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Dynamic Load Parameter Assessment Based on
Continuous Recorder Measurements
Benjamin Genêt, Student Member, IEEE, Jean-Claude Maun, Member, IEEE

Abstract—This paper proposes an original approach to assess
the parameters of a dynamic load model. By taking advantage
of continuous recorder measurements, the procedure can be
fully automated. The idea is to exploit natural voltage variations
caused by transformer tap changes. These variations are detected
by a robust event detection algorithm. To deal with the huge
stochastic variation of the load, an averaging process is used
and its output is used in a nonlinear identification algorithm.
Results given by this procedure on real measurements taken in
a substation in the Belgian power system are shown. A review
of the literature on load model and on parameter identification
approaches is also presented, allowing a better understanding of
the aim of the procedure developed.

Index Terms—Load modeling, nonlinear dynamic load model,
automatic assessment.

I. INTRODUCTION

The loads are probably the least known element of the
power systems. Their behavior changes during the day – peak
vs. based load – and during the year – winter vs. summer
load. Considerable differences can also be observed depending
on the type of load: industrial, services or residential. Rough
estimation can be found in international surveys [1], [2] but
they present important variations and might not be accurate
enough for some applications.

All simulation-based applications can benefit from improve-
ment of the load model: load-flow, contingency analysis, dy-
namic security assessment, simulations for protective devices...
The needed accuracy is different for each case. If a constant
power load model gives good results for a load flow, it would
give a completely inadequate prediction for dynamic security
assessment in a voltage stability context. In the same way,
simulations to assess the angular stability (small signal or
transient) can give very different conclusions depending on
the used load model [3].

A better knowledge of the load model for the dynamic
simulations of the power system is thus required. This paper
will present a new automated approach that can give the
parameters of a dynamic load model. First of all, section II
gives a classification of the existing load models and section
III summarizes identification approaches. These two sections
help to understand the aim of the methodology described in
section IV. Section V shows results with field measurements
taken in a substation of the Belgian power system.
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II. LOAD MODELS

A wide range of load models have been described in the
literature. Several classifications in categories can be made.
The first two are very common and are found in nearly all
papers on load modelling. However it is interesting to go one
step further and to clarify other categories that are often only
suggested.

A. Component-based vs. measurement-based model

Two very different approaches can be used to build up a load
model. The component-based approach starts from individual
components to obtain an aggregated response of the load at
higher voltage level. The measurement-based approach uses
measurements taken directly at this higher voltage level to fit
the parameters of a model, without other knowledge of the
composition of the load.

Each method has its own advantages. The component-based
approach allows a better generalization capability. Only the
load mix of each bus – i.e. the proportion of industrial,
residential and service load – is required to compute a relevant
load model for the whole system once behaviour of each
classes is known [4], [5].

This generalization process cannot be used with the mea-
surement approach. When the load model parameters of one
bus have been determined by field measurements, no infor-
mation about the validity of this model for other busses is
available. Measurements should thus take place at each bus
where the load must be modelled.

The main advantage of the measurement-based approach is
its limited need of data. It does not require any data about the
load composition. That can be a major advantage in a liberal-
ized market where the data about load composition belongs to
the distribution system operator while the transmission system
operator tries to build a model of the load.

B. Static vs. dynamic load model

A static load model is a model where the power is function
of the voltage and/or the frequency but without time depen-
dency. The ZIP load model is an example which is widely
used. It shows three terms, capturing the behavior of a constant
power, constant current and constant impedance load.

P = P0
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(1)

With a1+a2+a3 = 1. A similar equation can be written for
the reactive part of the load or with a frequency dependency.
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In the sequel only the voltage dependency will be considered
though.

Another usual model is the exponential load model:

P = P0

(
V

V0

)α

(2)

The ZIP load model could appear appealing thanks to its
physical meaning. However, it is worth to be noted that this
model is often used in a measurement-based approach. In this
case, the second order model is simply used to fit at best a
set of measurements. It is common to obtain (large) negative
values for one or two of the ai parameters [6], without physical
meaning.

The exponential load model presents the advantage of
having only one parameter (α) instead of two in the ZIP load
model. This is an advantage for the identification procedure.

On the other hand, the dynamic load model presents a time
dependency that generally describes a recovery of the load:
following a voltage variation, the loads reacts instantaneously
before recovering towards a power closer to the previous load
consumption. This class of model can describe phenomena
as different as fast recovery of a motor or slow recovery of
a thermostatic controlled load. Another classification is thus
required and is addressed in the next section.

The presentation of dynamic load models is limited here to
two widely used models.

The first one is the composite motor load model. It is
made of two parts: a ZIP load model – which represents
the static part of the load – and an induction motor model
– which represents the dynamic part of the load [7]–[11]. The
induction motor may be represented with different level of
complexity. The third-order model is well accepted in power
system stability and is used here. The complete equations are
given in [8]. This model has 15 parameters to identify.

Another model has been proposed by Hill and Karlsson
[12], [13], initially to represent the thermostatic and Load Tap
Changer (LTC) recovery of the load which occurs with long
time constants in distribution feeders. It is also referred as the
Generic NonLinear Dynamic (GNLD) model and is described
by the following equations:

TpṖr + Pr = N(V ) (3)
Pd = Pr + Pi(V ) (4)

With:

N(V ) = Ps(V )− Pi(V ) (5)

Pi(V ) = P0

(
V

V0

)αi

(6)

Ps(V ) = P0

(
V

V0

)αs

(7)

Pd is the final load consumption. The steady state Ps and
instantaneous Pi load behavior are voltage dependent with
an exponent respectively αs and αi. Tp is the recovery time
constant and P0 is the steady state load consumption when
the voltage V is equal to nominal voltage V0. Same type of
equations can be written for the reactive part of the load. To

distinguish the parameters of the two part of the load, a P or
Q subscript is added in the remainder of the paper.

A major advantage of this last model is its reduced number
of parameters. The identification procedure is thus largely
simplified: 3 parameters (αs, αi and Tp) need to be identified
instead of 15 in the composite load model.

The Hill and Karlsson model has a major drawback too:
the complete decoupling of the active and reactive parts
of the load. That makes the models intrinsically incapable
to represent a phenomenon like a motor stalling. Transient
voltage instabilities need the representation of dynamic motor
model [7], [14], [15].

To simulate the evolution of a power system facing large
voltage or frequency variations, the choice of static or dynamic
load models can cause large differences in the conclusions
drawn [5]. A dynamic load model is recommended in this
case. However, the adequacy of this model when the system
experience condition far to nominal should also be analyzed
(see section II-E).

C. Linear vs. nonlinear

For the dynamic models, two types of nonlinearities must
be distinguished [16]:
• The nonlinearities in the state variables;
• The nonlinearities in the input variables.

For instance, the Hill and Karlsson load model is linear in its
state variable Pr but nonlinear in the input variable V . On the
contrary, the composite dynamic load model is nonlinear in the
state variables when the complete third order motor equations
are taken into account.

Recent work on load identification does not use much
linearization in the input variables and generally use nonlinear
optimization algorithm. The possibility to linearized in the
input variables still remains an interesting option if problems
are encountered in the identification procedure.

D. Short-term vs. Long-term dynamics

The loads include dynamic phenomena with time constant
ranging from some hundreds of ms to some hundreds of
seconds. At the lower end, the dynamic is caused mainly by
the active power recovery of the motors driving a mechanical
load, which usually takes place in less than 1s. At the higher
end, dynamic recovery is observable in presence of resistive
heating loads with a thermostatic control. The thermostat will
tend to supply the load during longer time interval when a
voltage decrease is observed. The aggregated response of a
huge group of this kind of loads is seen at the transmission
level as something close to a first order recovery. Static load
supplied by feeder with LTC can also be seen as dynamic with
long time constant from the primary side of the transformer.

A natural link can be made with the two models presented
in the previous section. It seems obvious to represent fast
dynamic with the composite induction load model and slow
dynamic with the Hill and Karlsson model. However, all
the models can be used to describe the different dynamic
phenomena by a proper fitting of the parameters, mainly the
time constant.
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E. Small signal vs. large signal models

The behavior of the load faced to small voltage variations
(less than 10%, close to nominal voltage) differs from its
reaction to more severe voltage drops. For instance, during
a voltage dip caused by a short circuit, some loads can be
completely disconnected by an undervoltage relay (the main
goal of this kind of relays is generally to avoid stalling of
induction motor during voltage drop). As a consequence, the
load can be reduced drastically after the clearing of the fault.

The models presented above are not able to deal with these
large discontinuities but only with small voltage variations [4],
[5], [17]. This is especially true for the Hill and Karlsson
model which does not capture possible motor stalling.

Field data are required to evaluate the shedding quantity in
relation with the importance of the voltage dip (voltage level
and duration). That can be made only with long term field data
acquisition because tests implying large voltage variations are
generally not desirable [4], [18].

F. Load model error

To reduce the errors in the assessment of the load model
parameters, it is important to have a better understanding of
the origin of the error.

The error of a given model comes from two sources [9],
[19]:
• The bias error which is related to the structure of the

model relative to the real structure of the load. It can
be decreased by an appropriate model choice but cannot
be cancelled because no model can fit perfectly an
aggregated load.

• The model variance error which is caused by the fact that
the data used for identification are noisy. In the case of
load model identification, the stochastic changes in the
load are the main cause of model variance error. It can
be approximated by σ2np/N where σ2 is the variance of
the noise, np is the number of parameters of the model
and N is the number of training data.

The Hill and Karlsson model is a good model from the
model variance error point of view because it has only 3
parameters. However, the bias error is probably higher than
for other load model due to its simplicity.

One can also conclude that a load model built on one or
two field tests is highly unreliable. A large number of data,
recorded on a long period of time is required to constitute
a valid load model. This is the only way to decrease the risk
that stochastic load variations interfere in the parameters of the
model. The procedure detailed in section IV attach a special
importance to this point.

G. Conclusion on load models

Clearly, the perfect load model able to deal with all phe-
nomena does not exist. A choice must be made in accordance
with the future use of the load model.

This paper focuses on the Hill and Karlsson model. In
reference to the categories cited here above, it can be qualified
as a dynamic nonlinear measurement-based model, with the

main aim of studying long-term dynamic of the load caused
by small voltage variations. The section IV details the original
methodology developed to identify the parameters of the
model. First, a review of the existing identification approaches
is presented in the next section.

III. LOAD MODEL PARAMETER ASSESSMENT

In this section, different approaches to assess the parame-
ters of a measurement-based model are reviewed. They are
presented in three groups in accordance with the type of event
that is used. A summary of parameter identification techniques
is then presented.

A. Voluntary small voltage variations

The most widely used method to assess the parameters of a
load model is to apply a voluntary voltage variation to a load
and to record its active and reactive power response. These
variations can be caused by different means:

1) Capacitor bank switching: the size of the step can be
approximated by QcN/Scc where QcN is the nominal
power of the capacitor bank and Scc is the short-circuit
power. In highly developed and meshed network, the
capacitor banks are generally not sufficient to generate
voltage step of sufficient amplitude.

2) Switching on/off transformer in parallel with different
ratios: if the load is supplied by two transformers in
parallel, they can be put on different ratios. Switching
one of them on (if initially only one supplies the load)
or off (if initially they both supply the load) can provoke
a step of up to 10% [20].

3) Successive steps of LTC transformer: the control of the
LTC is switched in manual mode and several steps in the
same direction are performed. The limits on the variation
depend of the minimum or maximum voltage accepted.
5% is common [21], some utilities goes until 8% [20],
[22] or 10% [13]. This method is simpler than the second
one but the voltage variation is closer to a ramp than to a
step. Reference [20] concludes however that the voltage
variation method (ramp or step) does not influence the
assessment of the parameters.

B. Natural voltage variation of small amplitude

The approaches mentioned in the previous section imply
voluntary voltage disturbances of amplitude that can become
problematic. In a distribution system, a voltage step of 5 to
10% can already cause a violation of the minimum voltage
at the end of the feeder. For an industrial load with sensitive
processes, the step in itself can induce some difficulties.

Anyway, these deliberate disturbances required special au-
thorizations and work for the implementation of the mea-
surement devices and for the performing of the tests. This is
globally a highly time consuming process. Several experiences
with an automated procedure have been made. The idea is to
exploit natural voltage change to assess the parameters of a
load model.

Reference [23] shows results of a long-term experiment
(3 years) where natural disturbances (mainly between 1 and
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4%) have been used to assess the parameters of a static
exponential load model. The results coming from each event
are then statistically studied. Histograms show the number of
occurrences of each numeric result. Similar presentation of
the results is made in [22]. The pattern of the histograms is
close to a Gauss curve. The maximum can thus be taken as a
representative parameter with a certain level of confidence.

References [24], [25] use the events detected to assess the
parameters of a dynamic load model with short-term time
constant. A statistical study is made in [25] where the events
are grouped depending on the instant when they appear: day,
night or evening and week-end.

Reference [26] is the only one to propose an automated
approach to assess the parameters of the Hill and Karlsson
model. This kind of model requires maintained disturbance
because of the long time constant that must be assessed.
The maintained disturbances can be caused only by LTC
transformer changes or capacitor switching and are always of
small amplitude (less than 2%). Moreover, the identification
window must be long enough to assess correctly the time
constant (at least around 3 times the time constant). During
this window, stochastic variations of the load are likely to be in
the same order of magnitude than the natural response of the
load to the small voltage step. If the identification procedure
succeeds to estimate the parameters of the load model, they
will certainly be unreliable because highly disturbed by the
stochastic change in the load. For instance, in [26], the results
for the steady-state parameters αs and Tp presents large
standard deviations.

Section IV deals with this aspect and proposes another way
to assess the parameters of a Hill and Karlsson model when
large stochastic variations are observed.

Another important point for these automated procedures
is the reliability of the voltage change detection. References
[10], [23], [24], [26] use very simple thresholds on voltage
changes, possibly with a condition on holding the new value.
The proposed method (section IV) goes further and includes
an algorithm coming from the fault detection in the control
area. This algorithm is able to detect with certainty all the
events without giving false alarms.

C. Natural voltage variation of large amplitude

References [8], [9], [27] use voltage variations caused by
short-circuits appearing naturally in the power systems. These
short voltage steps that are not maintained (the voltage comes
back close to its pre-fault value after a short delay) are only
suitable for models with a short-term time constant like the
composite load model. Static model parameters can also be
estimated [27], with the limitation that only the instantaneous
reaction is captured if the model is dynamic. In [8], an event
that implies a phase to earth fault is used. The positive
sequence of the voltage, active and reactive power is then
used to fit the parameters of the model. This approach can be
discussed; nothing proves that the loads behave in the same
way for symmetrical or unsymmetrical disturbances.

The parameters of the linearized composite load model are
assessed in [9]. The interesting aspect lies in the identification

procedure. Instead of running an identification procedure for
each individual event and then computing some statistics, the
identification procedure is run on the whole set of data to find
the best parameters for all the events together.

D. Parameter identification methods

Once the data are acquired, the identification procedure can
be run. This procedure is generally an optimization method
because there are more equations than unknowns. If the model
is static or linear, the process is quite straightforward and
implies linear least square minimization. Two approaches can
be considered if the model is dynamic and nonlinear:
• Linearize the model and then run a standard linear

optimization method [21], [28];
• Keep the nonlinear model and fit the parameters with a

nonlinear optimization method [19].
References [26], [29] compare both approaches without

pointing significant differences. Even if the nonlinear approach
is more complex, it is widely used, probably due to the
availability of the optimization toolbox dealing with nonlinear
method in Matlab. The computing ability of current PC is
also largely sufficient to use directly nonlinear model without
linearization.

The nonlinear optimization methods can be classified in two
categories:
• First order methods: starting from an initial guess, a

gradient information is used to evolve towards a better
solution. Newton-Raphson method enters in this category.
A major drawback is the risk to fall in a local minimum.
The global minimum will be reached only if the starting
point is close to it.

• Zero order methods: no gradient information is used.
Stochastic change or geometric transformations are ap-
plied to a set of initial guesses. Simplex method [30], sim-
ulated annealing [29], ant colony [10], genetic algorithm
[31] methods have been successfully applied to nonlinear
dynamic load parameters assessment.

Zero-order methods are generally advised when no other
knowledge on the landscape of the function is available. The
method presented in the next section is based on the simplex
method which presents the advantage to be deterministic.
The method is thus easier to understand and one can follow
its development. That gives generally a higher acceptance
compared to stochastic method, even if they can possibly
perform better or faster.

IV. DESCRIPTION OF THE METHOD

This section describes an original method to assess the
parameters of a long-term dynamic load model using natural
voltage variations happening at the load bus. As explained
in section III-B, this constitutes a real challenge because
stochastic load variations can be of the same order (or even
bigger) than the natural response of the load to small voltage
variations. The procedure uses data of several events averaged
together to solve the problem. A set of individual events where
the noise (i.e. the stochastic variations) is bigger than the signal
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(i.e. the natural reaction of the load to the voltage change) can
become usable when used together. This is clearly illustrated
in the section V.

The initial assumption to develop the method is that con-
tinuous recorders are installed at the load bus. They give the
rms value of the voltage, the active and reactive power. The
refreshment rate must not be very high because the aim is
to capture long-term evolution of the load. A value between 1
and 5Hz is sufficient. The measurements can be treated locally
or send to a central data gathering system which collect data
from several monitored loads.

The continuous records can be used offline, for instance by
downloading every month the new data and running on them
the procedure described below. Parameters representative of
this month of measurements are then obtained. If significant
changes are observed with respect to the previous data, para-
meters can be updated in the simulation models of the power
system.

An alternative is to use the records online. Each time that
a new event is detected, it is added to the database and
old measurements are removed (either one by one or with
a forgetting factor decreasing progressively the importance of
old measurements in the database). The identification process
gives a new value of the parameters after each event. This
online approach can be interesting if a link is made with
the security assessment software to update regularly the load
model parameters.

An offline method with a monthly refreshment rate would
already represent a huge improvement compared to the one-
shot method described in the section III-A. The procedure
is presented in this way below. It is composed of three
main parts: the event detection, the averaging process and the
identification algorithm.

A. Event detection

The aim is to detect efficiently steps or fast variations in
the voltage. Compared to simple trigger, the method is very
robust with respect to noise and do not detect voltage dips
lasting for a short interval of time.

The method is based on a Cusum (CUmulative SUM)
algorithm [32], which originates from the fault detection field
in a control context. It is generally used to detect faulty sensors
and is very robust to noise.

In its original version the Cusum algorithm follows these
steps to detect fault in a vector of measurements z:

1) Compute an initial mean µ0 of the vector z, initialize
cumulative sum g0 to zero and choose two thresholds:
β and h.

2) For each new sample zi, compute gi = max(0, gi−1 +
zi − µ0 − β/2). If gi > 0, increase the variable delay d
by one. Else, put d to 0.

3) If gi > h, a fault is detected. The time of the fault is
given by i− d.

Therefore, the algorithm detects an increase of the value of
z larger than β/2 after a certain delay depending of the value
of h. This delay is precisely what gives the noise immunity
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Fig. 1. Succession of windows for the modified cusum algorithm

to the algorithm. The application to the detection of variation
in the voltage needs some adjustments:
• Variation in both directions (increase or decrease of the

voltage) must be detected. The cumulative sum g is
replaced by two variables g+ and g−. This is common
and is referred in the literature as a two-sided Cusum
algorithm.

• The voltage may evolve slowly due for instance to normal
load evolution along the day. With an algorithm running
continuously, these slow evolutions would be detected
(after a long delay). To avoid this, the algorithm has been
modified in a windowed version (figure 1). The process
is essentially the same but µ0 is recomputed regularly
(colored window). The cumulative sum is run only on a
limited subsequent window (blank rectangle). If no event
is detected, both windows are then slided towards the
new samples. When an event is detected, a new window
begins just after it.

• Finally, to facilitate the use of the algorithm, the input
parameters β and h have been replaced by more meaning-
ful parameters: the minimum variation percentage and the
maximum time to reach this variation (for instance: detect
change of 1% occuring in less than 20s).

The threshold should be chosen to detect the LTC trans-
former (usually around 1%). Voltage dips are not detected
thanks to the delay of the Cusum algorithm. All events
detected qualify for a long-term load model assessment from
the point of view of the voltage variation.

B. Averaging process

All the events detected by the Cusum algorithm are averaged
together to obtain data with a very high signal to noise ratio.
The process includes the following steps:

1) Only events implying voltage step of the same amplitude
must be used. Indeed, the model is nonlinear and the
average of the inputs (V ) does not give the average of
the outputs (P and Q). Fortunately, because the events
are due to tap changes, they are all of the same size.
The only events to remove are those with several steps
in the windows that will be used for the identification
procedure.
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2) All events are normalized with their mean pretrigger
value (V , P and Q). In the equations 6 and 7, V0, P0 and
Q0 become equal to 1. It can be shown mathematically
that the approximation made is very small.

3) A step direction is chosen. All the events in the other
direction are reversed to be in the chosen direction.

4) Voltage, active power and reactive power of all events
are averaged.

With a sufficient number of events, the stochastic variations
of the load are largely reduced and the parameters of the model
can easily be estimated if the model structure is good.

C. Identification algorithm

The averaged signals are used to run a nonlinear optimiza-
tion algorithm that gives the value of the Hill and Karlsson
model parameters. The simplex method is used. The optimiza-
tion of a problem with n variables includes the following steps:

1) Starting from an initial solution, an initial simplex is
constructed. A simplex is a geometric form with at least
n + 1 vertexes in the n-dimensional parameters space.

2) A cost value is associated at each vertex. Here, the cost
function is a standard square error function between
the measurements and the model assessed with the
parameters of the current vertex.

3) Geometric transformation is applied to the point with
the highest cost. The transformation applied includes
reflection, extension and contraction with respect to the
barycentre of the other vertexes.

4) The procedure is continued until the convergence of the
vertexes.

Several simplex algorithm have been tested, namely those
of [30], [33] and some variants of them. The procedure to
construct the initial simplex has also been changed, as well
as the number of vertexes includes in the simplex. Finally,
it is difficult to decide between the methods because each
variant can give the better results in some cases. The simplex
method described in [30] (available in the Matlab optimization
toolbox: fminsearch function) can be used with confidence.

An interesting option can however be implemented. In
reality, physical bounds are known for the parameters of the
model by engineering judgment. If a parameters θ has a known
limited interval [θmθM ], it can be replaced by another variable
ζ which will be without bounds. Two transformations can be
used: inverse tangent and hyperbolic tangent [33]. The latter
is:

ζ = arctanh

(
2θ − (θM + θm)

θM − θm

)
(8)

The identification process with this reduction of the search
space is less time consuming. The transformation can also
help the convergence. In some case, the simplex with the set
of initial parameters fails to converge while the one with the
modified set succeeds.

V. RESULTS

Two measurement campaigns have been run in the Belgian
power system. The results of the first one are detailed here.
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Fig. 2. Event detected on the voltage. The colored rectangle shows the
window to compute the initial mean µ0, which is represented by the tick
horizontal segment. The event occurring at the time indicated by the dashed
line is detected at the time shown by the dotted line.

The measurements have been taken continuously during 13
days on a distribution load supplied by a 150/11kV transformer
with a LTC (steps of 1.8%).

Due to the short length of the feeders, they are not equipped
with voltage regulators or automatically-switched capacitors.
As a result, the feeder load responds to voltage disturbances
with its natural characteristic. The short-circuit power is large
enough to limit disturbance in the voltage caused by capacitor
switching in transmission system or load change to very small
amplitude. Hence, these events are not detected by the Cusum
algorithm.

The load evolves between 17 and 30MW with a power factor
around 0.97 (nominal power of the transformer is 50MVA). No
complementary information on the mix or on the composition
of the load is available.

The Cusum algorithm detected 96 events during the 13 days.
All steps due to LTC are observed and no other cause leads to
detection. Figure 2 shows one event on the voltage, with the
corresponding active and reactive power. As can been seen, the
stochastic variation are huge. The simplex algorithm is unable
to converge on this kind of event and, even if it succeeds, the
parameters would be unreliable.

All the events are then grouped together with the averaging
process. Six events are excluded by the filter because several
steps in the same direction appeared in the identification
window. Ninety events remain. Their average can be seen on
figure 3. The signal to noise ratio is much better and the natural
response of the load to the voltage change is clearly visible. A
bigger number of events would have been preferable on this
highly disturbed load.

The active power behaves essentially as a static load. This
result was expected because the part of electric heating is small
in the Belgian load and the short feeders are not equipped with
LTC. The reactive power presents a slight recovery with a time
constant of 60s. The second campaign conducted on a different
load shows very similar results: the active power is static and
the reactive power is dynamic with a more visible recovery.
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Fig. 3. Results of the dynamic load parameter assessment on an average of
90 events.

The identification process gives the following results:
• Active power: αsP = 1.7408, αiP = 1.6474, TP =

1089.8s. The slight difference between the two voltage
exponents shows that the load is static. In this condition,
the time constant is not reliable and is more linked to
the remaining stochastic variation. As the time constant
is bigger than the size of the windows, the static behavior
of the load is here better represented by the αiP exponent.

• Reactive power: αsQ = 5.2577, αiQ = 6.5719, TQ =
60.823s. The exponents here are clearly different; the
time constant is thus well estimated. The high value
of the exponent can be explained by the conjunction
of two elements: the magnetic components operating in
saturation zone [2] and the reactive compensation of the
load in distribution network [34].

VI. CONCLUSION

Inaccuracy in the parameters of the load model or inade-
quate model can cause important mistakes in power system
simulations, especially in the area of dynamic simulations.

This paper presents an original method to identify the
parameters of a dynamic load model in an automated way. The
measurements given by a continuous recorder are analyzed by
a robust algorithm to detect voltage steps caused by the LTC
moves. The high random variation of the load with respect
to the small variation caused by one step of the LTC makes
the identification procedure of individual event impossible
and/or unreliable. An averaging process is run, using all the
events detected during a long measurement campaign. An
identification procedure is then run to find the parameters of
a Hill and Karlsson model that described the load at best.

Results of a measurement campaign in the Belgian power
system are presented. A second campaign has been made, lead-
ing to similar results. The active load behaves predominantly
as a static load. The reactive load presents a slight recovery
with a time constant around 60s.

Industry is asking for low-cost dynamic load monitoring
device [35]. The presented method can be seen as a step into

this direction, proposing a method that can be used for the
software of such device.

Several perspectives of this work can be cited. Longer
campaigns could allow analyzing the variability of the para-
meters of the loads along the day, the week and the year. A
large measurement campaign can also be conducted to study
the discrepancies between several load busses of the power
system. The Belgian transmission system operator launched a
large campaign that will record the evolution of the loads from
the dispatching. A first analyzis of the measurements shows
that their sensitivity is sufficient to study the load model, at
least statically. The main advantage is that the campaign is
very easy and cheap to implement.

Other load models can also be estimated with a similar
approach. The Hill and Karlsson model has been chosen
here because it fits the measurements well. A real complete
automated procedure should ideally include an algorithm to
select the appropriate load model structure before identifying
the parameters.
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