
 1 

Abstract—The importance of Integrating wind power 
generation into electric power grids has rapidly progressed 
over the past decade. But the intermittency of wind power 
presents a special challenge for utility system operations as 
well as the market structure mechanisms. The problem arises 
from the uncertainty and variability in wind resources that 
causes fluctuations in the output of wind power generators. 
This paper presents a short-term wind speed prediction using 
linrealized time series model. Wind data are first collected 
from a weather station in ten minute resolution for a period of 
one year followed by a fitted two Weibull distribution 
parameters model being estimated from regression analysis on 
the logarithms of wind speed data. Transformation from 
Weibull into normal distribution is then held and linear 
predictive coefficients calculated using finite impulse response 
filter (FIR) and infinite impulse response filter (IRR) are 
evaluated for the normalized wind speed random process. 
Results of 10 minute ahead, one hour ahead, 12 hours ahead 
and 24 hours ahead wind speed predictions are presented and 
model accuracy in each of these time-ahead prediction scale 
are discussed. Also a remarkable observation of the 
independencies between future and historical wind speed data 
allows a state space representation model using discrete 
Markov Process to best represent the stochastic behavior of 
wind speed signal. In doing so, optimum quantization 
parameters are first done for both Weibull and normal wind 
speed distributions and a transition probability matrices are 
evaluated in each case showing smooth state transition levels 
in wind data.  

Index Terms—wind speed, short term prediction, filter 
design, optimum quantization, transition probability, and 
Markov Process.  

I.  INTRODUCTION 

he intermittent nature of wind power presents special 
challenges for utility system operators in dealing with 

system economic dispatch, unit commitment , system 
energy reserve capacity, control and extension problems, as 
well as future electricity market participation with 
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increased wind power penetration. There is the expectation 
of significant increase in the installed wind capacities as 
energy sources in the United States to 20% by the year 
2020. A project conducted between NYISO, General 
Electric (GE), and Automatic Weather Stations Inc., 
(AWS) stated that NY State has 101 wind energy potential 
sites and it should be able to integrate wind generation up 
to at least 10% of system peak load without further 
expansion [1]. Moreover, policy regulations have been 
updated to follow decision strategies to go for increased 
intermittent renewable by settling1  imbalances generation 
rulemakings and portfolio standards, the most used one at 
this time is the production tax credit portfolios.  

Therefore, forecasting methods used to predict wind 
speed and hence wind power take great importance and 
many intensive literatures have discussed several methods 
to develop wind power forecasting accuracies in ways to 
solve or at least to minimize the degrees of uncertainty and 
variability of its stochastic nature.  

C. Lindsay Anderson from Cornell University and Judith 
B. Cardell from Smith College [2], use an auto-regressive 
moving average model to estimate the next ten-minute 
ahead production level  for a hypothetical wind farm and 
investigate the possibility of pairing wind output with 
responsive demand to reduce the variability in the net wind 
output.  

In [3], the authors develop an Artificial Neural Network 
(ANN) model to forecast wind generation power with 10-
min time step. Current and previous wind speed and wind 
power generation are used as an input parameters to the 
network where the output from the ANN is the wind 
generation power.  

M. S. Miranda and R. W. Dunn [4] predicted one-hour-
ahead of wind speed using both an auto-regressive model 
and Bayesian approach. 
D. Hawkins and M. Rothleder [5], discuss operational 
concerns for an increase amount of wind energy in 
California in the Day-ahead-Market and Hour-ahead-
Market for CAISO. They state the importance of 
forecasting accuracy for unit commitment and ancillary 
services and the implications of load following or 
supplemental energy dispatchers to rebalance the system 
every five minutes.  
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In [6], the authors propose a probabilistic method to 
estimate the forecasting error for Spanish Electricity 
System. They propose cost assessment with wind energy 
prediction error.  The assessment is developed in the sense 
that wind power generators should pay the costs associated 
with any energy deviation they cause. 

In [7], Dale L. Osborn discusses the impact of wind on 
the LMP market for Midwest MISO at different wind 
penetrations. His LMP calculations decrease as an increase 
of wind energy penetration for the Midwest area.   

Authors of [8] describe very short-term wind prediction 
for power generation, utilizing a case study from Tasmania, 
Australia. They introduce an Adaptive Neural Fuzzy 
Inference System (ANFIS) to forecasting a wind time 
series. Over the very short-term forecast interval, in vector 
form contains both wind speed and wind direction. 

This paper presents short term wind speed linear 
prediction model in state space representation using linear 
predictive coding (LPC), FIR and IRR filters. 10 minute, 
one hour, 12 hours, and 24 hours wind speed predictions 
are evaluated in least square error sense and the prediction 
coefficients are then used in the state space stochastic 
formula representing past and future predicted values. One 
year wind speed data in 10 minute resolution are first fitted 
by two Weibull distribution parameters and then 
transformation to normal distribution is done for prediction 
calculation purposes. Prediction results using various past 
histories of wind data show independencies. These 
independencies have been modeled as linear state space 
discrete Markov process. For that, quantization process is 
carried to optimize time step between different state levels 
for both wind speed distributions used. Also state and 
transition probability matrices are evaluated from the actual 
representation of wind speed data. Transition probabilities 
show smooth transitions between states that assert 
clustering around the diagonal matrices. Section II presents 
distribution fitting to wind data, and section III demonstrate 
linear prediction method of wind speed up to one day 
ahead. Section IV develops linear state space representation 
of wind speed using discrete Markov process and section 
and also the results of both prediction method and Markov 
Process using real data taken from a national weather 
station in the United States. 

II.  WIND SPEED PREDICTION MODEL 

A.  Wind data distribution models 

More than 50 thousands samples representing one year 
wind speed data in 10 minute resolution are used to 
determine the best fitted parameters of the Weibull 
distribution model. Wind speed data are obtained from 
National weather station in NYISO zonal areas by 
approximate longitudes and latitudes station’s allocation 
[9]. The empirical cumulative distribution function (CDF) 
for the wind speed random variable (RV) X is evaluated 
using n samples based on the statistical Weibull formula  

Linear regression is performed between )ln(xX = , where 

x is the data plotted on the horizontal axis, versus the 
following CDF metric on the vertical axis: 

( )))(ˆ1ln(ln xFY X−−=      (1) 

PDF parameters are related to the linear regression slope m 
and Y-intercept C, as follows:  
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The regression results are shown in table I and both 
empirical and Weibull cumulative distribution functions are 
plotted in Figure 1 that shows good fit.  
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Figure 1 Empirical and Weibull Cumulative Distribution Functions. 

 
TABLE I 

LINEAR REGRESSION   DEFINES WEIBULL DISTRIBUTION PARAMETERS 

 
Next, Transformation to normal distribution with mean 
zero and variance one is used in both the fitting and 
prediction processes. Figures 2 and 3 show histograms and 
wind speed signals representing both Weibull and Normal 
distributions, respectively. The shape of the actual signal is 
shifted down with the exact pattern due to the 
normalization process (Figure 3). 

B.  Normalization of Wind Speed Data 

As an initial step for wind speed prediction, transform 
from actual wind speed data X to Normal wind speed data 
Xn (i.e., Xn is a normalized Gaussian RV with zero mean 
and unit variance) is performed. This transformation is 
performed using the Normal CDF inversion as follows:  
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Figures 2 and 3 show the histograms and time series, 
respectively, for both the actual (Weibull) wind speed X 
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and Normal wind speed Xn. The shape of the Normal signal 
Xn is shifted down with negative values (Figure 3) 
compared to the actual signal X due to the normalization 
process.  
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Figure 2  Actual & normalized frequency  occurrence of wind speed data. 
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Figure 3 Actual and normalized wind speed data. 

III.  LINEAR PREDICTION AND FILTER DESIGN 

In this section, finite impulse response (FIR) and infinite 
impulse response (IRR) filters are being used to determine 
the prediction coefficients needed to process the 
normalized wind speed signal Xn, except that we drop the 
subscript “n” so as not to be confused with the discrete time 
index. In discrete time, we use the Z-transform of a signal 
or a filter defined as:  

∑∑ −=⇒−=
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i
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i
i zgzGingng )()()( δ  

Where δ(n) is the Kronecker delta function. The wind 
speed random process x(n) is characterized as wide sense 
stationary (WSS) Gaussian (Normal) process, and hence 
will remain Gaussian after any stage of linear filtering. 
However, the wind speed process is NOT white but can be 
closely modeled as Auto-Regressive (AR) process as will 
be shown next.  

A.  Linear Predictive Coding (LPC) Finite Impulse 
Response Filter (FIR) 

To predict the Normal wind speed, Linear Predictive 
Coding (LPC) is used based on the autocorrelation method 
to determine the coefficients of a forward linear predictor 
by minimizing the prediction error in the least squares 

sense [17]. The method provides the LPC predictor and its 
prediction error as follows:  
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Where N is defined as the prediction order (using N past 
data samples) and the coefficients {b1, .., bN} are the fitting 
coefficients which minimize the mean square (MS) 
prediction error signal. These coefficients are computed by 
solving the normal or Yule-Walker equations based on the 
signal autocorrelation matrix [12]. The LPC predictor has a 
direct equivalent implementation as an FIR filter if we 
observe that the error Z-transform is obtained as:  
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Where BN(z) is the FIR filter transfer function used to 
compute the output error signal. In other terms, it is also 
called the prediction polynomial [12]. Figure 4 shows how 
to obtain the output error signal using two equivalent 
forms: a) LPC prediction and subtraction, and, b) direct 
FIR filter design.  
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(a)                                    (b) 

Figure 4. Output prediction error signal using: a) LPC prediction and 
subtraction. b) Direct FIR filter design. 

 

The main advantage of LPC is that, as the prediction order 
N increases sufficiently, the prediction error eN(n) tends to 
be closely approximated as white noise [12]. This helps in 
modeling the Normal wind speed as AR signal as will be 
shown next. Thus, forward LPC is considered an important 
initial pre-coding step.  

B.  Auto-Regressive (AR) Model Prediction and Infinite 
Impulse Response (IIR) Filtering 

Equation (5) tells that the true wind speed can be 
obtained by multiplying the error signal EN(z) – if it is 
known – by the inverse of the FIR filter )(B-1

N z , which is 

now an all-pole IIR filter. If the error signal is equivalent to 
white noise for large prediction order N, then the z-
multiplication (i.e., convolution or filtering in discrete time) 
now yields a signal that is modeled as Gaussian Auto-
Regressive (AR) process. The AR model block diagram is 
shown in Figure 5 below, while the reproduced AR signal 
is obtained by rewriting equation (4) in terms of error as:  

 )()()(
1

, neinxbnx N

N

i
Ni +−−= ∑

=

  (6) 



 4 

                                                                                              
 
                                                                         

i
N

i
i zb −

=
∑−

1

)(ˆ nxLPC)(nx )(neN

 + 
– ∑

=

−+
N

i

i
i zb

1

1

1 )(nx

 
Figure 5 Auto-regression generation process using LPC estimation method 

Equation (6) seems to be an ideal reproduction of x(n) by 
inversion and it assumes the following:  
1) The error signal is exactly updated in real time at the 
prediction time “n”. This is a genie assisted condition, as 

)(ˆ nx is not available yet! 

2) All the true N past data samples are available or 
exactly estimated (measured) by the wind turbine speed 
meter and reported on time to the prediction algorithm.  
3) The prediction coefficients {b1, …, bN} are computed 
using the true past data samples and updated for each new 
prediction. 

In a practical prediction algorithm, these genie conditions 
don’t hold. As for the prediction error, different 
computation models can be used such as:  
1) Prediction error is estimated as a random generation of 
white noise of zero mean & unit variance [12].  
2) For initial or limited time intervals, the error can be 
exactly computed using true available data samples to 
investigate the tracking of the algorithm, but not for long 
term prediction.  
3) The prediction error can be estimated from exact 
measurements but up to a delay of one or more samples, 
i.e., measurement at time (n – L) applies at time “n”. For 
example, if the prediction update interval is 10 minutes and 
the measurement delay is 1 hour, then the sample count 
delay is L = 60/10 = 6 samples. The minimum estimation 
delay is L = 1.  
In our work we excluded the white noise generation 
alternative and considered the two other alternatives for 
wind speed forecasting.  

IV.  THE PREDICTION ALGORITHM FOR WIND SPEED 

A.  Linear Prediction Phases 

In this research, more than 50,000 data samples have 
been collected at 10-minute intervals. For prediction, a time 
reference is set at n = NS, where NS ≤ 50000, to mark the 
end of known data and start of prediction. The remaining 
samples can be used for tracking the algorithm.   

We assume a data measurement reporting interval of L 
samples and that there is no error in the measurement or the 
reporting process. At time epochs n = NS + m L , where m is 
an integer, the L measurements x(n – L + 1), x(n – L + 2), 
…, x(n) are reported and will be available to use at the next 
epoch, (NS + m L + 1). Depending on L, two extreme cases 
can result as follows:  

   L = 1:  →    Point estimator case. 
   L = ∞: →    Time series case, i.e., no measurements at all. 

Further, we define the following signals and associated 

time epochs for prediction purposes:  
)(nx : True Normal signal known within 0 ≤ n ≤ NS or 

whenever measurement is available as above. 
)(ˆ nx : Predicted signal using IIR filter or AR     recursion.  

)(nxREF : Reference signal used to produce )(ˆ nx .  

)(nxREF
 = )(nx  within 0 ≤ n ≤ NS or whenever 

measurement is available 
)(ˆ)()( nxnxneN −= : True prediction error, only known if 

)(nx  & )(ˆ nx  are known. 

)(ˆ neN : Prediction error estimate, either white noise or 

delayed measurement. 

The prediction algorithm can be summarized as follows:  

a) Training phase within 0 ≤ n ≤ NS: Apply the LPC 
algorithm on the true samples x(0), … , x(NS ) to obtain the 
prediction coefficients {1, b1, …, bN}. Then FIR filter is 
used to  filter the same samples using the FIR coefficients 
{–b1, …, –bN} to compute the predictor )(ˆ nx  and true 

prediction error )(ˆ)()( nxnxneN −=  within 0 ≤ n ≤ NS. 

Further, we pre-load the reference signal )(nxREF
 = )(nx  

within 0 ≤ n ≤ NS. 

b)     Prediction phase for n ≥ NS + 1: The AR model of 
equation (6) is applied after computing the error 
estimate )(ˆ neN . The same prediction coefficients obtained 

in the training phase are used if we plan short-term 
prediction, which is our case. Otherwise, prediction 
coefficients have to be updated for long-term prediction. 
The steps for prediction at epoch “n” are given by:  

1) Compute the prediction error estimate using:  
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We can set )(ˆ neN  as randomly generated white noise 

or also import a snapshot from the past true prediction 
error series obtained in the training phase.   

2) By inspecting equation (6), we compute the predicted 
 signal via the AR recursion: 

)(ˆ)()(ˆ
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, neinxbnx N

N

i

REFNiAR +−−= ∑
=

          (8) 

3)  Update the reference signal entries as follows:   

    If n ≠ NS + m L → )(ˆ)( nxnx ARREF =     

    If n = NS + m L → b  [xREF(n – L + 1),  
xREF(n – L + 2), …, xREF(n)] = [x(n – L + 1), x(n – L 
+ 2), …, x(n)] 

4) Update the prediction coefficients if needed by running 
the LPC on the reference signal. It is best to make such 
update at n = NS + m L because xREF(n) would be just 
updated by measurements.  

5) Increment n and go back to step 1.  
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Figure 5 shows prediction process phases 

 
 
 
 
 

Figure 5. The two phases of prediction process. 

B.  Wind speed prediction results 

Ten minute wind speed data from Dunkirk weather station 
in the west zone of New York State have been used for the 
stochastic prediction of wind speed [9].   
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Figure 6 Ten minutes and one hour prediction using 10 minute past value 

Figures 6 and 7 assist that the prediction model insensitive 
to the prediction order which is defined as the number of 
observed data (history) used in the prediction. 10 minute 
wind speed prediction model shows persistence for all 
prediction orders used.    
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Figure 7 Ten min and one hour prediction using 1 hour past values 

Figure 8 shows the effect of how the increase in the number 
of present and past wind speed sample data does not 
significantly reduce the root mean square error (RMSE). 
This led us to an interesting valuation of data structuring 
and modeling. If only can one recent sample random 
variable captures stochastic statistics of wind signal to 
predict future values, then time and memory reductions in 
presenting such signal can be modeled as a discrete Markov 
process; the process that stated generally the 

independencies between past and present values to present 
signal statistics and structure using state and transition 
probabilities that will be discussed in detail in the next 
section below. 

V.  WIND MODEL USING DISCRETE MARKOV PROCESS 

The interesting results obtained above shows 
Independencies from past observed data except for the 
nearest one. Model representation using Markov process is 
then valid, which is defined as the likelihood of next wind 
speed value in state k is conditioned on the most recent 
value of wind speed in state m. Equation (9) defines this 
likelihood – state relationship. 

)(),,,( 11 mmkmmmk xXiXPjXxxXiXP ====== − K   (9) 

However, to identify state levels and state values, uniform 
midrise quantization process is carried out to discretize 
wind speed signal to state levels with optimum threshold or 
cutoffs values.  

A.  Design of optimum Uniform Quantizer 

A midrise uniform Quantizer is implemented that 
minimizes the mean square quantization error given a set of 
M states; we define ][ 21 Mxxxx L= as a state value vector, 

and )]1()2()1([ −= Mxxxx tttt L as a quantized threshold 
levels or partitions vector. x is the original analog wind 
speed signal and qx is the quantization signal. The 

quantization step Δ  is defined as; 

)()1()()1( mxmxmxmx tt −+=−+=Δ   (10) 

The operation of the Quantizer is as follows: 
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B.  State and Transition probabilities in discrete state space 
Markov model 

Given the initial and final boundaries of each state; state 
probabilities can now be defined as: 
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Where m = 1, 2, …, M, is the state index. Equation (13) 
presents the Markov linear state space model that takes into 
account the prediction coefficients, error signal modeled as 
disturbance d, and a regeneration time τ in which the signal 
is updated (e.g., 1 sample in 10 minutes or 6 samples in one 
hour). 
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Figure 8 Wind speed prediction using various past wind speed data in 10 minute resolution: 

1st raw:  10 minute prediction using: (a) 10 min, (b) one hour, (c) 12 hours, and (d) 24 hours past data. 
2nd raw:  1 hour prediction using: (e) 10 min. , (f) one hour, (g) 12 hours , and (h) 24 hours past data. 
3rd raw:  12 hours prediction using: (i) 10 min. , (j) one hour, (k) 12 hours , and (l) 24 hours past data. 

4th raw:  24 hours prediction using: (m) 10 min. , (n) one hour, (o) 12 hours , and (p) 24 hours past data. 
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The processing time from ττ →o is represented by a 

rectangular function. Equations (14) and (15) define 
subsequent use of the state space representation.  
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Where [ ]A  is the prediction coefficient matrix. Transition 
probabilities are calculated based on the counting method 
discussed in [11], for which we define: 

≡)|( mkNtrans  The number of transitions from state m to 

state k in the time series,(m is the originating state, k is the 
next state) 

≡)(mNstate The number of occurrences of state m in the 

time series signal. 

Both state and transition counters are related by (16) and 
the total size of the time series is defined in (17) 
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Using the statistical counter values of )(mNstate and 

)|( mkNtrans , the transition and state probabilities can be 

statistically computed as: 
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mN

mkN
mkP
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trans
trans =    (18) 

N

mN
mP state

state
)(

)( =     (19) 

Where, K = 1,…, M and, m= 1,…, M. Note that (19) 
represent the statistical (actual) state probabilities of wind 
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speed signal while (12) represent the theoretical state 
probabilities defined be either Weibull or Normal 
probability density functions. The probability state space 
representation is defined as: 

[ ] )())(( ,1, nxPnxP jtransj ττ −×=     (20) 

Where [Ptrans] is the transition probability matrix. 
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Figure 9 Gaussian transition probability for M = 16 states 

 
Figures 9 through 14 show the transition probability plots 
being clustered around the diagonal which means smooth 
transitions between states and suggesting that the data does 
not exhibit frequent wind gusts. Also the difference 
between theoretical and actual (statistical) state 
probabilities as shown in Figures 15 and 16 is due to the 
use of the uniform quantization while we conjecture that a 
non-uniform quantizer will achieve a better match between 
the actual and theoretical probabilities. 
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Figure 10 Weibull transition probability for M = 16 states 
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Figure 11 Gaussian transition probability for M = 32 states 
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Figure 12 Weibull transition probability for M = 32 states 
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Figure 13 Gaussian transition probability for M = 64 states 
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Figure 14 Weibull transition probability for M = 64 states 
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Figure 15 Weibull state probability for M = 16 states 
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Figure 16 Gaussian state probability for M = 16 states 

 
 

VI.  CONCLUSION  

Linear prediction with FIR and IIR filtering has been 
used to predict wind speed signals transformed from 
Weibull to Normal PDF. Linear state space representation 
has been performed and the prediction results show that a 
small prediction order based on the most recent data is 
sufficient for a good accuracy. A uniform quantization 
algorithm using Weibull and Normal PDF’s has been used 
to discretize the signal for representation as a discrete 
Markov process. The state probabilities of the Markov 
process have been calculated both statistically (by counting 
the time series data) and theoretically (by integrating the 
modeled signal PDF) with a good match for both Weibull 
and Normal distributions that can be further improved by 
using non-uniform quantization. The computed transition 
probability matrix of the Markov process is shown to be 
clustered around the diagonal, which indicates the absence 
of frequent wind gusts in the used time series.  
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