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Fast Minimal Cutset Evaluation in Cyclic
Undirected Graphs for Power Transmission
Systems

A. Gaun, H. Renner, G. Rechberger

Abstract-- The evaluation of network reliability is an
important topic in the planning, design, and operation of power
systems. The aim of this publication is to investigate and tune up
the speed of calculating 2-terminal minimal cutsets (MC). Two
fast and well known algorithms are compared with a new
developed MC algorithm concerning the speed of computation.
The new designed algorithm is based on a novel graph reduction
method, and on an adapted recursive merge method. Eleven
benchmark-networks are used to analyze all three MC
algorithms. Experimental results show that the new developed
MC algorithm has a linear dependency between the computation
time and the graph density of a network for a fixed number of
nodes. Furthermore it is shown that the proposed algorithm is
faster than the minimal path based algorithms and the currently
best available MC algorithm for 2-terminal reliability in complex
power transmission networks. A representative 57 node power
transmission network demonstrates that the new proposed
algorithm reduces the computation time for all relevant MC by
96.2 %.

Index Terms-- 2-terminal network reliability, computation
time, graph reduction, induced cycle, minimal cutset, power
transmission system, recursive merge;

1. ACRONYM, NOTATIONS, NOMENCLATURE AND ASSUMPTIONS

A. Acronym

CI cycle-incidence matrix

MC minimal cut(s) / minimal cutset(s)
MP minimal path(s) / minimal path set(s)
] specified source node

t specified sink node

B. Notations
G (V,E) A connected network (graph) G with the
node set V= {s,t, Xg, X1, . . ., X2} and the
edge set E [1]. For example, Fig. 1 center
part is a network. This paper treats only
planar cyclic undirected networks.

e € E is an arc between nodes x; and x,.
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| The number of elements of -, e.g., |V] is the
number of nodes in V.

P A non-empty graph P=(V,E) with
V = {Xp, X1, ..., Xx} and E = {exm € s
e, . +[2]. Pis called a path.

C If P=x¢ ... X is a path and k > 3, then the
graphC=P+ e isacycle[2]

SS A connected source set of nodes with s € SS

[3].
Node x; is merged into SS of G by
eliminating any edge connecting x; and SS

(3]

C. Nomenclature

G*Xl

unavailability  Is defined as Ayc/ (Amc + tmc) in h/year
with the failure rate Ay and the repair rate
pmc for each minimal cut of the MC [4], [5].
cut order The cut order is defined as the number of

elements that must fail, to disconnect the
sink t and the source s. In this paper written
as o(MC).

The node degree is the number of all edges
that touch the node, written as d(x;); 6(V) is
the minimum degree of V  with
O(V): =min{d(xj)| V x; € V} [2].

A node x; is said to be adjacent to a
subgraph of G if there exists an undirected
edge e, leading from this subgraph to the

node x; [3]. If G contains G’ (G’ = G), G’ is
a subgraph of G.

A redundant node is a node which is
adjacent to SS and has no P to t without
going through any node in SS [3]. For
example see node 10 in Fig. 4 Step 4. A
redundant loop contains only redundant
nodes (see Fig. 4 Step 4 loop 18-8-13-18).

A 2-terminal cutset is a set of arcs such that,
by removing these arcs, there is no P in G
from node s to node t. A MC is a cutset with
no subset of it is a cut. For example, see Fig.
4 Step 4 MCI1. MC are also expressed in
terms of node sets [6].

node degree

adjacent node

redundant node

MC



MP A path P between s and t is minimal, if no
node or branch is traversed more than once
in this path.

An induced cycle C in G is a cycle in G
forming an induced subgraph that has no
chords. A chord of a C is an edge that joins
two nodes of C but is not itself an edge of C
[2]. For example see chordless cycles I-VI
Fig. 4 Step 2. A graph consists of |E|-

[V| + 1 induced (chordless) cycles.

induced cycles

D. Assumption

The networks satisfy following assumptions [6], [7]:

1) Perfectly reliable nodes.

2) Connected planar cyclic undirected graph with no
parallel branches.

3) Each edge is either in working or failed state with known
probability.

4) All power flows in the network obey the conservation
law.

5) All nodes have to be numbered in increasing order
starting with s and ending with t.

II. INTRODUCTION

OWER transmission network reliability is an important

topic in the planning, design, and operation of power
systems. Several algorithms for evaluation of terminal
reliability evaluation are proposed and classified in the
literature [8]. Among them the MC approach is one of the
most popular used techniques to evaluate 2-terminal network
reliability [1], [9]. MC provide a list of events that cause
network failures, a disconnection between the 2-terminals s
and t, and therefore MC are preferred to calculate the network
reliability. The determination of MC or MP is necessary to
reduce the sum of disjoint product terms and, hence, the
overall reliability computation time. For some networks it is
simply impractical to enumerate all MP [3]. For instance, a
2x49 lattice network (see Fig. 7 (11)) contains 2* paths.
Although it has a huge number of MP, it only contains 2500
MC. Hence, the computation of all MC and the reliability of a
network is a time intensive operation and can grow
exponentially with the number of nodes (NP-hard), even if no
MP are calculated [6], [10], [11]. The aim of this publication
is to investigate and tune up the speed of calculating MC for
power transmission networks.

Usually elements of power transmission networks have a
very small unavailability. It is proven, that in this case MC up
to order plus one of the lowest cut order of the investigated
network have to be considered [5], [12]. In power
transmission networks in the majority of cases the lowest MC
order of a network is equal to one, if substations are
considered [12], or two. Thus it is sufficient in the majority of
the cases to calculate MC up to the 2" order for reliability
analysis, especially in the context with transmission grid
reliability optimisation, e.g. with Genetic Algorithms [13]
where hundreds and thousands of these operations have to be
done in large networks. In this paper three 2-terminal
reliability algorithms are benchmarked with eleven planar
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cyclic undirected benchmark-networks [3], [14] (see Fig. 7).
Two of the algorithms are well known from the literature [6],
[15] and one is a new proposed algorithm that is based on a
novel network reduction method and on an adapted recursive
merge algorithm.

This paper is organized as follows: in Section III a short
overview of related researches is given and a short description
of the used algorithms is provided. Section IV contains a
detailed report about the network reduction, including the
relevant theorem to show the accurateness of the Algorithm
and the extended Algorithm itself. The third main part in
Section IV deals with a representative example. Section V
contains the benchmark of the three different networks with
remarks to the computation time and the performance with
different sizes of networks. With a 57 node sample network
the effectiveness of the new proposed algorithm is
demonstrated in computation all MC. Concluding remarks are
presented in Section VI.

III. DESCRIPTION OF THE USED ALGORITHMS

An overview of related researches in determining (all) MC
in graphs up to the year 2003 can be found in [6]. Within the
last five years a new approach to calculate MP has been
published in [7]. This algorithm requires fewer calculations to
generate MP and is more effective in generating MP without
duplicates and unfeasible MP [7]. Although this algorithm
provides very good calculation results it is not used in this
paper for the MP estimation, due to a higher calculation time
for MP compared to the implemented MP-algorithm. This
disadvantage is caused by the implementation in MATLAB
and not by the algorithm itself. Further work has been done on
the improved search for all MC in modified networks [16],
which is useful if modifications on networks are performed in
planning processes, reinforcement evaluation and network
expansion.

Reference [6] deals with the authors current best known
algorithm for the MC problem between all node pairs and
between two special nodes. This algorithm has a time
complexity O(|V|-2") for the MC problem between two
special nodes and also all node pairs [6]. It is based on some
simple intuitive theorems that characterize the structure of the
MC using a node set and it can only be used for undirected
graphs. This algorithm is easy to understand and to implement
and it has the advantage that it can calculate all MC within
reasonable time [6]. This algorithm has the disadvantage that
it cannot deal with graphs, where the minimal node degree
d(V), except for the source node s and the sink node t, is equal
to one. The edge adjacent to these nodes with node degree
d(x;) =1 can be removed from the network in a preprocessing
step, without losing any MC, before starting the MC
estimation. Another disadvantage of the algorithm can be seen
in the fact that it can not deal with self loops [6]. For the
further investigations in this paper this algorithm is called
Alg. A. Alg. A can also be used to check the accuracy of the
other two implemented algorithms.

Alg. B [15] is based on MP and can therefore be utilized
with directed and undirected graphs. It has an exponential
worst time complexity in the number of minimal paths [10].
This estimation of all MP is NP-hard [11] and requires high



memory demand. The MP-algorithm in this paper is very
simple. Firstly the algorithm estimates all paths from the
source with a specified path length with a breadth first search
approach. Since every connected graph G (V, E) contains at
least one path of length min{25(V), |E|-1} [2], the specified
path length is [E|-1 in the first step so that at least all edges are
explored once. Secondly all paths with the sink as endpoint
are chosen as MP. Once all MP are deduced an incidence
matrix is constructed ([MP|x|E|). Columns that have all non-
zero entries are MC of order one and must be eliminated from
the incidence matrix. In the 2™ step all combinations of two
columns are compared to find columns with non-zero entries.
This MC are cuts of the 2™ order. To find higher order cuts
the 2™ step has to be repeated with combinations of 3,4, 5, ...
columns and any cuts of lower order are eliminated [4]. Alg. B
has the advantage that it can find MC up to a specified order.
This reduces the computation time and Alg. B can deal with
graphs having nodes with degree equal to one, due to the fact
that they are ignored by the MP. Alg. B has the disadvantage
that calculating all MP is simply impractical for special types
of networks (e.g. Fig. 7 (11)), although a wide range of
transmission power grids can be evaluated with this method
[10], [15].

Alg. C, which is based on [3], is a new recursive algorithm
that uses a merge approach and a novel intuitive graph
reduction in a special preprocessing step to evaluate MC up to
the 2™ order. This algorithm combines the major advantages
of Alg. A and Alg. B. Experimental results in [3] show that,
this algorithm has a linear running time for different graph
densities with a given number of nodes and an exponential
running time with different numbers of nodes. The MC can be
evaluated up to the 2" order without calculating the MP. The
new designed algorithm impresses by a very high computation
speed, even higher than Alg. B and it is not limited by the
network size and structure, as it would be, if a MP approach
would be used for the MC estimation.

IV. THE NEW PROPOSED ALGORITHM ALG. C

A. Network reduction

To calculate the reliability of power transmission networks,
due to the low probability of occurrence, MC of o(MC) >3
are not incorporated. Thus a novel intuitive method is
proposed to reduce the network graph to estimate first and
second order MC. This method is fundamentally based on the
following lemmas and theorem.

Lemma 1: The order of a MC is at least equal or greater
three, provided that an edge e, of an induced cycle is a

member of the MC.
Proof: Consider a simple cycle appears with three nodes
X1, X2, and x; and three edgese,, ,e  ande . Every MC

between e.g. s=x; and t=x; in this simple cycle has
o(MC) =2 (see Fig. 1, left part). Consider a second simple

cycle with three nodes x4, X5, and x3 and three
edgese,  .e  ande . Now, with s=x; and t=x, those
two MC ({e,, .e  ande  } and {e  ,e  ande  }), that
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include the edgee, have o(MC) =3 and the other two MC

have o(MC) =2 (see Fig. 1, center part). Since every other
connected cyclic network can be reduced to such kind of
network with a merging approach (see Algorithm in [17]), it is
obvious that the degree is equal or greater three. In other
words this means every MC that cuts an edge of two chordless
cycles has at least twice the minimal degree of a cut of a
simple cycle minus one, which is equal or greater three. 0

To consider the special case if s or t is a member of two or

more induced cycles following Lemma 2 is defined.
Lemma 2: All edges touching 2-connected (d(x;) <2) nodes
x;, with x;#s vt and x; is exclusively connected over 2-
connected nodes with s v t or adjacent to s v t, of a chordless
cycle C, with svt e C, x; € C and d(s v t) =2, are excepted
from the network reduction subroutine. If d(svt)=1 and
there exists X, with d(xs;) =3, where s or t and xq; is
connected over exclusively one P, then all edges touching 2-
connected X; or X, with x; is exclusively connected over 2-
connected nodes with x,; or adjacent to xy;, of an induced
cycle C, with x; A X € C, are also excepted from the network
reduction. For example see the single-connected node t in
Fig. 7(9), where all edges between to the two dashed line
nodes and the before mentioned t have to be considered for
MC with oMC) < 2.

Since single-connected nodes are never a member of an
induced cycle and therefore are not considered by the network
reduction, the following important theorem derives from
Lemma 1 and 2.

Theorem 1: Each edgee_, that is an edge of two different

induced cycles C and C’, and not an edge of Lemma 2, can be
eliminated by merging together node x, and x; into node Xx;
without deleting any MC with o(MC) <2 (see Fig.l1 right
part).

Fig. 1. An example network to explain the network reduction algorithm with
two simple (chordless) cycles.

B. Detailed description of the algorithm

The algorithm consists of four main subroutines. The first
subroutine deletes all nodes x; from the graph with d(x;) <3
excluding node s and t and stores the information of deleted
edgese, and the belonging new edges. The second

subroutine calculates all chordless cycles of the reduced
graph. This is done with a shortest path approach based on the
following proposition [2].

Proposition 1: Every G contains a P of length 8(G) and C
of length at least 8(G) + 1 (provided that 5(G) > 2)

Proof: The longest P in G is Xg...X,. Then all the
neighbours of xi lie on P. Hence k > d(xy) = 6(G). If i <k is
minimal with e, €E, then x;... x¢x; is a C with length



C>46(G)+1[2]. 0

The shortest paths are calculated with the well known
algorithm of Dijkstra [18]. Afterwards the cycles are extended
with the information of the deleted edges of subroutine one.
Hence the original network is reconstructed and the gained
information of chordless cycles can be used to generate a
cycle-incidence matrix CI = (|E[x|C|).

In subroutine three the network is reduced with Theorem 1.
Each node of an edge, that has a least two non-zero entries in
the edge-row of CI, is merged into the graph in that way, that
one of two nodes is replaced by the other one and the touching
edge is deleted. Thus the original network is reduced to a
graph that contains nodes with d(x;) >3 and nodes with
d(x;) < 3. The earlier group is also connected to one or more
loops that may contain nodes or be a self-loop, see Fig. 4 Step
4. This reduced graph is thus analyzed with the extended
algorithm of [3] in subroutine four.

The extended recursive merge algorithm is based on the
obvious idea that s is prevented from arriving at t, if all edges
emitting from s are deleted. If one of these edges is not
deleted, then s has a MP to t since G is connected and these
edges are a MC of G. The basic idea is to build a SS —
adjacent nodes to s are merged one by one into this set —,
where all edges emitting from this SS are a MC. Furthermore
redundant nodes are also considered by merging this kind of
nodes into SS before a MC is calculated.

Due to the fact, that the network reduction creates also
redundant nodes (loops) that are not relevant for the MC
estimation, all self loops are eliminated. To verify that this
algorithm enumerates all first and second order cuts correct,
consider Lemma 3 and 4.

/—> v==t  No»
Recrusive Merge

(G, SS, v, t)

A

.y

Merge all
redundant nodes

Yes of G into SS

v

SS in hash

return . table

4Yes <

No
. A 4

Output MC, if Add SS to the
o(MC)<2 hash table

For each node vi
adjacent to SS

A

Fig. 2. Flowchart of subroutine four; the extended recursive merge algorithm
based on [3].

Lemma 3: Both, the network reduction and the extended
Alg. C do not produce isolated nodes in any subroutine.

Proof: In the network reduction subroutine, which is the
only subroutine in the pre-processing steps that eliminates
edges and nodes, only nodes are merged together. Since all
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nodes are connected and the merging-process does not
disconnect nodes, no isolated nodes occur (see Lemma 1 in
[3D. 0

Lemma 4: Any first and second order MC generated by
Alg. C can also be produced by the Algorithm of [3].

Proof: Since the Algorithm of [3], which itself is verified
on accuracy by the algorithm in [17], is except two special
requests concerning the order of MC and redundant loops,
exactly the same as Alg. C, and since edges of a MC with
o(MC)=1 are not eliminated by the network reduction,
Alg. C evaluates all MC correct up to the 2™ order. 0

In Fig. 2 the flowchart of the extended recursive merge
Alg. C is depicted.

C. An Example

A moderate size network is chosen to demonstrate the
methodology of the new proposed algorithm. This simple
network is evaluated with the algorithm to find the MC
between s and t. Not all steps are depicted detailed. Those
steps that eliminate more than one edge are a series of single
edge deleting and node replacing processes.

Consider the initial network G in Fig. 4 Step 0. After
deleting all nodes x; with degree d(x;) <3, the graph can be
displayed with Fig. 4 Step 1. The edge-deleting-subroutine is
necessary to estimate all induced cycles with the shortest path
approach. This approach is based on the idea (see Proposition
1), that the shortest path between node e.g. 1 and 2, if edge (1)
is deleted, includes edge (2) and (3) (see Fig. 7 (7)). This
operation is repeated until all |E| - [V|+ 1 induced cycles are
found. CI of the example is shown in Fig. 3.
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(26)
Fig. 3. The CI of the example with 26 nodes (first column) and 6 induced
cycles (upper row). The deleted edges in subroutine three are labeled bold.

In the next subroutine the graph is reduced as schematically



depicted in Fig. 4 Step 3.1 to Step 3.6. Step 3.0 in Fig. 4 is the
initial state. The algorithm in subroutine three firstly replaces
node 2 by node 3 and eliminates the edge (3). Next node 3 is
replaced by node 5 and the edges (4) and (6) are deleted as
well as node 4, which is not depicted in Fig. 4. This node is
the offspring of edge (4) and (6) and is therefore replaced by
node 5 (Theorem 1).

With this operation, a self-loop of node 5 with edge (5) is
created. It is obvious, that this self-loop is never a member of
a MC due to the definition of MC. In Step 3.3 node 5 is
replaced by node 7 and edges (7) and (8) are eliminated. In
this step the second self-loop at node 7 with edge (9) appears.
Step 3.4 shows how node 7 is replaced by the adjacent node
11 and edges (10) and (14) are deleted. The following Step 3.5
merges node 12 into node 11. This creates a new graph
without edge (15) and a third loop with node 10 (see Step 4 in
Fig 2.) and edges (11) and (13). As in Step 3.2 it is obvious
that the edges of this loop are never a member of a MC
because they are not on a path from s to t. Step 3.6 finishes the
network reduction subroutine three by merging node 18 into
node 12 and eliminating edges (17), (19) and (22). Subroutine
four (for results see Step 4 in Fig. 4) operates recursive (see
Fig. 2 and [3]). The main difference between the algorithm in
[3] and its extended version used here is that the extended
version in subroutine four can deal with self-loops. Redundant

(12,16, 21)
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loops, as the loop depicted in Fig. 4 Step 4 with nodes 18-8-
13-18, are merged into SS in one step and not one by one as in
[3] before creating a new MC. For example consider node 8 in
Fig. 4 Step 4. If SS = {1, 18}, node 8 is adjacent to SS and on
a redundant loop. The touching edges are never a MC for the
connection between s and t, respectively node 1 and 21.
Therefore G * 8 and G * 13 in one step, without creating a
MC. Both Alg. B and Alg. C provide the same results for the
graph example: six 2™ order MC MC 1 ... MC 6 with the
edges (see Fig. 4 Step 4) {(1), (2)}, {(25), (18)}, {(25), (20)},
{(25), (23)}, {(25), (24)} and {(25), (26)}.

V. BENCHMARK OF THREE DIFFERENT ALGORITHMS

A. Processing time of Alg. C.

The new proposed algorithm was tested with randomly
generated planar cyclic undirected grid-graphs G with fixed
numbers of nodes. The time to enumerate all MC was
measured and Fig. 5 depicts the results of running time versus
graph density, which is defined as 2:|[E|/(|V|-([V]-1)). The
number of nodes ranges from 24 to 40 at a step size of 4 and
the graph density ranges from 0.1 to the maximal size of
planarity at a step size of 0.005. The maximal size of the
planar graphs was calculated with [20]. The minimal size
results from the constraint that the graph has to be connected

(12,16, 21
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Fig. 4. Example network with source s und sink t from [3]; Step 0: Initial network; Step 1: result after subroutine 1; Step 2: result after subroutine 3; Step 3 and
Step 4: The different steps of the network reduction subroutine three and the six second order MC (see doted curves in the figure with title Step 4), when the
extended Algorithm of subroutine four (Alg. C) is applied.



without any intersections. This is guaranteed for the
considered range with a graph density exceeding 0.1. To test
either the randomly generated graph is planar or not algorithm
form [20], [21] was used.

Due to the stochastic behavior concerning the number of,
the induced cycles of the random graphs, the induced cycle
depended computation time versus the graph density was
fitted with a robust fit regression. This regression mode is
used, if outliers have to be considered with lower importance,
which is appropriate in this case. The results of this regression
for the considered random networks are also depicted in Fig.
5. It is evident that there is a linear relationship between the
graph density and the computation time for the 2-terminal
MC. Furthermore the computation time for the 2-terminal MC
per fixed number of nodes is increasing with the graph
density. This gradient of the linear function is unequal for
different number of nodes which is already pointed out in [3].
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Fig. 5. The computation time versus graph density 2:[E[/ ([V|-(JV|-1)) with
fixed number of nodes. RF ... Robust Fit regression for the relevant range of
planar cyclic undirected networks
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Fig. 6. The computation time for 2-terminal MC versus the increasing node
number of lattice networks is shown for all three used algorithms. Additional,
in the figure the number of 2™ order MC and the number of MP is depicted in
the left y-axis and upper y-axis respectively.

In Fig. 6, six lattice networks (for example see Fig. 7 (11)),
ranging from 20 nodes to 40 nodes in steps of 4 nodes are
compared concerning the computation time. Alg. A, Alg. B
and Alg. C are used to show the exponential computation time
behaviour of the problem. All three algorithms were
implemented in MATLAB on an Intel® Core™2 Duo CPU
with 3.33 GHz.

It’s worthless noting, that Alg. C is the fastest algorithm of
all three presented ones, if the network exceeds a certain size.
Alg. A, which enumerates all MC is the second best algorithm
in terms of computation time, if lattice networks with more
than 32 nodes are considered. Due to the huge computational
effort to calculate the MP, e.g. the lattice network with 32
nodes has 2'°=32768 MP, Alg. B is the slowest for lattice
networks with more than 32 nodes, even if MC up to the 2™
order are estimated.

B. Benchmark with test grids

The intermeshing degree v in Table I is defined as [E| / |V].
In power networks the intermeshing degree is normally
between 1 and 2, in power transmission networks, which are
focussed in this paper, it is between 1 and 1.5 [19]. Depending
on the number of nodes, for example the before mentioned
range for power transmission network ranges around a graph
density of 0.1 for a network with 30 nodes.

(1)S ’* ‘ \( (23) / ‘
C ® /§\ <“>(
’/ b)

o

P9 O—0—0__
.
\

Fig. 7. Eleven planar Benchmark-networks with source node s and sink node t
based on [3], [14]; Network (7) is used for the example to explain Alg. C.
Network (9) is used for the example in Lemma 2

In Table I the normalized computation time, related to the
respective fastest algorithm based on the best value out of ten
calculations, for each benchmark-network in Fig. 7 is
presented. The faster one of the two compared has a 1.00



TABLEI
NETWORK INFORMATION TABLE AND RESULTS OF THE BENCHMARK

Network Intermeshing 1* order 2" order 3 order Un.a\./ailu- Normalized computatioil time Normalized computation time
degree v Cuts Cuts Cuts ability Alg. Avs. Alg. B Alg. Bvs. Alg. C
PGy, 1.33 0 3 7 3.43.10°" 1.98 1.00 1.00 4.24
DG 1.66 0 2 3 2.28-10°% 2.42 1.00 1.00 2.18
2G(3)% 1.74 0 0 2 2.61-10™ 1.02 1.00 1.00 4.14
NETTY 1.63 0 0 3 39110 1.43 1.00 1.00 3.35
2G5 1.50 0 2 5 22810 1.13 1.00 1.00 3.62
2G6)2" 2.12 0 0 2 2.61-10 1.00 3.11 19.44 1.00
BG(T)h 1.24 0 6 66 6.85-10° 13.50 1.00 1.00 1.76
RG®)res 1.19 2 8 16 0.02 39.77 1.00 1.00 1.08
BG(9)sms 1.75 1 1 2 0.01 8.80 1.00 4.66 1.00
HG10)% 1.50 0 1 2 1.14-10° 1.00 3.11 1.00 2.28
M8 GA1) 0 1.48 0 51 98 5.82.107 1.00 * * 1.00

‘G(z)" Benchmark-network number z with v nodes, ¢ edges, p MP and ¢ MC.

* Due to memory problems no calculation could be performed.

* In h/ year; it is the same if all MC up to the highest order are considered or if MC up to the 2" order are considered, A =0.01 1/ year and p =1 h.
® The normalized computation time, if Alg. B evaluates all MC up to the 3" order and Alg. A evaluates all MC.

entry in the table. Alg. B considers MC up to the 3™ order for
comparison with Alg. A and up to the 2™ order for
comparison with Alg. C (see Table I). Alg. C determines all
MC up to the 2™ order. As a result of the investigation it can
be pointed out, that in the case of an intermeshing degree v
exceeding 2, the Alg. A is better for the MC calculation from
the point of view of computation time compared to Alg. B if
3™ order cuts or higher are analyzed. If Alg. B for 1% and 2™
order MC is compared to Alg. C, it can be seen, that for all
sample graphs except graph (6), (9) and (11), Alg. B has
lower computational time. Alg. C is the fastest for these
graphs that have a high number of MP, which is increasing
with the number of nodes and branches, respectively with the
graph density. The system unavailability in TableI is
calculated with the frequency and duration approach [4], [5].
The failure rate A of all components is 0.01 1/ year and the
repair rate u of all components is 1 h. The results in Table I
show that only 1% order cuts have a major impact in the
reliability evaluation if A and p are considered.

C. Computation of all MC

With the network in Fig. 8, that is more representative for a

real world power transmission network, the benefit of the new
proposed algorithm is shown when all MC up to the 2™ order
of a network have to be calculated.
The network in Fig. 8 is from [14] and has 57 nodes and 78
edges. It consists of five sources, 52 loads, 710 2™ order MC
and five 1* order MC. The network has an intermeshing
degree of 1.37, a graph density of 0.049 and 11497979 MP.
All MC up to the 2™ order are evaluated with Alg. B and
Alg. C. Alg. B needs 5242.1 seconds and Alg. C needs 198.7
seconds. This is a saving in computation time of more than
5043.3 seconds or in other terms, Alg. C needs only 3.8 % of
the computation time of Alg. B.

B
Fig. 8. Test network for the computation of all MC up to the 2™ order based
on [14] with 57 nodes (five sources and 52 loads).

VI. CONCLUSION

It is sufficient to calculate MC up to the 2™ order for 2-
terminal power system transmission reliability analyses,
especially in the context with transmission grid reliability
optimisation with Genetic Algorithms, where hundreds and
thousands of these operations have to be done. Since the
estimation of reliability in transmission grids is NP-hard,
research interest focuses on fast MC algorithms to reduce the
computation time to a minimum. The proposed algorithm,
which is based on a novel intuitive network reduction and on a
recursive merge approach, calculates all MC up to the 2™
order in satisfying time and even faster as the currently best
know algorithm. Depending on the number of nodes
respectively on the graph density, it is also faster as a simple,
but for small networks powerful, MP algorithm that generates
all MC up to the 2™ order. Furthermore with a 57 node test
network it is demonstrated that the new proposed algorithm



can calculate all MC up to the 2™ order. In terms of
computation time this is a reduction by 96.2 % compared to
the MP algorithm.
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