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Abstract-- The evaluation of network reliability is an 

important topic in the planning, design, and operation of power 
systems. The aim of this publication is to investigate and tune up 
the speed of calculating 2-terminal minimal cutsets (MC). Two 
fast and well known algorithms are compared with a new 
developed MC algorithm concerning the speed of computation. 
The new designed algorithm is based on a novel graph reduction 
method, and on an adapted recursive merge method. Eleven 
benchmark-networks are used to analyze all three MC 
algorithms. Experimental results show that the new developed 
MC algorithm has a linear dependency between the computation 
time and the graph density of a network for a fixed number of 
nodes. Furthermore it is shown that the proposed algorithm is 
faster than the minimal path based algorithms and the currently 
best available MC algorithm for 2-terminal reliability in complex 
power transmission networks. A representative 57 node power 
transmission network demonstrates that the new proposed 
algorithm reduces the computation time for all relevant MC by 
96.2 %. 
 

Index Terms-- 2-terminal network reliability, computation 
time, graph reduction, induced cycle, minimal cutset, power 
transmission system, recursive merge; 

I.  ACRONYM, NOTATIONS, NOMENCLATURE AND ASSUMPTIONS 

A.  Acronym 

CI cycle-incidence matrix 
MC minimal cut(s) / minimal cutset(s) 
MP minimal path(s) / minimal path set(s) 
s specified source node 
t specified sink node 

B.  Notations  

G (V, E) A connected network (graph) G with the 
node set V = {s, t, x0, x1, . . ., xk-2} and the 
edge set E [1]. For example, Fig. 1 center 
part is a network. This paper treats only 
planar cyclic undirected networks. 

1 2x xe  
1 2x xe  E is an arc between nodes x1 and x2. 
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|| The number of elements of , e.g., |V| is the 
number of nodes in V. 

P A non-empty graph P = (V, E) with 
V = {x0, x1, … , xk} and E = {

1 2x xe ,
2 3x xe , … , 

1k kx xe


} [2]. P is called a path. 

C  If P = x0 … xk-1 is a path and k  3, then the 
graph C = P + 

1 0kx xe


is a cycle [2]. 

SS A connected source set of nodes with s  SS 
[3]. 

G * x1 Node x1 is merged into SS of G by 
eliminating any edge connecting x1 and SS 
[3]. 

C.  Nomenclature 

unavailability Is defined as λMC / (λMC + µMC) in h / year 
with the failure rate λMC and the repair rate 
µMC for each minimal cut of the MC [4], [5]. 

cut order  The cut order is defined as the number of 
elements that must fail, to disconnect the 
sink t and the source s. In this paper written 
as o(MC). 

node degree  The node degree is the number of all edges 
that touch the node, written as d(x1); δ(V) is 
the minimum degree of V with 
δ(V): = min{d(xi)|  xi  V} [2]. 

adjacent node  A node x1 is said to be adjacent to a 
subgraph of G if there exists an undirected 
edge 

1 2x xe  leading from this subgraph to the 

node x1 [3]. If G contains G’ (G’  G), G’ is 
a subgraph of G. 

redundant node  A redundant node is a node which is 
adjacent to SS and has no P to t without 
going through any node in SS [3]. For 
example see node 10 in Fig. 4 Step 4. A 
redundant loop contains only redundant 
nodes (see Fig. 4 Step 4 loop 18-8-13-18). 

MC  A 2-terminal cutset is a set of arcs such that, 
by removing these arcs, there is no P in G 
from node s to node t. A MC is a cutset with 
no subset of it is a cut. For example, see Fig. 
4 Step 4 MC1. MC are also expressed in 
terms of node sets [6]. 
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MP  A path P between s and t is minimal, if no 
node or branch is traversed more than once 
in this path. 

induced cycles  An induced cycle C in G is a cycle in G 
forming an induced subgraph that has no 
chords. A chord of a C is an edge that joins 
two nodes of C but is not itself an edge of C 
[2]. For example see chordless cycles I-VI 
Fig. 4 Step 2. A graph consists of |E| -
 |V| + 1 induced (chordless) cycles. 

D.  Assumption 

The networks satisfy following assumptions [6], [7]: 
1)  Perfectly reliable nodes. 
2)  Connected planar cyclic undirected graph with no 

parallel branches. 
3)  Each edge is either in working or failed state with known  
  probability. 
4)  All power flows in the network obey the conservation  
  law. 
5)  All nodes have to be numbered in increasing order  
  starting with s and ending with t. 

II.  INTRODUCTION 

OWER transmission network reliability is an important 
topic in the planning, design, and operation of power 

systems. Several algorithms for evaluation of terminal 
reliability evaluation are proposed and classified in the 
literature [8]. Among them the MC approach is one of the 
most popular used techniques to evaluate 2-terminal network 
reliability [1], [9]. MC provide a list of events that cause 
network failures, a disconnection between the 2-terminals s 
and t, and therefore MC are preferred to calculate the network 
reliability. The determination of MC or MP is necessary to 
reduce the sum of disjoint product terms and, hence, the 
overall reliability computation time. For some networks it is 
simply impractical to enumerate all MP [3]. For instance, a 
2x49 lattice network (see Fig. 7 (11)) contains 249 paths. 
Although it has a huge number of MP, it only contains 2500 
MC. Hence, the computation of all MC and the reliability of a 
network is a time intensive operation and can grow 
exponentially with the number of nodes (NP-hard), even if no 
MP are calculated [6], [10], [11]. The aim of this publication 
is to investigate and tune up the speed of calculating MC for 
power transmission networks.  

Usually elements of power transmission networks have a 
very small unavailability. It is proven, that in this case MC up 
to order plus one of the lowest cut order of the investigated 
network have to be considered [5], [12]. In power 
transmission networks in the majority of cases the lowest MC 
order of a network is equal to one, if substations are 
considered [12], or two. Thus it is sufficient in the majority of 
the cases to calculate MC up to the 2nd order for reliability 
analysis, especially in the context with transmission grid 
reliability optimisation, e.g. with Genetic Algorithms [13] 
where hundreds and thousands of these operations have to be 
done in large networks. In this paper three 2-terminal 
reliability algorithms are benchmarked with eleven planar 

cyclic undirected benchmark-networks [3], [14] (see Fig. 7). 
Two of the algorithms are well known from the literature [6], 
[15] and one is a new proposed algorithm that is based on a 
novel network reduction method and on an adapted recursive 
merge algorithm. 

This paper is organized as follows: in Section III a short 
overview of related researches is given and a short description 
of the used algorithms is provided. Section IV contains a 
detailed report about the network reduction, including the 
relevant theorem to show the accurateness of the Algorithm 
and the extended Algorithm itself. The third main part in 
Section IV deals with a representative example. Section V 
contains the benchmark of the three different networks with 
remarks to the computation time and the performance with 
different sizes of networks. With a 57 node sample network 
the effectiveness of the new proposed algorithm is 
demonstrated in computation all MC. Concluding remarks are 
presented in Section VI. 

III.  DESCRIPTION OF THE USED ALGORITHMS 

An overview of related researches in determining (all) MC 
in graphs up to the year 2003 can be found in [6]. Within the 
last five years a new approach to calculate MP has been 
published in [7]. This algorithm requires fewer calculations to 
generate MP and is more effective in generating MP without 
duplicates and unfeasible MP [7]. Although this algorithm 
provides very good calculation results it is not used in this 
paper for the MP estimation, due to a higher calculation time 
for MP compared to the implemented MP-algorithm. This 
disadvantage is caused by the implementation in MATLAB 
and not by the algorithm itself. Further work has been done on 
the improved search for all MC in modified networks [16], 
which is useful if modifications on networks are performed in 
planning processes, reinforcement evaluation and network 
expansion. 

Reference [6] deals with the authors current best known 
algorithm for the MC problem between all node pairs and 
between two special nodes. This algorithm has a time 
complexity (|V|2|V|) for the MC problem between two 
special nodes and also all node pairs [6]. It is based on some 
simple intuitive theorems that characterize the structure of the 
MC using a node set and it can only be used for undirected 
graphs. This algorithm is easy to understand and to implement 
and it has the advantage that it can calculate all MC within 
reasonable time [6]. This algorithm has the disadvantage that 
it cannot deal with graphs, where the minimal node degree 
δ(V), except for the source node s and the sink node t, is equal 
to one. The edge adjacent to these nodes with node degree 
d(x1) = 1 can be removed from the network in a preprocessing 
step, without losing any MC, before starting the MC 
estimation. Another disadvantage of the algorithm can be seen 
in the fact that it can not deal with self loops [6]. For the 
further investigations in this paper this algorithm is called 
Alg. A. Alg. A can also be used to check the accuracy of the 
other two implemented algorithms. 

Alg. B [15] is based on MP and can therefore be utilized 
with directed and undirected graphs. It has an exponential 
worst time complexity in the number of minimal paths [10]. 
This estimation of all MP is NP-hard [11] and requires high 
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memory demand. The MP-algorithm in this paper is very 
simple. Firstly the algorithm estimates all paths from the 
source with a specified path length with a breadth first search 
approach. Since every connected graph G (V, E) contains at 
least one path of length min{2δ(V), |E|-1} [2], the specified 
path length is |E|-1 in the first step so that at least all edges are 
explored once. Secondly all paths with the sink as endpoint 
are chosen as MP. Once all MP are deduced an incidence 
matrix is constructed (|MP|x|E|). Columns that have all non-
zero entries are MC of order one and must be eliminated from 
the incidence matrix. In the 2nd step all combinations of two 
columns are compared to find columns with non-zero entries. 
This MC are cuts of the 2nd order. To find higher order cuts 
the 2nd step has to be repeated with combinations of 3, 4, 5, … 
columns and any cuts of lower order are eliminated [4]. Alg. B 
has the advantage that it can find MC up to a specified order. 
This reduces the computation time and Alg. B can deal with 
graphs having nodes with degree equal to one, due to the fact 
that they are ignored by the MP. Alg. B has the disadvantage 
that calculating all MP is simply impractical for special types 
of networks (e.g. Fig. 7 (11)), although a wide range of 
transmission power grids can be evaluated with this method 
[10], [15]. 

Alg. C, which is based on [3], is a new recursive algorithm 
that uses a merge approach and a novel intuitive graph 
reduction in a special preprocessing step to evaluate MC up to 
the 2nd order. This algorithm combines the major advantages 
of Alg. A and Alg. B. Experimental results in [3] show that, 
this algorithm has a linear running time for different graph 
densities with a given number of nodes and an exponential 
running time with different numbers of nodes. The MC can be 
evaluated up to the 2nd order without calculating the MP. The 
new designed algorithm impresses by a very high computation 
speed, even higher than Alg. B and it is not limited by the 
network size and structure, as it would be, if a MP approach 
would be used for the MC estimation. 

IV.  THE NEW PROPOSED ALGORITHM ALG. C 

A.  Network reduction 

To calculate the reliability of power transmission networks, 
due to the low probability of occurrence, MC of o(MC)  3 
are not incorporated. Thus a novel intuitive method is 
proposed to reduce the network graph to estimate first and 
second order MC. This method is fundamentally based on the 
following lemmas and theorem. 

Lemma 1: The order of a MC is at least equal or greater 
three, provided that an edge 

1 2x xe of an induced cycle is a 

member of the MC. 
Proof: Consider a simple cycle appears with three nodes 

x1, x2, and x3 and three edges
1 2x xe ,

2 3x xe and
3 1x xe . Every MC 

between e.g. s = x1 and t = x3 in this simple cycle has 
o(MC) = 2 (see Fig. 1, left part). Consider a second simple 
cycle with three nodes x4, x2, and x3 and three 
edges

4 2x xe ,
2 3x xe and

3 4x xe . Now, with s = x1 and t = x4 those 

two MC ({
4 2x xe ,

1 3x xe and
2 3x xe } and {

1 2x xe ,
3 4x xe and

2 3x xe }), that 

include the edge
2 3x xe have o(MC) = 3 and the other two MC 

have o(MC) = 2 (see Fig. 1, center part). Since every other 
connected cyclic network can be reduced to such kind of 
network with a merging approach (see Algorithm in [17]), it is 
obvious that the degree is equal or greater three. In other 
words this means every MC that cuts an edge of two chordless 
cycles has at least twice the minimal degree of a cut of a 
simple cycle minus one, which is equal or greater three.  � 

To consider the special case if s or t is a member of two or 
more induced cycles following Lemma 2 is defined. 
Lemma 2: All edges touching 2-connected (d(xi) ≤ 2) nodes 
xi, with xi ≠ s  t and xi is exclusively connected over 2-
connected nodes with s  t or adjacent to s  t, of a chordless 
cycle C, with s  t  C, xi  C and d(s  t) = 2, are excepted 
from the network reduction subroutine. If d(s  t) = 1 and 
there exists xs,t, with d(xs,t) = 3, where s or t and xs,t is 
connected over exclusively one P, then all edges touching 2-
connected xi or xs,t, with xi is exclusively connected over 2-
connected nodes with xs,t or adjacent to xs,t, of an induced 
cycle C, with xi  xs,t  C, are also excepted from the network 
reduction. For example see the single-connected node t in 
Fig. 7 (9), where all edges between to the two dashed line 
nodes and the before mentioned t have to be considered for 
MC with o(MC) ≤ 2. 

Since single-connected nodes are never a member of an 
induced cycle and therefore are not considered by the network 
reduction, the following important theorem derives from 
Lemma 1 and 2. 

Theorem 1: Each edge
2 3x xe  that is an edge of two different 

induced cycles C and C’, and not an edge of Lemma 2, can be 
eliminated by merging together node x2 and x3 into node x3 
without deleting any MC with o(MC) ≤ 2 (see Fig.1 right 
part). 
 

 
Fig. 1.  An example network to explain the network reduction algorithm with 
two simple (chordless) cycles. 
 

B.  Detailed description of the algorithm 

The algorithm consists of four main subroutines. The first 
subroutine deletes all nodes xi from the graph with d(xi) < 3 
excluding node s and t and stores the information of deleted 
edges

i kx xe and the belonging new edges. The second 

subroutine calculates all chordless cycles of the reduced 
graph. This is done with a shortest path approach based on the 
following proposition [2]. 

Proposition 1: Every G contains a P of length δ(G) and C 
of length at least δ(G) + 1 (provided that δ(G)  2) 

Proof: The longest P in G is x0 … xk. Then all the 
neighbours of xk lie on P. Hence k  d(xk)  δ(G). If i < k is 
minimal with 

i kx xe   E, then xi … xkxi is a C with length 
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C  δ(G) + 1 [2].                  � 
The shortest paths are calculated with the well known 

algorithm of Dijkstra [18]. Afterwards the cycles are extended 
with the information of the deleted edges of subroutine one. 
Hence the original network is reconstructed and the gained 
information of chordless cycles can be used to generate a 
cycle-incidence matrix CI = (|E|x|C|).  

In subroutine three the network is reduced with Theorem 1. 
Each node of an edge, that has a least two non-zero entries in 
the edge-row of CI, is merged into the graph in that way, that 
one of two nodes is replaced by the other one and the touching 
edge is deleted. Thus the original network is reduced to a 
graph that contains nodes with d(xi) > 3 and nodes with 
d(xi) ≤ 3. The earlier group is also connected to one or more 
loops that may contain nodes or be a self-loop, see Fig. 4 Step 
4. This reduced graph is thus analyzed with the extended 
algorithm of [3] in subroutine four. 

The extended recursive merge algorithm is based on the 
obvious idea that s is prevented from arriving at t, if all edges 
emitting from s are deleted. If one of these edges is not 
deleted, then s has a MP to t since G is connected and these 
edges are a MC of G. The basic idea is to build a SS – 
adjacent nodes to s are merged one by one into this set –, 
where all edges emitting from this SS are a MC. Furthermore 
redundant nodes are also considered by merging this kind of 
nodes into SS before a MC is calculated.  

Due to the fact, that the network reduction creates also 
redundant nodes (loops) that are not relevant for the MC 
estimation, all self loops are eliminated. To verify that this 
algorithm enumerates all first and second order cuts correct, 
consider Lemma 3 and 4. 
 

 
Fig. 2.  Flowchart of subroutine four; the extended recursive merge algorithm 
based on [3]. 
 

Lemma 3: Both, the network reduction and the extended 
Alg. C do not produce isolated nodes in any subroutine.  

Proof: In the network reduction subroutine, which is the 
only subroutine in the pre-processing steps that eliminates 
edges and nodes, only nodes are merged together. Since all 

nodes are connected and the merging-process does not 
disconnect nodes, no isolated nodes occur (see Lemma 1 in 
[3]).                       � 

Lemma 4: Any first and second order MC generated by 
Alg. C can also be produced by the Algorithm of [3]. 

Proof: Since the Algorithm of [3], which itself is verified 
on accuracy by the algorithm in [17], is except two special 
requests concerning the order of MC and redundant loops, 
exactly the same as Alg. C, and since edges of a MC with 
o(MC) = 1 are not eliminated by the network reduction, 
Alg. C evaluates all MC correct up to the 2nd order.    � 

In Fig. 2 the flowchart of the extended recursive merge 
Alg. C is depicted. 

C.  An Example 

A moderate size network is chosen to demonstrate the 
methodology of the new proposed algorithm. This simple 
network is evaluated with the algorithm to find the MC 
between s and t. Not all steps are depicted detailed. Those 
steps that eliminate more than one edge are a series of single 
edge deleting and node replacing processes.  

Consider the initial network G in Fig. 4 Step 0. After 
deleting all nodes xi with degree d(xi) < 3, the graph can be 
displayed with Fig. 4 Step 1. The edge-deleting-subroutine is 
necessary to estimate all induced cycles with the shortest path 
approach. This approach is based on the idea (see Proposition 
1), that the shortest path between node e.g. 1 and 2, if edge (1) 
is deleted, includes edge (2) and (3) (see Fig. 7 (7)). This 
operation is repeated until all |E| - |V| + 1 induced cycles are 
found. CI of the example is shown in Fig. 3. 

 

(1) 1 0 0 0 0 0
(2) 1 0 0 0 0 0

1 1 0 0 0 0
0 1 1 0 0 0

(5) 0 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0

(9) 0 0 1 0 0 0
0 0 0 1 1 0

(11) 0 0 0 1 0 0
(12) 0 0 0 0 1 0
(13) 0 0 0 1 0 0

0 0 0 1 1 0
0 0 0 1 0 1

(16) 0 0 0 0 1 0
0 0 0 0 1 1

(18) 0 0 0 0 0 1
0 0 0 0 1 1

(2

I II III IV V VI

(3)
(4)

(6)
(7)
(8)

(10)

CI E C (14)
(15)

(17)

(19)



0) 0 0 0 0 0 1
(21) 0 0 0 0 1 0

0 0 0 0 1 1
(23) 0 0 0 0 0 1
(24) 0 0 0 0 0 1
(25) 0 0 0 0 0 1
(26) 0 0 0 0 0 1

(22)

 

Fig. 3.  The CI of the example with 26 nodes (first column) and 6 induced 
cycles (upper row). The deleted edges in subroutine three are labeled bold. 
 

In the next subroutine the graph is reduced as schematically 
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depicted in Fig. 4 Step 3.1 to Step 3.6. Step 3.0 in Fig. 4 is the 
initial state. The algorithm in subroutine three firstly replaces 
node 2 by node 3 and eliminates the edge (3). Next node 3 is 
replaced by node 5 and the edges (4) and (6) are deleted as 
well as node 4, which is not depicted in Fig. 4. This node is 
the offspring of edge (4) and (6) and is therefore replaced by 
node 5 (Theorem 1).  

With this operation, a self-loop of node 5 with edge (5) is 
created. It is obvious, that this self-loop is never a member of 
a MC due to the definition of MC. In Step 3.3 node 5 is 
replaced by node 7 and edges (7) and (8) are eliminated. In 
this step the second self-loop at node 7 with edge (9) appears. 
Step 3.4 shows how node 7 is replaced by the adjacent node 
11 and edges (10) and (14) are deleted. The following Step 3.5 
merges node 12 into node 11. This creates a new graph 
without edge (15) and a third loop with node 10 (see Step 4 in 
Fig 2.) and edges (11) and (13). As in Step 3.2 it is obvious 
that the edges of this loop are never a member of a MC 
because they are not on a path from s to t. Step 3.6 finishes the 
network reduction subroutine three by merging node 18 into 
node 12 and eliminating edges (17), (19) and (22). Subroutine 
four (for results see Step 4 in Fig. 4) operates recursive (see 
Fig. 2 and [3]). The main difference between the algorithm in 
[3] and its extended version used here is that the extended 
version in subroutine four can deal with self-loops. Redundant 

loops, as the loop depicted in Fig. 4 Step 4 with nodes 18-8-
13-18, are merged into SS in one step and not one by one as in 
[3] before creating a new MC. For example consider node 8 in 
Fig. 4 Step 4. If SS = {1, 18}, node 8 is adjacent to SS and on 
a redundant loop. The touching edges are never a MC for the 
connection between s and t, respectively node 1 and 21. 
Therefore G * 8 and G * 13 in one step, without creating a 
MC. Both Alg. B and Alg. C provide the same results for the 
graph example: six 2nd order MC MC 1 … MC 6 with the 
edges (see Fig. 4 Step 4) {(1), (2)}, {(25), (18)}, {(25), (20)}, 
{(25), (23)}, {(25), (24)} and {(25), (26)}. 

V.  BENCHMARK OF THREE DIFFERENT ALGORITHMS 

A.  Processing time of Alg. C. 

The new proposed algorithm was tested with randomly 
generated planar cyclic undirected grid-graphs G with fixed 
numbers of nodes. The time to enumerate all MC was 
measured and Fig. 5 depicts the results of running time versus 
graph density, which is defined as 2|E| / (|V|(|V|-1)). The 
number of nodes ranges from 24 to 40 at a step size of 4 and 
the graph density ranges from 0.1 to the maximal size of 
planarity at a step size of 0.005. The maximal size of the 
planar graphs was calculated with [20]. The minimal size 
results from the constraint that the graph has to be connected 

 

 
Fig. 4.  Example network with source s und sink t from [3]; Step 0: Initial network; Step 1: result after subroutine 1; Step 2: result after subroutine 3; Step 3 and 
Step 4: The different steps of the network reduction subroutine three and the six second order MC (see doted curves in the figure with title Step 4), when the 
extended Algorithm of subroutine four (Alg. C) is applied. 
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without any intersections. This is guaranteed for the 
considered range with a graph density exceeding 0.1. To test 
either the randomly generated graph is planar or not algorithm 
form [20], [21] was used. 

Due to the stochastic behavior concerning the number of, 
the induced cycles of the random graphs, the induced cycle 
depended computation time versus the graph density was 
fitted with a robust fit regression. This regression mode is 
used, if outliers have to be considered with lower importance, 
which is appropriate in this case. The results of this regression 
for the considered random networks are also depicted in Fig. 
5. It is evident that there is a linear relationship between the 
graph density and the computation time for the 2-terminal 
MC. Furthermore the computation time for the 2-terminal MC 
per fixed number of nodes is increasing with the graph 
density. This gradient of the linear function is unequal for 
different number of nodes which is already pointed out in [3]. 
 

 
Fig. 5.  The computation time versus graph density 2|E| / (|V|(|V|-1)) with 
fixed number of nodes. RF … Robust Fit regression for the relevant range of 
planar cyclic undirected networks 
 

 
Fig. 6.  The computation time for 2-terminal MC versus the increasing node 
number of lattice networks is shown for all three used algorithms. Additional, 
in the figure the number of 2nd order MC and the number of MP is depicted in 
the left y-axis and upper y-axis respectively. 
 

In Fig. 6, six lattice networks (for example see Fig. 7 (11)), 
ranging from 20 nodes to 40 nodes in steps of 4 nodes are 
compared concerning the computation time. Alg. A, Alg. B 
and Alg. C are used to show the exponential computation time 
behaviour of the problem. All three algorithms were 
implemented in MATLAB on an Intel® Core™2 Duo CPU 
with 3.33 GHz.  

It’s worthless noting, that Alg. C is the fastest algorithm of 
all three presented ones, if the network exceeds a certain size. 
Alg. A, which enumerates all MC is the second best algorithm 
in terms of computation time, if lattice networks with more 
than 32 nodes are considered. Due to the huge computational 
effort to calculate the MP, e.g. the lattice network with 32 
nodes has 215 = 32768 MP, Alg. B is the slowest for lattice 
networks with more than 32 nodes, even if MC up to the 2nd 
order are estimated. 

B.  Benchmark with test grids 

The intermeshing degree ν in Table I is defined as |E| / |V|. 
In power networks the intermeshing degree is normally 
between 1 and 2, in power transmission networks, which are 
focussed in this paper, it is between 1 and 1.5 [19]. Depending 
on the number of nodes, for example the before mentioned 
range for power transmission network ranges around a graph 
density of 0.1 for a network with 30 nodes. 
 

 
Fig. 7.  Eleven planar Benchmark-networks with source node s and sink node t 
based on [3], [14]; Network (7) is used for the example to explain Alg. C. 
Network (9) is used for the example in Lemma 2 
 

In Table I the normalized computation time, related to the 
respective fastest algorithm based on the best value out of ten 
calculations, for each benchmark-network in Fig. 7 is 
presented. The faster one of the two compared has a 1.00 
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entry in the table. Alg. B considers MC up to the 3rd order for 
comparison with Alg. A and up to the 2nd order for 
comparison with Alg. C (see Table I). Alg. C determines all 
MC up to the 2nd order. As a result of the investigation it can 
be pointed out, that in the case of an intermeshing degree v 
exceeding 2, the Alg. A is better for the MC calculation from 
the point of view of computation time compared to Alg. B if 
3rd order cuts or higher are analyzed. If Alg. B for 1st and 2nd 
order MC is compared to Alg. C, it can be seen, that for all 
sample graphs except graph (6), (9) and (11), Alg. B has 
lower computational time. Alg. C is the fastest for these 
graphs that have a high number of MP, which is increasing 
with the number of nodes and branches, respectively with the 
graph density. The system unavailability in Table I is 
calculated with the frequency and duration approach [4], [5]. 
The failure rate λ of all components is 0.01 1 / year and the 
repair rate µ of all components is 1 h. The results in Table I 
show that only 1st order cuts have a major impact in the 
reliability evaluation if λ and µ are considered. 

C.  Computation of all MC 

With the network in Fig. 8, that is more representative for a 
real world power transmission network, the benefit of the new 
proposed algorithm is shown when all MC up to the 2nd order 
of a network have to be calculated.  
The network in Fig. 8 is from [14] and has 57 nodes and 78 
edges. It consists of five sources, 52 loads, 710 2nd order MC 
and five 1st order MC. The network has an intermeshing 
degree of 1.37, a graph density of 0.049 and 11497979 MP. 
All MC up to the 2nd order are evaluated with Alg. B and 
Alg. C. Alg. B needs 5242.1 seconds and Alg. C needs 198.7 
seconds. This is a saving in computation time of more than 
5043.3 seconds or in other terms, Alg. C needs only 3.8 % of 
the computation time of Alg. B. 

 
Fig. 8.  Test network for the computation of all MC up to the 2nd order based 
on [14] with 57 nodes (five sources and 52 loads). 

VI.  CONCLUSION 

It is sufficient to calculate MC up to the 2nd order for 2-
terminal power system transmission reliability analyses, 
especially in the context with transmission grid reliability 
optimisation with Genetic Algorithms, where hundreds and 
thousands of these operations have to be done. Since the 
estimation of reliability in transmission grids is NP-hard, 
research interest focuses on fast MC algorithms to reduce the 
computation time to a minimum. The proposed algorithm, 
which is based on a novel intuitive network reduction and on a 
recursive merge approach, calculates all MC up to the 2nd 
order in satisfying time and even faster as the currently best 
know algorithm. Depending on the number of nodes 
respectively on the graph density, it is also faster as a simple, 
but for small networks powerful, MP algorithm that generates 
all MC up to the 2nd order. Furthermore with a 57 node test 
network it is demonstrated that the new proposed algorithm 

TABLE I 
NETWORK INFORMATION TABLE AND RESULTS OF THE BENCHMARK 

Network 
Intermeshing 

degree ν 
1st order 

Cuts 
2nd order 

Cuts 
3rd order 

Cuts 
Unavail-
ability a 

Normalized computation time 
Alg. A vs. Alg. B b 

Normalized computation time 
Alg. B vs. Alg. C 

12 13
9 28(1)G  1.33 0 3 7 3.4310-8 1.98 1.00 1.00 4.24 

20 150
12 128(2)G  1.66 0 2 3 2.2810-8 2.42 1.00 1.00 2.18 

12 25
7 20(3)G  1.74 0 0 2 2.6110-14 1.02 1.00 1.00 4.14 

13 29
8 29(4)G  1.63 0 0 3 3.9110-14 1.43 1.00 1.00 3.35 

12 24
8 19(5)G  1.50 0 2 5 2.2810-8 1.13 1.00 1.00 3.62 

36 22401
17 560(6)G  2.12 0 0 2 2.6110-14 1.00 3.11 19.44 1.00 

26 44
21 528(7)G  1.24 0 6 66 6.8510-8 13.50 1.00 1.00 1.76 

43 56
36 2666(8)G  1.19 2 8 16 0.02 39.77 1.00 1.00 1.08 

35 4008
20 2545(9)G  1.75 1 1 2 0.01 8.80 1.00 4.66 1.00 

24 98
16 105(10)G  1.50 0 1 2 1.1410-8 1.00 3.11 1.00 2.28 

49148 2
100 2500(11)G  1.48 0 51 98 5.8210-7 1.00 * * 1.00 

( )
e p

v c
G z Benchmark-network number z with v nodes, e edges, p MP and c MC. 

* Due to memory problems no calculation could be performed. 
a  In h / year; it is the same if all MC up to the highest order are considered or if MC up to the 2nd order are considered, λ = 0.01 1 / year and µ = 1 h. 
b  The normalized computation time, if Alg. B evaluates all MC up to the 3rd order and Alg. A evaluates all MC. 
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can calculate all MC up to the 2nd order. In terms of 
computation time this is a reduction by 96.2 % compared to 
the MP algorithm. 
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