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Abstract — In this paper it is presented a formulation for the 

DC Optimal Power Flow problem considering load and 

generation cost uncertainties and the corresponding solution 

algorithms. The paper also details the algorithms implemented to 

allow the integration of losses on the results as well the algorithm 

developed to compute the nodal marginal price in the presence of 

such uncertainties. Since loads and generation costs are 

represented by fuzzy numbers, nodal marginal prices are no 

longer represented by deterministic values, but instead, by 

membership functions. To illustrate the application of the 

proposed algorithms, this paper also includes results based on a 

small 3 bus system and on the IEEE 24 bus/38 branch test system. 

 
Index Terms— Uncertainties, fuzzy models, DC optimal power flow, 

multiparametric programming, nodal marginal prices 

I. INTRODUCTION 

HE development of electricity markets and the consequent 

unbundling process of the vertically integrated companies 

becomes a current practice in a wide number of countries 

all over the world. In this context, several authors refer that 

one of the main goals of a tariff methodology is the 

identification or development of methods that promote the 

efficient use of the system and that at the same time guarantee 

the long-term system reliability. In this sense, several tariff 

methods were proposed, namely average, incremental, and 

marginal approaches [1, 2]. Essentially motivated by their 

intrinsic simplicity and easiness of implementation the average 

based methods have been the ones traditionally used in the 

computation of the transmission tariffs. Nevertheless, since 

this kind of methods can not provide adequate economic 

signals for the efficient system planning and operation, 

marginal methods are very attractive given their economic 

foundation. These methods, however, also display several 

drawbacks, which are typically related with their inability to 

adequately remunerate the transmission activity, since their 

computation usually does not take into account long-term 

investment cost. This under recovery problem is in fact well 

known in the literature and it is termed as the Revenue 
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Reconciliation problem [3]. Another drawback of this 

methodology approach is related with their temporal and 

spatially volatility, which suggests that their computation 

should integrate uncertainties on loads and generation cost, 

especially in a market environment, since they lead to changes 

in the dispatch policy and thus in marginal prices. 

Additionally, they should also integrate reliability data 

regarding system components since this issue also affects the 

value of nodal marginal prices.  

The treatment of uncertainties in power systems has long 

been addressed. Probabilistic methods were the pioneering 

methodologies developed in this area. Papers [4] [5] describe 

the main concepts related with this problem as well as the 

initially developed algorithms using convolution techniques, 

the DC model and different linearized versions of the AC 

power flow problem. Apart from data having probabilistic 

nature, there are situations in which the uncertainty has not a 

random nature but it derives, for instance, from the incomplete 

characterization of the phenomenon under analysis or from 

insufficient frequency phenomena. In other cases, uncertainty 

is related with vagueness in the sense that the human language 

has an intrinsic subjective nature. In this context, since the 

80’s Fuzzy Set models are under development and application 

to power systems in order to provide a new framework to 

model the vague or ill defined nature of some phenomena. 

This application already occurred or is under way in areas as 

Fuzzy Power Flow, Fuzzy Optimal Power Flow, risk analysis 

and reinforcement strategies, generation planning, reliability 

models, fuzzy reactive power control, fuzzy dispatch and fuzzy 

clustering of load curves or even in transient or steady state 

stability analysis. 

In this context, reference [6] describes a Fuzzy DC Optimal 

Power Flow model admitting that, at least, one load is 

represented by a fuzzy number. As a result, generations, 

branch flows and power not supplied, PNS, displays fuzzy 

representations translating data uncertainty. Afterwards, using 

this Fuzzy OPF, reference [6] also describes how load 

uncertainties can be reflected in fuzzy distributions for nodal 

marginal prices. In this paper we are now enlarging this 

approach in order to consider not only load uncertainties, but 

also generation cost uncertainties represented by fuzzy 

numbers. Additionally, the developed solution algorithms use 

multiparametric linear optimization techniques that allow 

obtaining more accurate descriptions of the possible behavior 

of the system under the form of membership functions.  

After this Introduction Section, Section II describes the New 

Fuzzy Optimal Power Flow (NFOPF) model and the algorithm 

developed to integrate losses and Section III details the 

Impact of Load and Generation Price 

Uncertainties in Spot Prices 
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computation of nodal marginal prices in the presence of load 

and generation cost uncertainties. Section IV and V present 

results based on a three bus/three branch system and on the 

IEEE 24 bus/38 branch test system. Finally Section VI 

presents the most relevant conclusions.  

II. NEW FUZZY OPTIMAL POWER FLOW ALGORITHM 

A. General Aspects 

Starting from the original concept of the Fuzzy Optimal 

Power Flow developed by the second author of this paper [6], 

the NFOPF model [7] is an optimization problem aiming at 

identifying the most adequate generation strategy, driven by an 

economic criterion, admitting that, at least, one load or 

generation cost is represented by a fuzzy number. Similarly to 

its original model, the NFOPF also uses the DC approach to 

model the operation conditions of the network. However, 

instead of running a number of parametric studies, the new 

developed model uses multiparametric linear programming 

techniques. This in fact represents an important improvement, 

since it allows obtaining more accurate membership functions 

in the sense they actually represent the widest possible 

behavior of each output variable. Figure 1 presents the 

corresponding flowchart of the algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. New Fuzzy DC Optimal Power Flow algorithm [7] 

B. Initial Deterministic Study 

As it can be seen from Figure 1, the NFOPF algorithm starts 

with the execution of a deterministic DC-OPF (1-5) 

considering the central values of the fuzzy numbers that 

represent loads and generation costs, ctr
Lk

P  and ctr
k

c . 

∑+∑= kk PNS.GPg.ctr
k

cf min  (1) 

subj. ∑=∑ ∑+ ctr
Lkkk PPNSPg  (2) 

 max
kk

min
k PgPgPg ≤≤  (3) 

 ctr
Lkk PPNS ≤  (4) 

 ∑ ≤−+≤ max
b

ctr
Lkkkbk

min
b

P)PPNSPg.(aP  (5) 

In this model kPg  is the generation in bus k having cost kc  

and kPNS  is the power not supplied in bus k, min
kPg , max

k
Pg , 

min

bP  and 
max

bP  are the generation and branch flow limits and 

bka  is the DC sensitivity coefficient of the flow in branch b 

regarding the injected power in bus k. 

Once a feasible and optimal solution of this problem is 

identified, they are integrated parameters representing each 

fuzzy load or generation cost leading to a multiparametric 

optimization problem. 

C. Integration of Uncertainties 

Following the algorithm presented in Figure 1, after 

identifying a solution for the deterministic problem (1-5), the 

algorithm tries to find other optimal and feasible basis in 

regions of the uncertainty space based on the optimality (6) or 

feasibility (7) conditions. These regions are called critical 

regions and this process is conducted by pivoting over the 

initial basis as well as over all the new ones identified during 

the search process.  

0AB.C-))('cc(AB.C-)(C -1T
0k.-1T

0k
T ≥Φ+=Φ ρρ  (6) 

0))(b'(bB).b(B k
-1

k
-1 ≥∆+=∆ ρρ  (7) 

In these expressions, B be is an optimal and feasible basis, ρ 

the index for the corresponding set of basic variables, A 

represents the columns of the non-basic variables in the 

Simplex tableau, C0 is the cost vector of the basic variables, C
T
 

is the cost vector of the non-basic variables, Φk is the vector of 

the parameters that model generation cost uncertainties and ∆k  

is the vector of the parameters modeling load uncertainties. 

As a final comment, the ultimate objective to attain when 

solving a multiparametric optimization problem is to find all 

possible optimal solutions, their corresponding optimal values 

and critical regions. These regions can be defined as a closed 

nonempty polyhedron and can be represented mathematically 

by a set of linear inequalities in ∆ or Φ. Mathematically, this 

set of constraints can be expressed as the equivalent set of non-

redundant constraints, which in turn can be identified through 

a non-redundant test for linear inequalities, like the one 

proposed by Gal [8]. 

D. Consideration of Load Uncertainties 

The integration of the parameters that model load 

uncertainties in the optimal and feasible solution of the 

deterministic problem (1-5) leads to the multiparametric 

optimization problem (8-12). 

∑+∑= kk
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k
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Considering the inequalities associated to the feasibility 

condition (7), the algorithm identifies a set of non-redundant 

constraints defining new critical regions. If there are no non-

Deterministic DC-OPF problem 

(uncertainties fixed at its central values) 

Integration of uncertainties
(multiparametric problem formulation)

Identification of all new critical regions 

in the uncertainty space
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redundant constraints, the algorithm stops. Otherwise, it 

performs a dual pivoting over the initial optimal and feasible 

solution to identify new critical regions. This process is 

repeated until no non-redundant constraints exist or until all 

identified critical regions correspond to the already known 

ones. When this is over, all the uncertainty space was covered 

and we identified all critical regions in which a base B of the 

problem (8-12) remains feasible and optimal. 

At this stage the algorithm proceeds by building the 

membership functions of the output variables (generations, 

branch flows and PNS). Given that the problem is linear, each 

variable in each critical region is represented by a linear 

expression. In this sense, in order to capture the widest 

possible behaviour of each variable the algorithm solves 

several minimizing and maximizing linear optimization 

problems for several different cut levels and for each function 

that represent the behaviour of each variable subjected to the 

non-redundant conditions together with the possible ranges of 

the input uncertainties regarding the i
th

 cut under analysis. For 

illustration purposes, if we consider a system having two loads 

affected by uncertainty, this problem can be formulated by 

(13-16). 

)(f maxmin/ 2,1 ∆∆= v  (13) 

subj.   iii bkk ≤∆+∆ 2211 ..  (14) 

            
cutthimáxcutthi −−

∆≤∆≤∆ 1
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2

cutthimin
2 2
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In this model )(
2

,
1

∆∆v is the linear expression that represents 

the behaviour of the variable v  in terms of the load 

uncertainty parameters 1∆  and 2∆  in the critical region under 

analysis, 
i

k
1

and 
i

k
2

 are real numbers, and 
cut

th
i −

∆
min

1
, 

cut
th

i −
∆

max

1
, 

cut
th

i −
∆

min

2
and 

cut
th

i −
∆

max

2
are the minimum and maximum values 

of the load uncertainties in the 
th

i - cut  under analysis. 

Once all critical regions are analyzed, the final membership 

function of an output variable is obtained applying the fuzzy 

union operator to the partial membership functions obtained 

for that variable. This guarantees that the final result displays 

the widest possible behavior given the specified uncertainties. 

E. Consideration of Generation Cost Uncertainties 

The integration of the parameters that model generation cost 

uncertainties in the optimal and feasible solution of the 

deterministic problem (1-5) leads to the multiparametric 

optimization problem (17-21). 

∑+∑ Φ= kkk PNS.GPg.)(cf min  (17) 

subj. ∑=∑ ∑+ ctr
Lkkk PPNSPg  (18) 

max
kk

min
k

PgPgPg ≤≤  (19) 

ctr
Lkk PPNS ≤  (20) 

∑ ≤−+≤ max
b

ctr
Lkkkbk

min
b

P)PPNSPg.(aP  (21) 

Similarly to what was described in Section II.D, considering 

the inequalities associated to the optimality condition (6) the 

algorithm tries to identify new optimal and feasible basis in the 

uncertainty space and the corresponding critical regions 

defined by the parameters that model generation cost 

uncertainties. Once again, if there are no more critical regions 

the algorithm stops. Otherwise, it performs a primal pivoting 

over the initial identified optimal and feasible basis. This 

process is repeated until non-redundant constraint exists or 

until all identified basis correspond to the already known ones.  

When this process is completed the algorithm builds the 

membership functions of the output variables. This process is 

conducted taking into account that in this case each variable is 

constant inside each critical region. As a consequence, to build 

the membership functions the algorithm just has to solve the 

linear inequality system defined by the parameters that model 

generation cost uncertainties in each critical region to check if, 

at least, one point of a given cut level belongs to the region 

under analysis. For a given variable, once all partial 

membership functions are obtained, they are aggregated using 

the fuzzy union operator to obtain the final membership 

function of the output variable under analysis.  

F. Integration of Active Losses 

Active losses in branch b  are given by (22). As it can be 

seen, it depends on the voltage magnitude and phase on the 

extreme branch nodes i  and j  and also on the conductance 

ij
g . If we consider that voltage magnitudes are 1.0 pu, we can 

then obtain the simplified expression (23). 

)cos...2.(
22

ijjijiijij VVVVgLoss θ−+=  (22) 

)cos1.(.2 ijijij gLoss θ−=  (23) 

Among several other available techniques described in 

literature, this algorithm adopts the approach described in [6] 

to consider an estimate of active losses. The corresponding 

iterative process evolves as follows: 

1. Perform the deterministic DC OPF study (1-5); 

2. Compute the voltage phases according to the DC model; 

3. Compute an estimate of the active power losses in each 

branch of the system; 

4. Add half of the estimated active power losses for each 

branch to the loads in the corresponding extreme buses; 

5. Perform a new deterministic DC OPF study to update the 

generation strategy; 

6. Compute the nodal voltage phases according with the DC 

model; 

7. Finish if the difference between every voltage phases in 

two successive iterations is smaller than a specified value. 

Otherwise return to step 3. 

In case we are trying to integrate the effect of the active 

losses on the results of the algorithms detailed in sections II.D 

and II.E then, for each extreme point in each identified critical 

region we must run the algorithm just detailed. As we will 

show in Sections IV and V, in general, this procedure 

introduces small deviations regarding the initial results. 
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III. MARGINAL PRICE COMPUTATION 

A. Deterministic Evaluation 

The short term nodal marginal price in node k is defined as 

the impact on the cost function of a short term operation 

problem regarding to a variation of the load in node k. Given 

this definition in deterministic terms and for the problem (1-5), 

short term marginal prices can be computed using (24).  

Lkbranchesall Lk

b
bkk

P

Losses
.

P

P
.

∂

∂
∑ +

∂

∂
−+= γησγρ  (24) 

In this expression: 

- γ  represents the dual variable of the generation/load 

balance equation (2); 

- the second term represents the contribution from 

constrains (4) that are eventually on their limits. kσ is the 

dual variable of the constraint in node k; 

- the third term represents the contribution from each 

branch flow constraint that is on its limit. In this 

expression, bη represents the dual variable of the 

corresponding constraint (5) and the derivative of the flow 

in branch b, bP , regarding the load in bus k, LkP , is the 

symmetric of the corresponding sensibility coefficient; 

- the fourth term represents the impact on the cost function 

from varying branch losses in the whole network due a 

variation of the load in bus k. 

B. Nodal Marginal Prices Membership Functions 

The algorithm presented in Section II could also be used to 

compute the nodal marginal price membership functions when 

they are modelled load or generation cost uncertainties. In this 

context, the computation of the nodal marginal price 

membership functions comprises three distinct stages. In the 

first place, the algorithm determines the maximum and 

minimum possible values of all variables in each cut level. 

Once this initial stage is completed, the algorithm can evolve 

to include the impact of the active losses for each identified 

operating point in each cut level or, this impact can be 

neglected. Finally, the algorithm determines the nodal 

marginal prices using (24). When all partial membership 

functions are known for a given node, the final membership 

function is obtained applying the fuzzy union operator. 

Since nodal marginal prices are described by the dual 

variables of the original problems their membership functions 

will be described by ordered pairs of price/membership values, 

in case of load uncertainties modeling, and by linear segments 

in case of generation cost uncertainty modeling. 

IV. CASE STUDY USING A THREE BUS/THREE BRANCH SYSTEM 

A. Data 

To illustrate the application of the algorithms described in 

Section II and III we used the small system presented in Figure 

2. In this example, we considered that generator 1 has a 

capacity of 3 MW and that generator 2 as a capacity of 7 MW. 

The capacity of branches was set at 5 MW. All branches have 

the same impedance of 0.05+j1.0 pu, (base of 10 MVA, 10 

kV). The generation cost of generator 1 is 10 €/MWh and of 

generator 2 is 20 €/MWh. The central value of the load on bus 

2 is 2.0 MW and on bus 3 is 3.5 MW. 
 

 

 

 

 

 

 
 

Fig. 2. Three bus/three branch system 

B. Considering Load Uncertainties 

In order to model load uncertainties, load in nodes 2 and 3 

were defined by the trapezoidal fuzzy numbers (25) and (26). 

)0.4;5.2;5.1;0.0(2 =LP  MW (25) 

)0.5;0.4;0.3;0.2(3 =LP  MW (26) 

Figure 3 presents the membership functions of the generators 

at buses 1 and 2 and of the marginal price in bus 3 considering 

and not considering the effect of active losses.  

Fig. 3. Membership functions of generator 1 and 2 (at the left) and of the 

nodal marginal prices at bus 3 (at the right), both considering and not 

considering the effect of transmission losses. 

As we can see from Figure 3 (at left), when the system load 

is at its minimum (2 MW) only generator 1 is in service since 

it is the less expensive one. When this generator achieves its 

maximum capacity of 3 MW, then generator 2 starts to 

produce. As expected, in this system the effect of transmission 

losses is neglectable given the system dimension. Without 

surprise the membership function of nodal marginal price in 

bus 3 when they are not considered the transmission losses 

presents a value of 10 €/MWh with a membership value of 0.4 

and a value of 20 €/MWh with a membership value of 1.0. In 

this context it is also important to mention that all buses 

present the same nodal marginal price membership functions 

since they are not considered losses and there are no branch 

congestions or PNS. As expected, this Figure also indicates 

that a load increase in bus 3 implies an increase of losses and, 

as a consequence, nodal marginal price in this bus also 

increases. It is also interesting the fact that the membership 

degree of the 10.17 €/MWh is now smaller then the one 

identified for the 10 €/MWh when the losses effect was 

neglected. This situation results from the fact that when active 

losses are considered and for uncertainties larger than 0,35, the 

marginal generator becomes generator 2. 



 

 

5

C. Considering Generation Cost Uncertainties 

In order to model generation cost uncertainties, the 

generation costs of generators at buses 1 and 2 were defined 

by the trapezoidal fuzzy numbers (27) and (28). 

)0.15;5.12;5.7;0.5(1 =PGC  €/MWh (27) 

)5.32;0.25;0.15;5.7(2 =PGC  €/MWh (28) 

Figure 4 presents the membership functions of generators 1 

and 2 and of the nodal marginal price on bus 3. 

Fig. 4. Membership functions of generators 1 and 2 (at the left) and of the 

nodal marginal price on bus 3 (at the right), both considering and not 

considering the effect of active losses  

As it can be seen from Figure 4 (at the left), given the 

specified generation cost uncertainties they were identified two 

possible generation strategies. In the first one, the two 

generations are in service and, in the second one generator 2 is 

at 5.5 MW supplying the entire load, that is 2 MW at bus 2 

and 3,5 MW at bus 3. Since generator 2 is always the marginal 

generator, it defines the system marginal price as it can be seen 

from the membership function at the right side of Figure 4. 

This Figure also indicates that the nodal marginal price on bus 

3 increases when considering active losses. This in fact shows 

that a load increase on this node implies an increase of the 

system active losses. 

V. CASE STUDY USING A 24 BUS/38 BRANCH SYSTEM 

A. Data 

The algorithms described in Section II and III were used to 

build the generation and marginal price membership functions 

considering a case study based on the IEEE 24 bus/38 branch 

test system. The original data for this system is given in [9]. 

Regarding the data in this reference, the load was increased to 

4308.05 MW. Table II presents the central values of the loads 

and Table III the installed system capacity and the central 

values of the corresponding generation costs.  

TABLE II 
Load central values 

Bu

s 
Load (MW) Bus Load (MW) Bus Load (MW) 

1 220.48 9 385.82 17 0.00 

2 270.80 10 216.49 18 226.76 

3 3.94 11 40.00 19 265.53 

4 32.67 12 10.00 20 103.92 

5 105.94 13 162.45 21 100.00 

6 187.65 14 262.88 22 100.00 

7 218.77 15 650.36 23 0.00 

8 398.09 16 225.50 24 120.00 

The total installed capacity is 5536 MW according to the 

data in Table III. Branch data can be obtained from [9] 

considering that the transformers have a capacity of 400 MW, 

the capacity of the branches 1 to 6 and 8 to 13 was set at 175 

MW and the capacity of the remaining branches was set at 500 

MW. 

TABLE III 

Installed system capacity 

Bus/ 

Gen 

Capacity 

(MW) 

Cost 

(€/MW.h) 

Bus/

gen 

Capacity 

(MW) 

Cost 

(€/MW.h) 

1/1 40.0 30.0 18/1 310.0 38.0 
1/2 40.0 32.0 19/1 800.0 87.0 
1/3 152.0 40.0 21/1 700.0 80.0 
1/4 152.0 43.0 22/1 100.0 15.0 
2/1 40.0 36.0 22/2 100.0 17.0 
2/2 40.0 38.0 22/3 100.0 19.0 
2/3 152.0 41.0 22/4 100.0 15.0 
2/4 152.0 42.0 22/5 100.0 17.0 
7/1 150.0 45.0 22/6 100.0 25.0 
7/2 200.0 43.0 23/1 200.0 50.0 

13/1 250.0 61.0 23/2 50.0 49.0 
13/2 394.0 62.0 23/3 310.0 47.0 
13/3 394.0 67.0 -- -- -- 
16/1 310.0 55.0 -- -- -- 

B. Considering Load Uncertainties 

In this case we considered trapezoidal fuzzy numbers to 

model loads. These numbers have at the 0.0 level the 

uncertainty ranges from +/-10 per cent and at the 1.0 level 

from +/- 5 per cent of its central value. Figure 5 presents the 

membership functions of generators 13/3, 19/1 and 21/1 

considering and not considering the effect of active losses. 

 

 

 

 

 

 

 

Fig. 5. Membership functions of generators 13/3, 19/1 and 21/1 not 

considering the transmission losses effect (at the left) and considering this 

effect (at the right) 

As it can be seen from Figure 5 in presence of active losses, 

generators exhibit greater generation values for the some level 

of load uncertainty, which in fact corresponds to the losses 

compensation. An important consequence of this is the fact 

that when transmission losses are considered generator 13/3 is 

never the marginal generator. This situation justifies the 

absence of the 67 €/MWh value in the membership function of 

the nodal marginal price in bus 10 when they are considered 

the active losses effect as it can be seen in Figure 6.  

When the effect of active losses is considered, the nodal 

marginal prices increase or decrease depending on the impact 

of load variations in the active losses. For instance, when 

generator 21/1 is the marginal one, an increase of the load in 

node 10 implies an increase of active losses and so the 

marginal price in node 10 increases.  
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Fig. 6. Membership functions of the nodal marginal price at bus 10 not 

considering the effect of transmission losses (at the left) and considering this 

effect (at the right). 

C. Considering Generation Cost Uncertainties 

In this case we considered that the generation costs of the 

generators 1/1, 2/1, 2/4, 13/3, 19/1, 21/1 and 23/2 are 

represented by the trapezoidal fuzzy numbers (29-35). As a 

consequence, Figures 7 and 8 present the membership 

functions of generators 13/3, 19/1 and 21/1 and of the nodal 

marginal price on bus 10 considering the generation cost 

uncertainties just mentioned.  

)0.34;5.32;5.27;0.26(1/1 =PGC  €/MWh (29) 

)0.39;5.37;5.34;0.33(1/2 =PGC  €/MWh (30) 

)0.47;5.44;5.39;0.37(4/2 =PGC  €/MWh (31) 

)0.76;0.73;0.61;0.58(3/13 =PGC  €/MWh (32) 

)0.100;0.92;0.82;0.74(1/19 =PGC  €/MWh (33) 

)0.89;0.86;0.74;0.71(1/21 =PGC  €/MWh (34) 

)0.83;5.81;5.78;0.77(2/23 =PGC  €/MWh (35) 

 

 

 

 

 

 

 

Fig. 7. Membership functions of the generators 13/3 and 19/1 when they are 

considered the transmission losses effect and when they are not considered. 

 

 

Fig. 8. Membership functions of the generator 21/1 and of the nodal marginal 

price on bus 10 (considering and not considering the transmission losses 

effect). 

 

From Figures 7 and 8 we can recognize once again that for 

some levels of uncertainty generators exhibit larger generation 

values in order to be able to compensate transmission losses. 

In Figure 8 it is once again visible that a load increase in bus 

10 has an increasing impact on the global system active losses. 

As a result, the nodal marginal price in this bus when 

considering transmission losses is larger than the values that 

were obtained not taking into account this impact. 

VI. CONCLUSION 

In this paper we present the NFOPF model as an algorithm 

to evaluate the impact of load and generation cost uncertainties 

on the nodal marginal prices computation. It was also 

described the algorithms developed to integrate an estimate of 

the active transmission losses on the results. Since this 

algorithm uses multiparametric programming techniques it 

allows attaining more accurate representation of the variable 

membership functions. Given the current volatility and 

unpredictability of several input parameters, this model could 

play an important role in analyzing the possible system 

behavior and its corresponding impact at the agent’s making 

decision process level. 
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