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Abstract—Fast and correct fault diagnosis is too important for 
power systems restoration. Recently, much research endeavors 
have been done for fault section diagnosis of power systems by 
using several techniques, such as logic-based expert system, rule-
based expert system, fuzzy relation based expert system, artificial 
neural network, optimization techniques based approach, etc. 
They diagnose the fault from different ways. However, each 
approach has its limitations. In this paper, a Bayesian approach 
by RBF learning is proposed using a simulation technique, the 
Markov chain Monte Carlo (MCMC), to predict the fault in a 
typical power transmission line. 
 

I. INTRODUCTION 
Transmission lines are the most essential equipments in the 

electrical power systems. When a short circuit in a power 
system is occurred, protective relays will operate and clear the 
fault. Keeping in mind that in larger power systems, multi 
circuits’ transmission lines, more relays, registers, circuit 
breakers, etc are exist. So, number of warnings dispatched to 
control center during the fault accruing is much more. In case 
those main protections do not operate properly and on-time, 
back up protections will operate related to this situation. There 
are two main negative consequences: first, it causes 
undesirable load interruptions of other buses, and second, 
leads to decision making of operator in emergency conditions 
to be more difficult, according to variety of dispatched 
warnings to main control center. 

Due to it involving a lot of uncertain signals, which are 
caused by many factors, such as mal-operation and non-
operation of circuit breakers or relays, data-transmission error 
of loss, the inaccurate time of the protective operation, fault 
diagnosis of network needs uncertainty reasoning. Among the 
existing uncertainty reasoning approaches, Bayesian networks 
approach stands out as the only one that is directly grounded 
in probability theory. Bayesian network based approach, 
mainly used for representing and reasoning with uncertainty, 
has been successfully used in many fields, such as speech 
recognition, industrial control, economic forecasting, as well 
as medical diagnosis [1]. Recently, with the development of 
Data Mining, the capabilities of inference and learning of 
Bayesian network have gained more and more attention. 

However, little researches have been done to address how to 
use Bayesian network in power systems. 

This paper shall focus on the construction and application of 
the Bayesian network model. The Bayesian network (e.g., [2] 
and [3]) is a probabilistic graphical model in which a problem 
is structured as a set of variables (parameters) and 
probabilistic relationships among them. The constructed 
Bayesian network, after serial evidence–propagation 
inferences, sorts the transmission line faults according to their 
individual some more important harmonics occurrence 
probability. The major contributions of this paper are as 
follows. 

First, we analyze historical data and acquire the expert 
knowledge to develop the qualitative structure of Bayesian 
network. Second, based on Bayes’ theorem, we develop a 
survey to assess the inputs of the constructed Bayesian 
network from the expert’s domain knowledge. This approach 
revises its results in the light of available information and is 
still useful in the situation of missing data. Once constructed, 
the Bayesian network model is fairly robust. Indeed, the 
constructed Bayesian network incorporates the new evidences 
and thus gradually updates the corresponding inference rules. 
The test results of the constructed Bayesian network validate 
the practical viability of this approach. 

In this paper, a Bayesian network and Markov chain Monte 
Carlo (MCMC) simulation technique is used to predict the 
fault in a typical high voltage transmission line. 

The format of this paper is as follows. Section II presents 
the fundamental of Bayesian network. Then the proposed 
model structuring procedure and data assessment based on 
Radial Basis Function (RBF) method [4] will be presented. In 
the next section, the transmission line’s model and data 
required for Bayesian network will be presented. The test 
results of constructed Bayesian network shall be followed and 
concluding remarks shall be given. 

 

II. FUNDAMENTAL OF BAYESIAN NETWORK 
Bayesian networks are usually used to model the situations 

(e.g., medical diagnosis) in which causality plays a role but 
where the understanding of what is actually going on is 
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incomplete. That is, a Bayesian network for the domain 
represents a joint probability distribution over a set of 
variables (i.e., chance nodes). Bayesian network is a directed 
acyclic graph that consists of single-evidence, multiple-
evidence, and multiple-layer probabilistic relationships among 
the variables. For detailed description about DAGs see [5]. 
Thus, Bayesian network expresses the global joint distribution 
with a set of local distributions and relates only the 
neighboring nodes. Fig. 1 illustrates the basic structure of a 
Bayesian network. 

The Bayesian network has been successfully applied in 
many fields such as medical diagnosis [6], equipment 
diagnosis [7], and mineral exploration [8]. Extensive review 
of Bayesian networks can be found, for example, in [9]. 

 

Fig. 1.  Basic structures of Bayesian network (DAG) [5] 

 
The Bayesian network is a directed acyclic graph in which 

the following holds: 
• A set of random variables makes up the nodes of the 

network. 
• A set of directed links or arrows connects pairs of nodes. 
• Each node has a conditional probability table that 

quantifies the effects that the parents have on the node. 
The parents of a node are all those nodes that have 
arrows pointing to it. 

• The graph has no directed cycles (hence is a directed, 
acyclic graph or DAG). 

A Bayesian network provides a complete description of the 
domain. Every entry in the joint probability distribution can be 
calculated from the information in the network. A generic 
entry in the joint is the probability of a conjunction of 
particular assignments to each variable. The value of this entry 
is given by the following formula [10]: 
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We use the notation ),...,( n1 xxP as an abbreviation for this. 
Thus, each entry in the joint is represented by the product of 
the appropriate elements of the conditional probability tables 
(CPTs) in the belief network. The CPTs therefore provide a 
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Then we repeat this process, reducing each conjunctive 
probability to a conditional probability and a smaller 
conjunction. We end up with one big product. Comparing this 
with Equation (1) and (2), we see that the specification of the 
joint is equivalent to the general assertion that. 

A. The MCMC (Markov Chain Monte Carlo) blanket 
A node is conditionally independent of its non-descendants, 

given its parents. 
A node is conditionally independent of all other nodes in 

the network, given its parents, children, and children's parents 
that is, given its Markov blanket. 

From these conditional independence assertions and the 
CPTs, the full joint distribution can be reconstructed; thus, the 
"numerical" semantics and the "topological" semantics are 
equivalent. 

According to the theory of Markov blanket, the nodes for 
inference, such as the fault node or protection node, are 
chosen first. 

B. The MCMC algorithm 
The MCMC generates each event by making a random 

change to the preceding event. It is therefore helpful to think 
of the network as being in a particular current state specifying 
a value for every variable. The next state is generated by 
randomly sampling a value for one of the non-evidence 
variables Xi, conditioned on the current values of the variables 
in the Markov blanket of Xi. MCMC therefore wanders 
randomly around the state space-the space of the possible 
complete assignments-flipping one variable at a time, but 
keeping the evidence variables fixed. The algorithm is that: 

Let )( xxq ′→ be the probability that the process makes a 
transition from states x to state x'. This transition probability 
defines what is called a Markov chain on the state space. Now 
suppose that we run the Markov chain for t steps, and let 

)(xPt be the probability of being in state x at time t. Similarly, 
let )(xP 1t ′+ be the probability of being in state x' at time t+1.
Given )(xPt , we can calculate )(xP 1t ′+ by summing, for all 
states the system could be in at time t, the probability of being 
in that state times the probability of making the transition to x':

)()()( xxqxPxP
x

t1t →′=′ ∑+ (3) 

We will say that the chain has reached its stationary 
distribution if )()( xPxP 1tt ′= + . Let us call this stationary 
distribution P ; its defining equation is therefore: 

)()()( xxqxPxP
x

→′=′ ∑ for all x’ (4) 
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Under certain standard assumptions about the transition 
probability distribution q , there is exactly one distribution P
satisfying this equation for any given q .

Equation (3) can be read as saying that the expected 
“outflow” from each state (i.e., its current “population”) is 
equal to the expected “inflow” from all the states. One 
obvious way to satisfy this relationship is if the expected flow 
between any pair of states is the same in both directions. This 
is the property of detailed balance: 

)()()()( xxqxPxxqxP
x

→′=′→′ ∑ for all x, x’ (5) 

C. Radial Basis Function (RBF) 
In order to assess the input data Radial Basis Function 

(RBF) method is used. A radial basis function (RBF) is a real-
valued function whose value depends only on the distance 
from the origin, so that [4]: 

||)(||)( xx φφ = (6) 
Or alternatively on the distance from some other point c,

called a center, so that  
||)(||),( cxcx −= φφ (7) 

Any function φ that satisfies the property ||)(||)( xx φφ = is 
a radial function. The norm is usually Euclidean distance.

Radial basis functions are typically used to build up 
function approximations of the form: 

∑
=

−=
N

1i
ii cxxy ||)(||)( φω (8) 

Where the approximating function )(xy is represented as a 
sum of N radial basis functions, each associated with a 
different center ic , and weighted by an appropriate 
coefficient iω . Approximation schemes of this kind have been 
particularly used in time series prediction and control of 
nonlinear systems exhibiting sufficiently simple chaotic 
behaviour. 

The sum can also be interpreted as a rather simple single-
layer type of artificial neural network called a radial basis 
function network, with the radial basis functions taking on the 
role of the activation functions of the network. It can be 
shown that any continuous function on a compact interval can 
in principle be interpolated with arbitrary accuracy by a sum 
of this form, if a sufficiently large number N of radial basis 
functions is used. 

There are some commonly used types of radial basis 
functions include |||| icxr −= which as follows: 

• Gaussian: 
)exp()( 2rr βφ −= for some 0>β (9) 

• Multi-quadric: 
22rr βφ +=)( for some 0>β (10) 

• Polyharmonic spline: 
krr =)(φ k=1, 3, 5, … 

)ln()( rrr k=φ k=2, 4, 6, … 
(11) 

• Thin plate spline (a special polyharmonic spline): 
)ln()( rrr 2=φ (12) 

 These polyharmonic splines (which include the thin-plate 
spline) minimise certain energy semi-norms and are therefore 
the “smoothest” interpolators. Note that the associated basic 
functions are not compactly supported - they grow as 
r increases from the origin.

RBFs are popular for interpolating scattered data as the 
associated system of linear equations is guaranteed to be 
invertible under very mild conditions on the locations of the 
data points. For example, the thin-plate spline only requires 
that the points are not co-linear while the Gaussian and multi-
quadric place no restrictions on the locations of the points. In 
particular, RBFs do not require that the data lie on any sort of 
regular grid. 

In this paper Radial Basis Function method with Gaussian 
type is considered for assessment of data. 

 

Fig. 2.  Unnormalized Radial Basis Functions with c1= 0.75 and c2=3.25 

 

1)  Estimating the weights 
The approximant )(xy is differentiable with respect to the 

weights iω . The weights could thus be learned using any of 
the standard iterative methods for neural networks. But such 
iterative schemes are not in fact necessary: because the 
approximating function is linear in the weights iω , the iω can 
simply be estimated directly, using the matrix methods of 
linear least squares.  

The input assessment has been shown in this section. In the 
next section required input-output data and modeling of power 
system will be presented. 

 

III. MODEL STRUCTURE FOR POWER SYSTEM 
Considered power transmission line in this paper is a 

400KV, single circuit, 4 bundled and transposed, with 160km 
length, that the configuration of this line is illustrated in Fig. 3. 
Modelling of each part of this system shall be done according 
to the following.  
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Fig. 3.  Configuration of considered transmission line 

 

A. Transmission Line Modelling 
In order to simulate the mentioned power system, EMTP 

software is used to analyse needed data. In this software there 
are some transmission line models such as: distributed models, 
Meyer-Dommel, Semlyen, and J-Marti model. Because of 
accuracy of J-Marti, this model is used in this paper for 
modelling of transmission line.  

 

Fig. 4.  Equivalent circuit of characteristic impedance of J-Marti model 

 

B. Variable thevenin model for Busbars 
Although the transmission line in the nominal power 

system’s frequency has an inductive behaviour, but in higher 
frequencies it may has capacitive behaviour in some 
frequencies. Moreover than that, in some frequencies it has 
pure resistive impedance [11]. Not only simulation of all parts 
of a three phase AC power system is easy but also it is not 
economical, therefore it is better to use RLC parallel branches 
with same responses in a wide range of frequencies for 
simulation of behaviour of the system. Impedance-Frequency 
curve of variable thevenin model is depicted in Fig. 5. 
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Fig. 5.  Impedance-Frequency curve of variable thevenin model 

Other required data for transmission line and variable 
thevenin model of busbars is given in [11]. 

 In this paper Fast Fourier Transform (FFT) technique is 
used for making harmonics of voltages and currents of the 
sending bus for a period (20 msec.) post of fault time [12]. In 
this way, first to ninth harmonics plus DC component of 
waveforms of voltages and currents are used for inputs of 
Bayesian network. These values are earned for 10 exists type 
of faults; 3 single phase fault, 3 double phase fault, 3 double 
phase to ground fault and a three phase fault. Moreover than 
this, these faults are simulated for 0, 45, and 90 degree of 
phase for each 10 km fault of line. So, there is 410 data for 
train and near to 100 cases for test of the network. The outputs 
of the network are divided to 11 classes of fault diagnosis; 10 
classes of faults and a class for normal conditions. 

A sample of waveforms of a fault is illustrated in the 
following figures. As it is clear in the figures these faults 
made harmonics that those are useful for studies. 

 

Fig. 6.  Voltages’ waveforms for an ABE fault in 60km distance of receiving 
busbar at 25 msec. 

 

Fig. 7.  Currents’ waveforms for an ABE fault in 60km distance of receiving 
busbar at 25 msec. 

 

IV. IMPLEMENTATION 
The constructed Bayesian network consists of a set of 

chained rules that are specified in the directions from possible 
evidences (i.e., effects) to the hypotheses (i.e., causes). Indeed, 
hypothesis of one rule is the evidences for another rule. 

On the basis of the historical data and analysis, we could 
initially construct a prototype Bayesian network for fault 
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diagnosis. We asked the expert to directly evaluate the 
prototype structure of Bayesian network for fault location. 
The expert indicated the suitability of all links (added or 
eliminated link for evidence to hypothesis). Then, we verified 
the constructed Bayesian network with the expert mental 
structure. We thus encoded expert knowledge about causal 
relations but reverse the direction for diagnostic inference. 
This is what Bayes’ theorem does for coherent probabilistic 
representations. According to the expertise, we refined the 
previous structure derived from the historical data. 

This process is iterative so as to achieve the final structure. 
As it is mentioned in previous section, the power system is 

simulated in EMTP software and The Bayesian network and 
RBF model are simulated in MATLAB software. 

 

V. TEST RESULTS OF CONSTRUCTED BAYESIAN NETWORK 
The tests of reliability and validity are comprehensive 

analyzes of the constructed Bayesian network that involve 
both qualitative and quantitative perspectives. Reliability 
concerns the extent to which a measuring instrument yields 
consistent results on different trials. Validity concerns the 
extent to which any measuring instrument measures what it is 
intended to measure. Reliability is a postulation of validity 
[13]. In order to criticise the Reliability of the Bayesian 
network, Mean Square Error (MSE) is used and in order to 
validity of Bayesian network. Fig. 8. illustrates this criterion. 

 A typical output and target table of data is shown in 
TABLE I.  

 
TABLE I

TYPICAL OUTPUTS AND TARGETS OF BAYESIAN NETWORK 

Phase Item A B C E Target Output of 
Bayesian network 

1 0 0 0 0 1 1.6315 
2 1 1 1 1 2 2.0765 
3 1 1 1 1 2 1.9812 
4 1 1 0 0 3 2.9587 
5 1 1 0 0 3 3.0517 
6 1 0 1 0 4 4.0255 
7 1 0 1 0 4 3.8901 
8 0 1 1 0 5 4.9986 
9 0 1 1 0 5 4.9570 

10 1 1 0 1 6 6.0855 
11 1 1 0 1 6 5.8468 
12 1 0 1 1 7 7.0249 
13 1 0 1 1 7 6.9544 
14 0 1 1 1 8 7.9874 
15 0 1 1 1 8 8.0896 
16 1 0 0 1 9 6.9452 
17 1 0 0 1 9 8.9596 
18 0 1 0 1 10 9.9683 
19 0 1 0 1 10 10.2601 
20 0 0 1 1 11 10.9239 
21 0 0 1 1 11 11.1214 

As it is shown in TABLE I, a wide range of outputs are 
similar to the targets, and the Bayesian network has a good 
results. Items 1 and 16 of the table are wrong answers of 
constructed Bayesian network. MSE of results is equal to 

0.0563, which is a good operation of this network for fault 
diagnosis in power systems. Accuracy of this network is about 
98.06 percent which is very good for accuracy of diagnosis of 
faults. Fig.8. depicts all of the results of this network for 
prediction of categories of faults. 
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Fig. 8.  Results of Bayesian network and Targets 

 

VI. CONCLUSION 
Based on expert knowledge and historical data, we 

constructed a Bayesian network in order to detect faults in a 
typical High Voltage transmission line. 

The analytical effectiveness of a rule-based decision 
support system relies on its ability to explain its reasoning 
strategies and results. Indeed, practicing decision analysts find 
that constructing the qualitative structure of a Bayesian 
network is more important than precision in numeric 
parameters. On the other hand, the posterior distribution may 
then be viewed as the prior distribution of the next iteration in 
a sequential inference situation. Finally, the interpretation of 
the Bayesian inference results can be used not only to update 
the decision-maker’s belief about the parameter, but also to 
conduct a preposterior analysis of the constructed Bayesian 
inference model. 

 

REFERENCES 
[1] David Heckeman, Abe Mamdani, and Michael P. Wellman, “Real-

world applications of Bayesian networks,” Communications of the 
ACM, vo1.38, no. 3, pp. 24-26, 1995. 

[2] T. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of 
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988. 

[3] M. Henrion, J. S. Breese, and E. J. Horvitz, “Decision analysis and 
expert systems,” AI Mag., vol. 12, no. 4, pp. 64–91, 1991. 

[4] Denison, Holmes, Mallick and Smith, “Bayesian methods for nonlinear 
classification and regression,” Published by Wiley, 2002. 

[5] Chen-Fu Chien, Shi-Lin Chen, and Yih-Shin Lin, “Using Bayesian 
Network for Fault Location on Distribution Feeder,” IEEE 
Transactions On Power Delivery, Vol. 17, No. 13, July 2002 

[6] P. Szolovits and S. Pauker, “Categorical and probabilistic reasoning in 
medical diagnosis,” Artif. Intell., vol. 1, pp. 115–144, 1978. 

5



[7] L. Sovarong and J. S. Costas, “A general equipment diagnostic system 
and its application on photolithographic sequences,” IEEE Trans. 
Semi-conductor Manufact., vol. 10, pp. 329–343, Aug. 1997. 

[8] R. Duda, J. Gaschning, and P. Hart, “Model design in the prospector 
consultant system for mineral exploration,” in Expert Systems in the 
Microelectronic Age, D. Michie, Ed. Edinburgh, U.K.: Edinburgh 
Univ. Press, 1979, pp. 153–167. 

[9] W. Buntine, “A guide to the literature on learning probabilistic 
networks from data,” IEEE Trans. Knowl. Data Eng., vol. 8, no. 2, pp. 
195–210, 1996. 

[10] Wei Zhao, Xiaomin Bai, Jian Ding, Zhu Fang,Zaihua Li and Ziguan 
Zhou, “A New Uncertain Fault Diagnosis Approach of Power System 
Based on Markov Chain Monte Carlo Method,” IEEE International 
Conference on Power System Technology, 1-4244-0111- August 2006. 

[11] Seyyed Kamal Mousavi, “Fault Detection in Transmission Lines By 
Using Neural Networks,” MSc. Thesis, Amirkabir University of 
Technology (Polytechnic of Tehran), 1998. 

[12] Aggarwal, R.K., Xuan, Q.Y., Johns, A.T., Furong Li; Bennett, A. “A 
novel approach to fault diagnosis in multicircuit transmissionlines 
using fuzzy ARTmap neural networks,” Neural Networks, IEEE 
Transactions on Volume 10, Issue 5, Sep 1999, Page(s):1214 – 1221. 

[13] E. G. Carmines and R. A. Zeller, Reliability and Validity Assessment. 
Newbury Park, CA: Sage, 1979. 

6


