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Abstract-- In this paper, an improved maximum loading 

point (MLP) calculation method is proposed. The calculation 
process is based on the properties of the normal vector to the 
feasibility boundary computed close to MLP, which is 
calculated by a load flow method with step size optimization 
(LFSSO). The process is characterized by obtaining 
consecutive approximations of the MLP within the infeasible 
region. Since the feasibility boundary contour in the 
neighborhood of the MLP may not be smooth, some of the 
computed approximations may fall within the feasible region. 
In an earlier paper, a mechanism based on binary search was 
used to drive the operating point back to the infeasible region. 
A new load curtailment method to improve the proximity 
towards feasibility boundary guaranteeing that the next 
solution will lay within the infeasibility region i s the main 
contribution of this paper. Reactive power generation limits are 
taken into account. The proposed formulation requires 
information as the normal vector and power mismatches, and 
results in a better convergence path towards MLP in 
comparison with the original version of the method presented 
earlier. Simulation results for IEEE test systems are shown to 
validate the proposed method. 
 

Index Terms-- Maximum loading point, voltage stability, 
load flow analysis, step size optimization. 

I.  INTRODUCTION 

N recent years, the increase in peak load demand and 
power transfers between utilities has led to an increased 

concern about power systems voltage security. This 
phenomenon has been deemed responsible for several major 
disturbances and significant research efforts have been made 
to further understand voltage phenomena [1]. The voltage 
instability process is characterized by a monotonic voltage 
drop, which is slow at first and becomes abrupt after some 
time. Voltage collapse occurs when the system is unable to 
meet the demand, and the phenomenon is characterized by 
the loss of control of the voltages levels. Voltage collapse is 
generally precipitated by system disturbances, such as load 
variations, contingencies, or both. 

Voltage stability is essentially a dynamic phenomenon, 
and the system’s behavior depends on the models of the 
loads and other system components. However, analyses 
based on static approaches present some practical 
advantages over the dynamical approaches [2]. Analyses 
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based on static approaches have been widely used, since 
they provide results with acceptable accuracy and little 
computational effort. These features are desirable in 
restrictive environments from the computational effort 
standpoint, such as in a real-time operation environment. 

Another difficult problem is related to solving ill-
conditioned systems or determining the existence of load 
flow solutions. Whenever the iterative process diverges or 
oscillates using the conventional load flow calculation 
methods, one could not be sure whether the given load flow 
equations (i) have no solution from the initial estimate, or 
(ii) the iterative process did not converge due to numerical 
problems though some solution exists. In [3], a step size 
optimization factor is computed at each iteration and is 
multiplied by the voltage correction vector so as to minimize 
a quadratic function based on the power mismatches. This 
method worked very well, however the voltages appeared in 
rectangular coordinates, which is not a common feature of 
production grade load flows programs. An approach based 
on the representation of voltages in polar coordinates was 
proposed in [4] and its advantages have already been 
demonstrated [5].  

Recently in [6], the authors recommended the 
implementation of the optimal multiplier modification to the 
Newton-Raphson load flow method with polar coordinates 
(rather than rectangular coordinates) to get the fastest, most 
robust performance, regardless of system solvability or size. 

A particular difficulty of voltage stability analysis is the 
singularity of the Newton-Raphson load flow Jacobian 
matrix at the steady state voltage stability limit. In fact, this 
stability limit, also called the critical point or Maximum 
Loading Point (MLP), is often defined as the point where 
the load flow Jacobian matrix is singular.  

The goal of this work is to use the LFSSO in polar 
coordinates for calculating the MLP, extending the ideas 
and load curtailment techniques of [7]. According to method 
[7], whenever the solution falls inside the feasible region, a 
mechanism based on binary search is used to drive the 
operating point back to the infeasible region. A new load 
curtailment method to improve the proximity towards 
feasibility boundary guaranteeing that the next solution will 
lay within the infeasibility region is the main contribution of 
this paper. 

II.  THEORETICAL CONCEPTS 

A.  Load flow formulation  

The load flow equations are formulated as 
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0xg =),( ρ , (1) 

where x∈ℜ(2nPQ+nPV) is vector of state variables, x=[θt V t] t, 
also θ∈ℜnPQ+nPV and V∈ℜnPQ are vectors of bus voltage 
angles and magnitudes, respectively; ρ∈ℜ is the loading 
factor; nPQ and nPV are the number of PQ and PV buses, 
respectively; g(x,ρ) is defined as g=[∆Pt ∆Qt] t, where 
∆P∈ℜnPQ+nPV and ∆Q∈ℜnPQ are the power mismatches. 
Equation (1) can also be written as 
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where subscripts sch and cal stand for scheduled and 
calculated terms, respectively. Also, the reactive power 
generation limits are taken into account, so PV buses are 
switched to PQ whenever some limit is reached and can be 
switched back to PV whenever appropriate. 

B.  Maximum Loading Point 

In this paper a constant direction of generation and load 
increase is considered, which is defined as proportional to 
the base case, so Psch = ρPsch-bc and Qsch =ρQsch-bc where bc is 
base case (for ρbc = 1). Also, Psch-bc = Pg-bc – Pl-bc and Qsch-bc 

= Qg-bc–Ql-bc where l and g are associated to load power and 
generation, respectively. This load increase direction 
(constant power factor) is usually adopted by utilities and 
regulatory agencies for the definition of secure loading 
margins [8,9]. 

The loading factor reaches its maximum value ρ = ρcr (cr 
stands for critical point) on the voltage stability boundary Σ. 
This point is usually called the maximum loading point 
(MLP). Boundary Σ divides the space into two regions: (i) 
region where there are two solutions for system (1), or 
feasible region; and (ii) region where (1) cannot be solved, 
or infeasible region. 

C.  Load Flow Method with Step Size Optimization  

LFSSO was first developed for solving the load flow 
equations for ill-conditioned power systems. For those, the 
conventional load flow methods exhibit poorer performance, 
or simply diverge, although the system indeed operates in a 
stable equilibrium point. This idea was first presented in [3], 
where the voltages were represented in rectangular 
coordinates. In [4], an approach based on the representation 
of voltages in polar coordinates was proposed. 

At the rth iteration of the LFSSO (assuming ρ fixed), the 
state variable vector x(r+1) is calculated as  
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where µ(r) is a step size optimization factor that multiplies 
the state variable deviation vector ∆x(r) in each iteration r; 
∇xg is the Jacobian matrix of g. Also, µ is computed to 
minimize the following quadratic function based on the 
power mismatches. 
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where gts is g expanded in Taylor series, considering up to 
the second-order term, as 
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Also, T(x) corresponds to second order terms of g, given by 
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Substituting (5) in (4) and applying the local minimum 
condition ∂F/∂µ = 0, a cubic equation is obtained and solved 
for µ. 

For well-conditioned systems, µ assumes values close to 
one and does not affect the iterative process in a significant 
way. In the case of ill-conditioned systems, µ assumes 
values such that the iterative process is smoothed out and 
the solution is obtained, while the conventional Newton 
method would have failed.  

D.  Applications of LFSSO for Voltage Stability Analysis 

For the cases outside the feasibility region (either due to 
an excessive loading or to a contingency), µ assumes very 
low values (theoretically µ→0). Overbye [10] showed that 
LFSSO leads to a point on the feasibility boundary Σ rather 
than to simply diverge. Note that the Jacobian matrix is 
singular on Σ, therefore the step sizes ∆x are large in its 
vicinity. However, the convergence of LFSSO is not 
affected thanks to µ (µ∆x→0). With this information (points 
on boundary Σ), further applications of the LFSSO (as to 
calculate the MLP and security margins for voltage stability) 
can be proposed. 

E.  Load Curtailment Techniques 

In [7], information about the boundary Σ is used for 
developing applications for the LFSSO (as to calculate the 
MLP). Fig. 1 shows the general behavior of LFSSO for an 
excessive ρ (i.e. ρ>ρcr) in load parameter space with ssch 
direction, which is a unitary vector in the direction of load 
increase defined by vector Ssch, where Ssch = [Psch

t Qsch
t] t. 
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Fig. 1.  LFSSO features in load parameter space [7]. 
 

Also in [11], the normal vector to boundary Σ is 
calculated at the last MLP. This normal vector w is 
calculated from (1) as 
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where xmlp is the state variable vector at the last MLP; ||w||2 
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is the Euclidean norm of w, so w is a unit vector.  
According to [7], considering the two-dimension load 

parameter space shown in Fig. 2, information on the last 
calculated MLP and (7) can be used to calculate the unit 
normal vector w to the boundary Σ at this point. Finally, a 
load curtailment ∆Slc,1 is calculated as 
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where ∆S∈ℜ(2nPQ+nPV) is power mismatches vector, ∆S = 
[∆Pt ∆Qt] t; 〈∆S,w〉 is a dot product of ∆S and w; β is the 
angle between ssch and w, so cosβ = 〈ssch,w〉. The loading 
factor deviation ∆ρ∈ℜ due to load curtailment step is 
calculated as 
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So, the new estimation of ρ will be ρnew
 = ρ – ∆ρ. 
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Fig. 2.  Load curtailment step to the last calculated MLP. 

III.  PROPOSED METHOD FOR COMPUTING MLP 

Simulation results for IEEE test systems up to 300 buses 
showed that the method of [7] presents good performance 
and allows the MLP computation with less iterations, if 
compared with other methods. However, a detailed analysis 
of the performance of method [7] showed that it is possible 
to improve it by extending its idea. 

A.  Performance of method [7] within the feasible region 

The main feature of method [7] is that the sequence of 
operating points is usually within the infeasible region. 
However, there are situations, especially for robust systems 
and severe contingencies, where the load curtailment 
frequently leads to feasible points. The result is an increase 
in the computational burden, since binary search is used for 
returning to infeasibility. 

Figs. 3 and 4 show some simulations results for the IEEE 
57- and 118-bus systems using the method [7]. 
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Fig. 3.  IEEE 57-bus system – process of computing MLP with method [7].  
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Fig. 4.  IEEE 118-bus system – process of computing MLP with method 
[7].  

 
Note that right in the first iteration a point very close to 

crρ  is obtained, showing the efficiency of the method. 

However, for ρ(0) = 8 the point lays within the feasible 
region in Fig. 3. Fig. 5 shows this situation more clearly, 
since the region around the first iteration is zoomed in. For 
ρ(0) = 8 the point computed by method [7] lays below the 
continuous line corresponding to ρcr, that is, within the 
feasible region. Analogously, Fig. 6 corresponds to zooming 
in part of Fig. 4, where a point also lays within the feasible 
region. According to method [7], whenever a feasible point 
is obtained, binary search is used in order to search for new 
infeasible points. The main goal of the proposed method is 
to deal with such situations more efficiently, since binary 
seach may result in a larger number of iterations. Therefore, 
an extended load curtailment technique is proposed here. 

B.  Conservative Load Curtailment Technique 

Since boundary Σ may not be smooth, it is possible that a 
load curtailment ∆ρ computed by (9) leads to a point into 
the feasible region. In this case, an extended load 
curtailment is carried out. 
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Fig. 5.  IEEE 57-bus system – zoom of Fig. 3 around the first iteration. 
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Fig. 6.  IEEE 118-bus system – zoom of Fig. 4 around iterations 4 and 5. 

 
As shown in Fig. 2, load curtailment ∆Slc,2 can be 

obtained using similar information, and it is calculated as 

schschlc ssSS ,2, ∆=∆ , (10) 

where 〈∆S, ssch〉 is the dot product of ∆S and ssch.  
 
Remarks 
 

Exhaustive simulations with test power systems showed 
that method [7], with load curtailment ∆Slc,1, presents good 
performance since it seeks to approximate the solution near 
to boundary Σ. However, it assumes a risk falling within the 
feasible region. 

Depending on the curvature of Σ, one may have ||∆Slc,2||2 
smaller or larger than ||∆Slc,1||2, but for the systems tested in 
this paper, ||∆Slc,2||2 < ||∆Slc,1||2 was obtained in most cases.  

Additionally, simulations showed that the process using 
∆Slc,2 only always results in points within the infeasible 
region and its performance is poorer than the method [7]. 
When ∆Slc,2 is applied, it can result in accuracy problems 
and tend to wrong loading factors to the required tolerance 
(e.g. off-set close to the solution). Even though ∆Slc,2 is 
conservative, some characteristics of its performance can be 
used to improve the numerical stability of method [7].  

C.  Extended Load Curtailment Technique 

The extended load curtailment is based on combining (8) 
and (10), as 
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and the resulting loading factor change ∆ρ due to new load 
curtailment (11) will be 
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In order to guarantee that the load curtailment process 
will remain in infeasible region, the following modification 
in (12) is proposed.  
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where η is a system-dependent parameter. 
The implementation of such changes ((11)-(13)) in the 

original LFSSO algorithm is straightforward.  
 

Remarks 
 

It is important to point out that load curtailment (13) will 
be applied only when the process falls within the feasible 
region, thus (13) is used for calculating a new ρIR (loading 
factor supposedly within the infeasible region) which  
replaces the binary search approach. 

This effective load adjustment produces an operating 
point close to the boundary Σ, resulting in a more efficient 
calculating process of MLP, with a smaller number of 
iterations when the loading point is located in the feasible 
region. The performance considering limits on reactive 
power generation is similar to the one without considering 
such limits. 

IV.  TEST RESULTS 

The proposed method has been tested for several IEEE 
test systems. The LFSSO convergence tolerance εs was set 
to 0.001 MW/MVAr, the loading factor tolerance ερ was set 
to 10-2 and the step size threshold µmin to 10-2 for IEEE 57-
bus, µmin to 0.2 for IEEE 118-bus and µmin to 0.5 for IEEE 
118-bus with contingence. Reactive power generation limits 
at generation buses were considered. Parameter η was set to 
one, except mentioned otherwise. 

For simulation purposes, different infeasible initial points 
ρ(0) were chosen as 6, 8, and 10. Simulations with IEEE 57- 
and 118-bus systems were carried out, since for these 
systems the method of [7] frequently led to points within the 
feasible region. Also, the IEEE 118-bus system was tested 
under a contingency situation.  It is important to stress out 
that the efficiency of method [7] relies heavily on obtaining 
infeasible points. The idea of the proposed method is to 
keep the points within the infeasible region as much as 
possible, in order to obtain an overall computational effort 
reduction. 

Figs. 7 and 8 shows the process of obtaining the MLP for 
the IEEE 57- and 118-bus systems, respectively (data 
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obtained from [12]) using the proposed method with the 
extended load curtailment technique. The gain is clear, since 
the number of feasible points (below the straight line) is 
smaller, and so is the number of iterations, when the 
proposed method is used. The precision of the results was 
satisfactory when compared to the results from method [13], 
even though the latter resulted in a heavier computational 
effort.  
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Fig. 7.  IEEE 57-bus system – process of computing MLP with proposed 
method. 
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Fig. 8.  IEEE 118-bus system – process of computing MLP with proposed 
method. 
 

Tables I and II show the performance of the proposed 
method and a comparison with the method [7] for the IEEE 
57- and 118-bus systems, respectively. Also, the results 
obtained by the method [13] (continuation load flow - CLF) 
are shown for precision comparison purposes. Note that the 
closer ρ(0) is from ρcr, the better is the performance of the 
proposed method. The number of points in the feasible 
region (FR) and infeasible region (IR) were also shown. 

 
TABLE I 

SIMULATION RESULTS FOR THE IEEE 57-BUS SYSTEM 
 

Number of LF 
Method [7] Proposed Method 

 
Initial 

ρ FR IR Total 
Computed 

ρ 
FR IR Total 

Computed 
ρ 

CLF ρ 

6 4 5 9 1.6173 2 4 6 1.6025 
8 4 6 10 1.6097 2 4 6 1.6075 
10 3 3 6 1.6216 2 2 4 1.6175 

1.6168 

 

TABLE II 
SIMULATION RESULTS FOR THE IEEE 118-BUS SYSTEM 

 
Number of LF 

Method [7] Proposed Method 
 

Initial 
ρ FR IR Total 

Computed 
ρ 

FR IR Total 
Computed 

ρ 

CLF ρ 

6 3 6 9 2.1134 2 5 7 2.1116 
8 3 7 10 2.1153 2 6 8 2.112 
10 0 5 5 2.1332 0 5 5 2.1332 

2.11 

 
Note in Table II that for ρ(0) = 10 the number of iterations 

was the same for both methods, since the points obtained by 
method [7] were all infeasible. Therefore, the proposed load 
curtailment was not used. 

Comparing Figs. 3 and 7 for ρ(0) = 8, note that the 
proposed method leads to a better point in the second 
iteration. This is the detail the implies in a better 
performance of the proposed method.  

Figs. 9 and 10 shows some results for the IEEE 118-bus 
system after the outage of transformer 8-5 using method [7] 
and the proposed method. 
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Fig. 9.  IEEE 118-bus system – process of computing MLP after the outage 
of transformer 8-5 using [7]. 
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Fig. 10.  IEEE 118-bus system – process of computing MLP after the 
outage of transformer 8-5 using the proposed method. 

 
Table III summarizes the results. The better performance 

of the proposed method is clear. Method [7] applied to 
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contingency cases tended to drive the loading factor into the 
feasibility region more often. As mentioned earlier, this 
leads to a larger number of iterations. The proposed method 
resulted in less iterations. Figs, 11 and 12 show details of 
Figs. 9 and 10 by zooming in the images for some iterations. 
The gain provided by the proposed method is clear after the 
second iteration, where the feasibility region is reached. The 
proposed load curtailment is more efficient since it leads to 
an infeasible point, closer to the feasibility boundary. 

 
TABLE III 

SIMULATION RESULTS FOR THE IEEE 118-BUS SYSTEM WITH A 

CONTINGENCE IN 8-5 
 

Number of LF 
Method [7] Proposed Method 

 
Initial 

ρ FR IR Total 
Computed 

ρ 
FR IR Total 

Computed 
ρ 

6 4 5 9 1.2717 2 3 5 1.2702 
8 0 5 5 1.2629 0 5 5 1.2629 
10 4 6 10 1.2682 2 5 7 1.2558 
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Fig. 11.  IEEE 118-bus system – zooming in the process of computing 
MLP after the outage of transformer 8-5, using [7]. 
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Fig. 12.  IEEE 118-bus system – zooming in the process of computing 
MLP after the outage of transformer 8-5 using the proposed method  
 

Method [7] leads to points very close to the feasibility 
boundary, however, there is always the risk of a feasible 
point be obtained during the process. Rather than using 

binary search, the proposed algorithm uses an extended load 
curtailment that uses a more conservative measure (||∆Slc,2||2) 
in addition to ||∆Slc,1||2, resulting in a better estimate for the 
next point. This contribution resulted very important for the 
efficiency of the proposed method. 

In general, the proposed method is more efficient than the 
method [7], resulting in a smaller number of iterations. This 
is especially true for larger systems and severe contingency 
situations. 

V.  CONCLUSIONS 

The main idea of this research work was to propose an 
improvement of the method proposed in [7], by changing the 
load curtailment process and preserving the main feature of 
method [7], which relies on obtaining a sequence of points 
in the infeasible region. 

Information on the last MLP computed by the LFSSO 
and the normal vector to the feasibility boundary are used to 
define a load curtailment. Usually the next point is also in 
the infeasible region, which makes the method very 
efficient. Whenever a point falls within the feasible region, 
an extended load curtailment is proposed to improve the 
overall efficiency of the process. The result is a very 
efficient calculation process, with a very small number of 
iterations. The proposed method is even better for larger 
systems and severe contingency situations. 
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