough to 
drive the system to a good operating condition, two options 
may arise: a) the system may work temporarily in a non 
satisfactory situation, and b) the system cannot work under the 
imposed conditions. If option (b) is the issue and no control 
action is available, load shedding may occur. 

 In general, load shedding is analyzed in power systems as 
a consequence of a frequency problem or a low voltage 
profile. If frequency is the issue, several options for load 
shedding may be adopted.   Voltage collapse and under 
voltage problems may also take load shedding into 
consideration as a corrective measure.  

 In this paper, a novel approach to determine the amount 
of load shedding is proposed. The under voltage magnitude in 
a bus of interest is the flag. The idea is similar to the remote 
voltage control, widely employed in the literature. In that kind 
of control, a generator monitors the voltage level in a remote 
load bus. The voltage level at the load bus is known, whereas 
the voltage level at the generator is a state variable. The 
practical effect in the implementation is the replacement of a 
column, since the partial derivatives calculated in relation to 
the voltage level at the generator must be incorporated into the 
set of equations. In this paper, the idea is to shed load in order 
to maintain the voltage level in a value pre specified. Because 
the voltage level is known, it is removed from the set of the 
state variables. However, such a value is only reached as a 
function of a load shedding, which is considered as a state 
variable, according to Equation (17).   

In Equation (17), H, 
~
N , M and 

~
L  are the partial 

derivatives of the active and reactive power equations (∆P and 
∆Q) in relation to the phase angles (∆θ) and voltage level 

(∆V). 
~
N  and 

~
L differ from the ordinary Jacobian because it 

does not contain the partial derivatives with respect to the 
voltage level at the bus controlled.  The last column comes 
from  Pk = Pko (V, θ) – ∆C and Qk = Qko (V,θ) – ∆C, where 

k is the bus likely to experiment load shedding (∆C).  

~

~

0

0
1

0

0
1

k

k

H N
P
P

V
Q

C
Q

M L

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∆⎡ ⎤ ⎢ ⎥ ∆⎡ ⎤⎢ ⎥ −⎢ ⎥∆ ⎢ ⎥⎢ ⎥ = ∆⎢ ⎥ ⎢ ⎥⎢ ⎥∆ ⎢ ⎥ ⎢ ⎥∆⎢ ⎥ ⎣ ⎦⎢ ⎥∆⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

 

(17) 

Few observations about Equation (17) should be addressed: 
The convergence is obtained normally according to the 
Newton-Raphson process. No numerical problems are 
expected, since the set of equations is not singular. 

Only the power flow equations are considered. Hence, at 
this stage, the quasi dynamic model is not required, even 
though its use causes no problem. 

In this paper, load shedding is executed at the bus whose 
voltage level is monitored. The program, however, may 
handle other combinations of voltage control/load shedding 
with no problem. 
 

VI.    METHODOLOGY 
 
The analysis is carried out in such a way to explore the 

features of the proposed methodology. In this sense, from a 
stable operating point, a ramp load increase is considered. 
Following this load increase direction, the proposed model 
captures the system dynamic response along the time 
evolution. After the ramp load increase is considered, the 
system long term response and load margin are calculated, so 
a comparison with the base case is carried out. 

Along the process, some control actions, like tap blocking, 
shunt capacitor switch and load shedding are considered. 

 

VII.  TEST RESULTS 
 

The system used to assess the computational tool consists of 
36 buses (28 load buses and 8 generators) and 46 transmission 
lines. The total system load stands for 680.0 + j181.70 MVA.   
Such a system represents a real Brazilian system with all the 
machines fully detailed.  

The study is carried out in two ways: first, a sequence of 
two steps is applied. The critical Bus 1354 is then monitored. 
The first part of the test is executed with no tap blocker 
neither load shedding considered. Fig. 2 presents the result 
obtained. The dotted line is associated with the full simulation, 
whereas the full line represents the quasi dynamic approach.    
Because the tap changer is still working, the solutions do not 
emerge into a single one, which occurs when a steady state 
condition is reached. 
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Fig. 2 – Voltage Level at Bus 1354 (step and no control) 
 
As one can see, the voltage level obtained is not 

satisfactory. Even worse, this is not true even neglecting the 
tap limits. Now, both the tap blocker methodology presented 
in Section IV and load shedding in Section V are carried out. 
The results are displayed in Fig. 3.  
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Fig. 3 – Voltage Bus 1354 -tap blocking and load shedding 
  
From Fig. 3 one can see that the load shedding meant to 

bring the voltage level above 0.89 p.u. works properly for this 
purpose.  

Now, a ramp load increase is considered. As done before, 
the test is executed without load shedding. However, tap 
blocker is scheduled to work when necessary, yielding the 
results of Fig. 4. Note the tap blocker working during the 
ramp load increase, which lasts from 1 to 10 seconds. After 
the ramp is over, the tap blocker works in order to restore the 
voltage level. 
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Fig. 4 – Voltage at Bus 1354 for a ramp and no controls 
 
Once again, the tap changer is not enough to restore the 

voltage level. Note that at around 25s. the tap changer is 
blocked, keeping the voltage level close to 0.86 p.u.. In order 
to restore the voltage level, load shedding is now considered, 
generating Fig. 5. 
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Fig. 5 – Voltage at Bus 1354 with load shedding  
 
Note that the proposed methodology works well, keeping 

the system stable in an emergency condition of operation.  
Further controls may be incorporated into the methodology. 
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