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Abstract—Simulation, by resorting to suitable models, is often 

used by electric utilities in studies related with load forecasting, 
system reliability, power flow and demand-side management 
activities, among others. Nowadays, in restructured electricity 
market scenarios, activities involving buying and selling energy 
can also be studied through simulation. Different goals for those 
studies require different load representation and modeling. Since 
some activities at the demand-side level may lead to changes in 
load demand shape and levels, it is necessary to foresee such 
impacts before their implementation. Moreover, whenever such 
actions involve the remote control of end-use loads a careful 
assessment must be done in order to avoid undesirable effects, 
such as payback or strong reduction in revenues without other 
counterparts. The use of suitable load models contributes to 
avoid or greatly reduce both the need for pilot programs, which 
may be a costly and time consuming activity, and the risk of 
reducing revenues/profits. This work presents the results of using 
physically-based air conditioner models to simulate load control 
actions and to analyze the impacts of such actions on the demand, 
on the revenues, and on the comfort of consumers. 
 

Index Terms-- Air conditioning, Load management, Load 
modeling, Load shedding, Monte Carlo methods, Power demand, 
Power systems. 

I.  INTRODUCTION 

imulation is an analytical tool very often used in power 
systems. Several diverse situations may be studied and 

analyzed by resorting to appropriate models to simulate the 
real-world conditions. The capability of anticipating the 
impacts of any action to be implemented in power systems is 
of utmost importance, independently of the type of study 
being carried out. Previous assessment of actions may help 
preventing potential undesirable effects. For instance, changes 
on demand can impact on losses, reliability and revenues, 
among other issues. Different goals for the analysis require 
different load representation and modeling. Thus, while 
econometric or behavioral models, generally based on 
historical data, are suited for load forecasting and load flow 
studies, the appraisal of load management (LM) programs 
asks for a different approach. This can be based on data 
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collected through load research programs, possibly with the 
implementation of pilot actions, or based on simulation by 
resorting to suitable models with the ability to reproduce the 
behavior of the loads with and without the implementation of 
LM actions.  

LM measures include direct load control, interruptible 
power and voluntary load shedding. The remote control of 
end-use loads has been implemented by several utilities with 
diverse objectives [11], [18]. Since these actions usually lead 
to changes in load demand shape and levels, it is necessary to 
foresee such impacts before their implementation. Therefore, a 
careful assessment must be done in order to avoid undesirable 
results such as the payback effect or a strong reduction in 
revenues without other counterparts. The payback effect is an 
increase in maximum demand during the restoration of loads 
after a period of forced supply interruption, when compared 
with the demand that would exist if no load management 
actions have been applied. The use of suitable load models for 
simulating the actions to be implemented and assessing their 
results contributes to avoid or, at least, to greatly reduce the 
need for pilot programs, which are generally a costly and time 
consuming activity. Thus, this kind of programs can be more 
effective when there is the capability to predict the 
consequences of remote load control actions on the load 
diagram - both from the point of view of maximum demand 
reductions and the payback effect. 

Usually, loads used in LM activities are thermostatic ones, 
meaning that the power demand of such loads is imposed by a 
thermostat. The demand of these loads is determined by the 
temperature of the fluid being cooled/heated. The 
cooling/heating device is powered when the temperature rises 
above/falls below the upper/lower limit of the thermostat dead 
band, and it is disconnected when the temperature reaches the 
lower/upper limit of the thermostat dead band. In this type of 
loads, when the regular working cycle is changed by an 
external action the demand pattern over the subsequent 
periods of time may also be changed. Since LM activities 
change the normal functioning of loads under control, the 
models used in LM programs must be able to capture such 
behavior. Thus, models based on data collected when loads 
are on its normal state are not suited for LM studies, and most 
texts about LM refers to models based on the energy balance 
that exists in loads used for control [1], [9], [22]. These are the 
so-called physically-based load models (PBLM). These 
models reproduce the demand of end-use loads, such as air 
conditioners, by simulating both the physical phenomena 

Physically-Based Load Demand Models for 
Assessing Electric Load Control Actions 

A. Gomes, Member IEEE, C. H. Antunes, and A. G. Martins 

S



 2

occurring in that type of loads and the behavior of the 
thermostat, which determines the demand of the load [1], [9], 
[15], [25]. Software tools allowing the simulation of load 
diagrams (LD), also with the capability of capturing the 
effects of LM actions, are useful for a previous assessment of 
these actions. 

Several approaches to physically-based modelling can be 
found in the literature. Despite some diversity, which is 
related not just with the individual load models but also with 
the load aggregation process, all of them have in common the 
same objective: the reproduction of physical phenomena that 
occur in thermostatic loads. At the individual level, the main 
differences are due to the eventual need for some 
simplifications that are necessary in order to make the detailed 
and complex individual models suitable for practical use, even 
if it is a specific usage. Some of the complexity arises from 
the stochastic behavior of the demand of loads usually used in 
the LM programs. Such behavior comes from the energy 
service usage, which is random in nature, and from the 
weather factors, which largely influence the demand of some 
loads, namely air conditioners and space heaters. Other issue 
that also deserves some attention is the incorporation of load 
models into more general tools. For example, PBLM are well 
suited for LM studies, meaning that besides the demand of 
loads the tool should be able to reproduce LM actions in 
conjunction with the load demand. This integration is essential 
for the evaluation of those actions. 

On the other hand, recent changes in power systems 
structure and ownership require the ability to evaluate LM 
actions at different levels of demand aggregation, since the 
entity interested in such activities may change from one 
situation to another [4], [7], [11], [12], [18]. LM programs can 
be very attractive for a retailer dealing with volatile wholesale 
prices and fixed, over a certain time period, retail prices. Thus, 
load modeling methodologies used in LM studies should 
enable to simulate: 

 power demand without and with load control 
strategies applied to loads under control;  

 demand at different levels of load aggregation.  
The remaining of the paper is structured as follows. Section 

II presents a deeper analysis of LM programs and their 
objectives. In section III the individual air conditioner (AC) 
model is described, as well as the approach implemented 
based on Monte Carlo simulations for aggregating demand. A 
case-study is present in section IV, while in section V some 
conclusions are drawn. 

II.  LOAD MANAGEMENT 

LM activities have been implemented by some electric 
utilities as a way to improve economic efficiency also leading 
to operational benefits, such as increasing load factor, 
reducing maximum power demand as well as losses and costs. 
The implementation of LM actions is referred to in [11], [16], 
[18], [27], among others. Even in present scenarios of 
unbundling and restructuring of power systems, these 
activities may be attractive [11], [12], mainly due to the 

volatility and spikes of wholesale electricity prices. Besides a 
“traditional” utility that owns the wires and sells electricity, 
other entities may be interested in such activities. For instance, 
a retailer may be interested in evaluating the local effects on 
demand of load control actions implemented over some loads 
of a group of consumers and, at the same time, he/she can be 
interested in assessing the impact on the total revenues or the 
global demand (of all the customers of this retailer). 

An appropriate software framework able to simulate the 
demand of loads under control and the LM actions to be 
applied over the loads, and simultaneously capture the effects 
of LM actions on load demand, can be used in the 
identification of LM actions (on/off patterns to be applied 
over the loads – duration and location during a certain time 
frame): 

- to reduce the risk associated with the implementation of 
the control actions;  

- to reduce the need for intensive data gathering;  
- to characterize the demand-side resources; 
- to assess the impact of the LM actions.  
In the scientific literature several issues have being 

addressed: direct load control (DLC) objectives to be achieved 
and constraints to be satisfied in the implementation; load 
modeling (global demand / demand under control); assessment 
of the effects of LM actions; design and selection of LM 
actions. [20] assess the impact of LM actions in the cold load 
pickup and diversity factor, while in [5] and [7] the main goal 
is to study the impact of DLC in the spinning reserve and the 
consequent reduction in the costs. However, the reduction in 
the peak power demand and in the costs are often the main 
objectives of the studies related with LM. Such objectives can 
be found, for instance, in [3], [4], [13], [14], [17], [27] and 
[30]. The maximization of the utility’s profits is the objective 
pursuit by [26]. In recent works, besides the objectives 
referred to above, some authors introduce also some 
objectives (or constraints) related with the quality of energy 
service provided to the customers [3], [9], [15], [27], [29]. The 
aim is to maintain a suitable level of acceptance of such 
actions, namely by introducing some constraints in the 
duration of power curtailment actions (maximum time off and 
minimum time on). As already referred to above the economic 
interest has increased enormously in more recent 
implementations [11], [12]. In Table I the objectives of the 
programs reported in these works are summarized. 

In some works DLC is seen as a system resource that can 
be dispatched. The available capacity depends on the amount 
of load under control, time of day and the consumer lifestyle, 
meaning that the available DLC capacity depends on the 
diversified demand of the loads under control. However, the 
available capacity for dispatch in each moment (between the 
minimum and a maximum value) is not a continuum but a set 
of discrete values. Due to its similarity (availability and 
dispatch ability) with the resources in supply side, some 
authors consider DLC available for unit commitment [4], [13], 
[14]. The amount of DLC dispatched can be fixed as in [4] or 
variable. [17] try to identify when the off period begins and 



 3

how long it lasts, while [26] determine the number of groups 
powered off in each control interval and how many intervals 

they are powered off. However, most actual implementations 
use some kind of cycling strategy [1], [4], [24]. 

 
TABLE I  

OBJECTIVES TYPICALLY PURSUIT BY LOAD MANAGEMENT PROGRAMS. 
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Minimize peak 
demand     √  √ √ √  √  √

Minimize costs √ √ √ √  √ √      √

Discomfort caused 
to customers  √   √   √   √   

Minimize bill           √   
Maximize utility’s 

profits     √   √  √    
Assess impacts on 

reliability, spinning 
reserve, cold load 
pickup or diversity 

factor 

   √
 

      √  

 
 

Two issues must be dealt with whenever LM actions are at 
stake: design and selection of the DLC actions. Most studies 
reported in the literature just address the second issue; that is, 
they consider optimization problems in which DLC actions 
are selected from a previously identified set of actions. 
However, the design of appropriate on/off patterns to be 
applied over the loads under control is a key task. 
Traditionally, LM actions are identified based on empirical or 
past knowledge (due to experiments) generally based on pilot 
programs or on cycling strategies in which a pre-defined and 
fixed on/off patterns are used. Moreover, pilot programs 
should be implemented carefully and only in a small scale as 
they can be costly and time consuming. Few authors studied 
the action design phase; for instance, [9], [10], [15] and [17] 
use an optimization approach for this purpose. 

 

III.  LOAD MODELS 

Demand simulation is often based on diversified load 
diagrams possibly resulting from load research programs [28]. 
[2] use probabilistic models (random variables with Gaussian 

behavior) to reproduce the demand. Demand modeling and 
simulation (both demand under control and global demand) 
are essential issues in LM studies since, besides the demand, it 
should be possible to simulate the LM actions [1], [10], [15], 
[21].  

Different approaches may also be found for the simulation 
of the aggregate demand. [21] suggests that all efforts about 
the aggregation should be done on the evolution of the 
thermostat state since the demand of individual loads is 
imposed by the thermostat. [6] and [9] use Monte Carlo 
simulations of individual models to obtain the demand of 
groups of loads. [19] use a statistical approach to compute the 
aggregate demand. 

A.  Individual models 

The PBLM of air conditioners is a detailed one. The heat 

load of a space is given by )()()( tQtQtQ SLT  , where 

QT(t) [W] – total heat load,  
QL(t) [W] – latent load,  
QS(t) [W] – sensible load. 
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The diagram in Fig. 1 shows all the contributions for the 
heat load in a space being cooled by an air conditioner. 

 

 
Fig. 1. Contributions for heat load. 

 
The contributions for the thermal load of the space that 

have been taken into account are: 
 internal heat sources,  
 heat transfer through the walls,  
 heat transfer through the windows,  
 ventilation. 

The heat transfer through the walls depends not only on the 
physical characteristics of the walls, which influences the heat 
transfer by conduction and by convection and takes into 
account the thermal resistance of the walls, but it is also a 
function of the solar insulation that depends on the orientation 
of the building and the characteristics of the walls, more 
specifically the thermal capacity. A similar situation occurs 
with windows, but their thermal capacity is very low meaning 
that almost all insolation load goes through these elements of 
the envelope. On the other hand, this thermal load first heats 
the floor, interior walls or furniture that exists in the space 
conditioned. Then, part of this load is released to the 
surrounding air. Both the solar insolation according to the 
orientation of the space and the amount of the heat released to 
the interior air can be found in the literature. Some other 
contributions to the global thermal load are the ventilation, 
internal heat sources and the use of the space. Moreover, the 
coefficient of performance (COP), which is the ratio between 
the amount of energy removed from the space and the amount 
of electricity consumed by the equipment, characterizes the air 
conditioner and depends on the external temperature. When 
the AC is on, the available energy for cooling the room is 

given by )()( tQtP TAC  , )(*)( tCOPPtP ACAC  , 

where PAC is the power of the AC and COP(t) is its coefficient 
of performance. The COP, which varies with the temperature, 
is the ration between the heat load removed from the room and 
the energy consumed by the AC for removing the heat load.  

If the AC is on, the temperature will be given by  

 
p

TAC

mc

ttQtP
tTttT




)()(
)()( .  

If the AC if off then the temperature will be given by 

 
p

T

mc

ttQ
tTttT




)(
)()( , where 

T(t) – temperature inside the room in the time instant t [ºC] 
m – air mass [kg] 
cp – specific heat of air [J/kgºC] 
t – elemental time interval 
QT(t) – total heat load [W] 
 
The AC model implemented has been experimentally 

validated. This model allows assessing both the demand of the 
AC and the temperature inside the room being cooled. The 
AC demand pattern, as well as the inside and outside 
temperature, is depicted in Fig. 2.  
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Fig. 2. Air conditioner demand pattern, and inside and outside temperature. 

 
In Fig. 3 the evolution of inside and outside temperatures 

are shown. 
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Fig. 3. Inside and outside temperature. 

 
This model enables to perform deeper and more detailed 

analyses. Fig. 4 shows the inside temperature and the demand 
of an air conditioner between 13:00 and 17:59h. 

PBLM allow capturing the impact of changes in different 
parameters in the demand of air conditioners. For instance, the 
impact of changes in outside temperature on the demand of air 
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conditioners can be easily captured by this model. Also, if any 
external action imposes a change in the “regular working” 
cycle of the equipment (for instance, by imposing some 
periods of forced supply interruption) the PBLM capture the 
changes both on the AC demand pattern and the inside 
temperature. Supposing two periods of forced interruption 
between 12:00-12:15 and 13:00-13:14h have been imposed on 
the AC, the impacts on power demand and the inside 
temperature are shown in Figures 4 and 5. 
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Fig. 4. Power demand and inside temperature without load shedding. 

 

B.  The aggregation process – Monte Carlo simulation 

Individual load models are essential for evaluating the 
impacts of LM actions at individual end-use level. A detailed 
evaluation of such actions requires the quantification of the 
power and energy changes and also the assessment of the 
quality of the energy service provided. However, when such 
activities are provided and supported by, for example, an 
electricity marketer, the assessment of LM programs from its 
point of view is also necessary. In order to proceed with this 
evaluation, the impacts of LM actions must be evaluated at a 
given aggregate demand level. Once again, both demand and 
LM actions should be simulated for a detailed evaluation of 
the LM actions to be carried out. 
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Fig. 5. Power demand and inside temperature with load shedding. 

 
In a broad sense, there are two main approaches for 

obtaining the demand of groups of loads. In one of them an 
attempt to describe the aggregate demand is done usually 
based on some kind of statistical inference about data gathered 
in a load research program [19]. In a second approach, 
physically-based modeling is used, usually in conjunction 

with data collected in load research programs. The focus 
herein is the on/off time of the loads as a function of the 
temperature [25] or identifying how long it takes to go from 
temperature T1 to temperature T2 [23]. Other authors focus on 
the time evolution of the thermostat [8], given that the demand 
of loads is determined by this device. The analogy with 
electrical circuits is also used to represent the exchange of 
heat through the envelope of the space [25]. Within 
physically-based modeling a very interesting alternative is the 
one in which the demand of groups of loads is obtained by the 
aggregation of individual demands. This bottom-up way of 
reproducing the aggregate demand presents a great advantage 
over some other alternatives because it enables the simulation 
of the demand of small groups of loads. Thus, the analysis of a 
power transformer, feeding several end-users in which some 
AC have been identified for potentially being used in a LM 
program, is possible. This capability is more difficult to attain 
in other approaches used for aggregation, since some of them 
need a high number of devices for being statistically 
significant.  The demand of groups of loads is built up by 
aggregating average demands of individual loads. The average 
individual demand is obtained through Monte Carlo 
simulations of the individual demands. In these simulations 
some parameters may change according to a normal 
probability distribution while some other parameters present a 
static behavior. For instance, the physical characteristics of the 
envelope and the COP of the AC are static while weather 
parameters, the use of the cooling energy service and some 
other stochastic parameters change according to probability 
distributions that have been identified. 

Fig. 6 shows the demand of 80 AC and the total demand of 
the power transformer feeding them. 
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Fig. 6. Demand at power transformer level and demand of 80 air conditioners. 

 

IV.  SIMULATION BASED CASE STUDY 

The load under control is usually grouped according to 
some physical (and possibly other) characteristics and the 
same control strategy is applied over all the loads belonging to 
the same group. Besides, the amount of loads under control 
and the objectives of the LM program determine the number 
of groups and the size of each group. In actual power systems 
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restructuring scenarios it is very important to be able to assess 
the impacts of LM actions at several demand aggregation 
levels since different entities may be interested in such 
activities. 

A power transformer (PT) feeding mainly small services 
and commerce customers has been chosen to exemplify the 
application of the methodology described above. The power 
transformer is operating near its maximum capacity and 
implementing DLC is an alternative that may be studied. The 
maximum peak demand is 370kW, occurring at 17:00h. 
Among all customers fed through this PT, 80 air conditioners 
able for remote control have been identified. Most air 
conditioners are mono-split units ranging from 1.3kW to 
3.8kW, with the evaporator inside the room and with the 
condensate outside the room being cooled. The maximum 
demand of this 80 ACs are 69.5kW, occurring at 15:00h. 

The load curtailment actions being simulated for four 
groups of loads are shown in Fig. 7. 

 

0

1

1
5
:5
9

1
6
:0
7

1
6
:1
5

1
6
:2
3

1
6
:3
1

1
6
:3
9

1
6
:4
7

1
6
:5
5

1
7
:0
3

1
7
:1
1

1
7
:1
9

1
7
:2
7

1
7
:3
5

1
7
:4
3

1
7
:5
1

1
7
:5
9

1
8
:0
7

1
8
:1
5

1
8
:2
3

1
8
:3
1

1
8
:3
9

1
8
:4
7

1
8
:5
5

G4

0

1

G1

0

1

G2

0

1

G3

 
Fig. 7. Load curtailment patterns. 

 
With the load shedding patterns shown in Fig. 7 is was 
possible to reduce the maximum demand at the power 
transformer to 354 kW (a reduction of 4.3%) – Fig. 8. 
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Fig. 8. Demand at PT level and AC demand with load curtailments. 

 
The impacts of load curtailments can also be evaluated at the 
inside temperature level. Fig. 9 shows the temperature in one 
the loads of group 2. 
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Fig. 9. Inside temperature in a room cooled by an AC belonging to the group 
number 2. 

V.  CONCLUSIONS 

The selection of adequate load shedding actions to be 
implemented over sets of loads, grouped according to some 
criteria, is essential for avoiding undesirable effects in LM 
programs. Despite being very demanding for data, PBLM are 
well suited for simulating LM actions in a realistic manner. 
Since these models are able to track the temperature of the 
fluid, they enable the identification of the load profile without 
and with load curtailments. PBLM may also be useful in the 
determination of the groups and total number of loads to be 
controlled, as well as in the study of schedules of 
shedding/restoration sequences to obtain the load curtailment 
patterns leading to the maximum demand reduction that 
minimizes the undesirable effects to customers, both for off-
line studies and for on-line decision support. 
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