
1

Optimal Power Flow Solution Using the
Penalty/Modified Barrier Method

Guilherme G. Lage, Student Member, IEEE, Vanusa A. de Sousa,
Geraldo R. M. da Costa, Member, IEEE

Abstract—The solution of the optimal power flow problem
through the penalty/modified barrier method is described in
this paper. This approach features considerable advantages over
interior point methods. In this method, the inequality constraints
are transformed into equalities by the introduction of slack
variables, which are handled by either the modified barrier
function or the quadratic penalty function. Then, first order
optimality conditions and Newton’s method are applied in the
solution of the problem. In order to validate the proposed method,
electrical power systems of 3, 14, 30, 118, 162 and 300 buses were
used as case studies, and the obtained results proved the method’s
efficiency.

Index Terms—Active power loss minimization, optimal reactive
dispatch, nonlinear programming, penalty function, modified
barrier function, Lagrangian function, Newton’s method.

I. INTRODUCTION

THE optimal power flow (OPF) is a large, non-convex and
nonlinear programming problem. It is the ideal tool for

an electrical power system analysis in which one can obtain,
among others, the spot price for the composition of tariffs; an
optimal dispatch of generators, synchronous condensers and
static VArs; or even the adjustment of any device for a desired
performance of an electrical system. Therefore, its use in
energy management systems has become a standard practice.
Due to this motivation, it is compelling that the OPF problem
keeps being intensely studied and important progresses and
formulations have been accomplished since its initial proposal
[1], [2].

In the last decade, most of the researches about the OPF
problem have been based on variants of interior point methods
(IPMs) [3]–[7], and few researches have been based on
different approaches [8]–[11].

Although the IPMs are quite established as robust methods
for solving the OPF problem, in this paper, we propose the
application of the penalty/modified barrier method (PMBM)
[12]–[14], which was developed in order to explore and
combine the best characteristics of penalty and barrier
methods. The presented method is as effective as IPMs in
attaining the optimal solution and has some considerable
advantages over the IPMs. The ultimate feature of the PMBM
approach is based on the merging of the modified barrier
function (MBF) [15] and the quadratic penalty function (QPF).
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The theory of MBF methods was developed to solve
optimization problems with inequality constraints. The MBF
methods have several characteristics, such as, being defined
and having defined derivatives in the solution, not growing
infinitely, and not having the modified barrier parameter driven
to zero. Since the MBF may assume different forms, the one
that is considered in this work is the modified logarithmic
barrier function. The use of such function demands starting
points in the relaxed feasible region. On the other hand, the
QPF methods allow starting points in the unfeasible region. In
addition, both methods also allow solutions on the limits of
the inequality constraints.

As a result, the benefits of using such combined methods are
chiefly in not demanding a feasible starting point, allowing the
optimal trajectory to pass through the feasible and unfeasible
regions, and attaining a solution on the frontier of the feasible
region.

Regarding this work, we consider that the desired
performance of the electrical system is to operate minimizing
the active power losses in transmission lines. The choice
of such performance is based on the fact that the Brazilian
interconnected system is mostly supplied with energy provided
by hydroelectric power plants. In addition, its planning and
operation follow other directives. Thus, in this work, it will
be considered the optimal reactive dispatch (ORD) problem,
which is a particular case of OPF where active controls,
such as active power injections in the system, are fixed. Due
to the increase of the size and complexity of the Brazilian
electrical system, the use of robust optimization methods on
its operation is compelling. Furthermore, all control variables
of the electrical system are assumed to be continuous.

This paper is organized as follows. Firstly, the OPF
formulation is presented. Then, the PMBM is discussed. The
solution of a generic OPF problem for a 3-bus system by the
proposed approach is also demonstrated. The results obtained
for other systems are compared with the results provided by
the predictor-corrector interior point method (PCIPM). For
such comparison, it was considered IEEE electrical systems
of 14, 30, 118 and 300 buses and an electrical system of 162
buses.

II. OPTIMAL POWER FLOW FORMULATION

The OPF problem can be formulated with the purpose of
optimizing a desired performance of an electrical system,
subject to some physical and operating constraints. In this
work, the desired performance is to determine the point that
minimizes the active power losses in transmission lines.
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According to this objective, a generic formulation of such
problem is:

min P loss(V,θ)
s.t.: PG − PL − P(V,θ, t) = 0

QG −QL − Q(V,θ, t) = 0
QG

min ≤ QG(V,θ, t) ≤ QG
max

Vmin ≤ V ≤ Vmax
tmin ≤ t ≤ tmax

(1)

where:
• P loss(V,θ) the is active power loss function;
• NLB is the number of load buses;
• NGB is the number of generation buses;
• NRCB is the number of reactive control buses;
• PG ∈ R(NLB+NGB−1) and PL ∈ R(NLB+NGB−1) are

the specified active power generation and load vectors at
the buses of the system, except for the slack bus;

• P(V,θ, t) ∈ R(NLB+NGB−1) is the calculated active
power inflow vector at the buses of the system, except
for the slack bus;

• QG ∈ RNLB and QL ∈ RNLB are the specified reactive
power generation and load vectors at the load buses;

• Q(V,θ, t) ∈ RNLB is the calculated reactive power
inflow vector at the load buses;

• QG(V,θ, t) ∈ RNRCB is the calculated reactive power
generation vector at reactive control buses;

• V is the voltage magnitude vector;
• t is the transformer tap ratio vector for the in-phase

controllable transformers;
• QG

min, Vmin and tmin are the lower limits of the
controllable and state variables;

• QG
max, Vmax and tmax are the upper limits of the

controllable and state variables.

The tap ratios of in-phase controllable transformers assume
discrete values in real power systems. Nevertheless, these
variables are considered continuous. Thus, after reaching a
solution to the OPF problem, they are adjusted to their closest
actual value.

This generic formulation of the OPF problem can be
simplified and represented as follows:

min f(x)
s.t.: g(x) = 0

h(x) ≤ 0
(2)

where x ∈ Rn is the control and state variable vector,
representing the vector of the voltage magnitudes (V), the
vector of the phase angles (θ), and the vector of the tap ratios
for the in-phase controllable transformers (t). The chosen
objective function, f ∈ R, represents the active power losses
in the transmission lines. The equality constraints, represented
by the vector g ∈ Rm|m < n, are the load flow equations, and
the vector h ∈ Rp corresponds to the physical and operating
limits of system variables, i.e., limits of voltage magnitudes
and tap ratios of in-phase controllable transformers, limits of
reactive power injections at reactive control buses and active
power injections at generation buses.

III. THE PENALTY/MODIFIED BARRIER METHOD

All of the following discussion was based on [12]–[14].
When solving (2) by the PMBM, all inequality constraints

are transformed into equality constraints by the addition of
non-negative slack variables. Therefore:

min f(x)
s.t.: g(x) = 0

h(x) + s = 0
s > 0

(3)

where s ∈ Rp is the vector holding the slack variables.
The non-negativity condition of the slack variables are

handled by a continuous and smooth function φ ∈ Rp.
This function can be either the MBF or the QPF, and it is
incorporated into the objective function f through Lagrangian
multipliers.

min f(x)− µ.σT .φ(s)
s.t.: g(x) = 0

h(x) + s = 0
(4)

where µ is the modified barrier parameter, and σ ∈ Rp

is the Lagrangian multiplier vector associated with the non-
negativity condition of the slack variables.

Therefore, the function φ is defined as:

φi(si) =


ln
(
z +

si

µ

)
, if si ≥ −β.z.µ

1
2
.a.s2i + b.si + c, if si < −β.z.µ

(5)

where i = 1, ..., p, z is the shift parameter used in the
relaxation of the feasible region, and β is a parameter
associated with the approximation of the point to the
boundaries of the feasible region. The coefficients a, b, and
c are determined so that the function φi is continuous and
smooth in si = −β.z.µ:

a = − 1
[µ.z. (1− β)]2

(6)

b = − 1− 2.β
µ.z. (1− β)2

(7)

c = −β. (2− 3.β)
2. (1− β)2

+ ln [z. (1− β)] (8)

Then, the equality constraints in (4) are incorporated into its
objective function through Lagrangian multipliers, resulting in
the Lagrangian penalty/modified barrier function (LPMBF):

LPMBF = f(x)− µ.σT .φ(s) + λT .g(x) + πT . (h(x) + s)
(9)

where λ ∈ Rm and π ∈ Rp are Lagrangian multiplier vectors.
The first-order necessary conditions are applied to the

LPMBF, generating a system of nonlinear equations:

∇dLPMBF = 0 (10)
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where

d =


x
s
λ
π

 (11)

is the vector that holds the unknown primal (x, s) and dual
(λ,π) variables of the problem.

Newton’s method is applied in order to solve the system of
nonlinear equations (10) to find the search direction vector:

H(d).∆d = −∇dLPMBF (12)

where ∆d is the search direction vector, and H is the Hessian
matrix of the LPMBF.

Using the search directions obtained from the solution
of (12), the variable vectors x and s, and the Lagrangian
multiplier vectors λ and π are updated in the k-th Newton’s
iteration as follows:

dk+1 = d + α.∆dk (13)

where α is a scalar step size.
The step α is obtained through Armijo’s rule, in which

the value of α is determined in order that the new point
corresponds to a decrease in the LPMBF value.

It is also important to realize that some elements of the
Hessian matrix and the gradient of the LPMBF depend on the
function φ. Due to this fact, the function φ must be evaluated
throughout Newton’s iterative process. This iterative process
stops when the following criterion is satisfied:

‖∇dLPMBF‖ ≤ ξ (14)

where ξ > 0 and a typical value for ξ is ξ = 1.10−3.
After determining the solution of (12), the modified barrier

parameter in the K-th iteration is updated according to:

µK+1 =
µK

γ
(15)

where γ > 1 and typical values for γ are γ = 2 or γ = 10.
The β parameter is updated according to:

βK+1 = min

[
1− 1− βK

γ
; βmax

]
(16)

where 0 < βmax < 1. However, according to [14], [16], this
parameter can be considered constant throughout the iterative
process, with β = 0.9.

The update of the Lagrangian multipliers associated with the
non-negativity condition of the slack variables is, according to
[14], as follows:

σK+1
i =


µK .σK

i .

(
1

σK
i .z + si

)
, if si ≥ βK .z.µK

µK .σk
i .
(
aK .s+ bK

)
, if si < βK .z.µK

(17)
where i = 1, ..., p.

Regarding the initialization of the aforementioned
Lagrangian multipliers, according to [14], it is as follows:

σ0
i =

µ0

si
(18)

where the index 0 refers to the initial step of the algorithm
of the method. It is important to start the iterative process
with a good estimate of these Lagrangian multipliers since,
according to [15], the iterative process may converge to a
solution without having the modified barrier parameter driven
to zero.

The iterative process of the PMBM stops when the Karush-
Kuhn-Tucker (KKT) conditions are satisfied.

Algorithm 1 Penalty/Modified Barrier Method

1: Set K = 0, and ξ and γ with their typical values.
2: Initialize dK , σK and µK .

3: Make the LPMBF.
4: Make ∇dLPMBF .
5: Make H(d).

6: Set STOP = 0.

7: while STOP = 0 do

8: Set k = 0.
9: Evaluate ∇dLPMBF for dk = dK , σK and µK .

10: while ‖∇dLPMBF‖ > ξ, do

11: Evaluate H for dk, σK and µK .
12: Solve H(dk).∆dk = −∇dkLPMBF .
13: Compute the step length α.
14: Update d according to dk+1 = d + α.∆dk.
15: Evaluate ∇dLPMBF for dk+1, σK and µK .
16: Set k = k + 1.

17: end while

18: Set dK = dk.

19: Evaluate the KKT optimality conditions.

20: if the KKT optimality conditions are satisfied, then

21: The iterative process stops.
22: The optimal solution is given by dK , σK and

µK .
23: Set STOP = 1.

24: else

25: Update σ according to (17).

26: Update µ according to µK+1 =
µK

γ
.

27: Set K = K + 1.

28: The iterative process continues.
29: Set STOP = 0.

30: end if

31: end while
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IV. TEST RESULTS

In order to verify the efficiency of the proposed method,
tests with different electrical systems have been done.

The algorithm of the PMBM was implemented in C++
and Fortran computational languages, using double-precision
variables. Most of the work in this algorithm is in the solution
of the linear system (12). Furthermore, the usage of classic
methods for the factorization of the Hessian matrix is not
practicable. In addition, some of the OPF Hessian matrix
features must be taken into account in the resolution of (12).
For instance, this Hessian matrix is sparse and symmetric, and
its structure remains constant throughout the resolution of the
problem.

Due to such characteristics, the MA57 subroutine was used
to factorize the Hessian matrix and solve (12). The MA57
subroutine is a Fortran code for the direct solution of large
sparse linear equation systems, and it is in HSL 2002, formerly
known as Harwell Subroutine Library1.

The studied cases were the minimization of active
power losses in the transmission system. The performance
of the approach was evaluated in six electrical systems.
Some of them were standard IEEE test systems. The
tests with the standard IEEE electrical systems were done
with the initial conditions from the data available on
www.ee.washington.edu/research/pstca.

In the following tests it will be considered the ORD prob-
lem.

The main characteristics of the studied systems are
summarized in Table I, in which the Reactive Control Buses
column represents the number reactive control buses, the
Controllable Transformers column represents the number of
controllable in-phase transformers in the system, and the
Control Variables and State Variables columns are respectively
the number of control and state variables.

TABLE I
MAIN CHARACTERISTICS OF THE STUDIED SYSTEMS

Number Number Reactive Controllable Control State
of of Control Transformers Variables Variables

Buses Lines Buses
3 2 1 - 2 3
14 17 4 3 30 22
30 41 5 4 63 53

118 186 53 9 244 181
162 280 11 43 366 311
300 409 68 50 649 530

A. Illustrative Example

The PMBM approach for solving the OPF problem will be
illustrated for the power system given in Figure 1.

The ORD problem for this system can be formulated as:

1The HSL 2002 was developed at the Rutherford Appleton Laboratory, in
the Computational Science and Engineering Department of the Science &
Technology Facilities Council, in the United Kingdom.

Fig. 1. 3-bus system

min f(V,θ)
s.t.: ∆P2(V,θ) = 0

∆P3(V,θ) = 0
∆Q3(V,θ) = 0
Qmin

2 ≤ Q2(V,θ) ≤ Qmax
2

V min
1 ≤ V1 ≤ V max

1

V min
2 ≤ V2 ≤ V max

2

V min
3 ≤ V3 ≤ V max

3

(19)

where:

f(V,θ) = g13.(V 2
1 + V 2

3 + 2.V1.V3. cos θ13)+
g23.(V 2

2 + V 2
3 + 2.V2.V3. cos θ23)

∆P2(V,θ) = PG
2 −PL

2 −V2.

3∑
i=1

Vi. (g2i. cos θ2i + b2i. sin θ2i)

∆P3(V,θ) = PG
3 −PL

2 −V3.

3∑
i=1

Vi. (g3i. cos θ3i + b3i. sin θ3i)

∆Q3(V,θ) = QG
3 −QL

3−V3.

3∑
i=1

Vi. (g3i. sin θ3i − b3i. cos θ3i)

Q2(V,θ) = V2.

3∑
i=1

Vi. (g2i. sin θ2i − b2i. cos θ2i)

and:
gkm is the conductance of the line between buses k and m
bkm is the susceptance of the line between buses k and m
θkm is the voltage angle difference between buses k and m

According to the given formulation above, g22 and g33
are, respectively, the sum of the conductances of the lines
connected to buses 2 and 3.

In (19), positive slack variables are introduced to transform
the inequality constraints into equality ones.

In Table II, it is shown the starting point for the iterative
process. In Table III, the limits of the voltage magnitudes
and reactive power generation are presented. Then, the
optimization process for the 3-bus system from Figure 1 is
displayed in Table IV.
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TABLE II
STARTING POINT

Bus Vk θk PG
k PL

k QG
k QL

k
(k) (p.u.) (rad) (p.u.) (p.u.) (p.u.) (p.u.)
1 1.000 0.0 - - - -
2 1.000 0.0 1.700 0.000 - -
3 1.000 0.0 0.000 2.000 0.000 1.000

TABLE III
LIMITS OF VOLTAGE MAGNITUDES AND REACTIVE POWER INJECTION

Bus Vmin
k Vmax

k Qmin
k Qmax

k
(k) (p.u.) (p.u.) (p.u.) (p.u.)
1 0.950 1.100 - -
2 0.950 1.200 -99.99 99.99
3 0.990 1.010 - -

TABLE IV
OPTIMIZATION PROCESS OF THE 3-BUS SYSTEM

Iteration P loss ∆P ∆Q
(MW) (MW) (MVAr)

0 4.1406 117.1151 159.0702
1 12.8973 0.060 0.0159
2 12.7593 0.001 0.0001
3 12.6765 0.001 0.0001

B. Comparison of Methods

The viability of the proposed approach for some electrical
systems can be verified through the comparison between
the results given by the PMBM and the PCIPM. Therefore,
comparative studies of such optimization processes have been
performed.

In Table V the summary of the results of a comparative
study between the PCIPM and PMBM for the test systems
is shown. In this table, the It. column means the number of
iterations, the CPU Time column is the CPU processing time
in seconds, and the P loss column is the active power losses
for the electrical system.

TABLE V
SUMMARY OF THE OPTIMIZATION PROCESS OF THE STUDIED SYSTEMS

PCIPM PMBM
Systems It. CPU Time It. CPU Time P loss

(s) (s) (MW)
14-bus 3 0.02 3 0.02 12.68
30-bus 3 0.06 3 0.05 16.65
118-bus 7 0.50 6 0.36 110.00
162-bus 4 1.41 4 0.92 152.07
300-bus 10 2.34 9 1.90 398.00

Analyzing Table V for these five systems and using the
PCIPM solutions as a reference, it can be concluded that the
PMBM has shown a good performance considering the number
of iterations and processing time.

Although the number of iterations and processing time are
smaller for the PMBM, this method’s effectiveness is in having
considerable enhancements over IPMs, such as not demanding
a feasible starting point, allowing the optimal trajectory to
pass through the feasible and unfeasible regions, and attaining
a solution on the frontier of the feasible region. All these
characteristics make the PMBM suitable for its application

in solving OPF problems.

V. CONCLUSION

This paper has presented a new and efficient algorithm to
minimize the active power losses in transmission lines via
the Lagrangian penalty/modified barrier method. The main
features of the PMBM are: not requiring any feasible starting
point; the conditioning of the involved Hessian matrix is
greatly enhanced since it is defined in the solution and the
modified barrier parameter does not need to be driven to
zero to attain the solution; allowing the optimal trajectory
to pass through the feasible and unfeasible regions, which is
quite advantageous for non-convex problems; having a finite
convergence property since the solution can be on the frontier
of the feasible region. Therefore, these characteristics make
the PMBM appropriate for being applied to the solution of
the optimal power flow.

With the intention of demonstrating the validity and
effectiveness of the PMBM, tests in IEEE electrical power
systems, ranging from 3 to 300 buses, were performed. The
results showed the good performance and the robustness of
the proposed approach.

As future work, we will be studying a realistic 2256-
bus power system corresponding to the Brazilian South-
Southeastern interconnected system. In order to ensure the
quality of supply of energy, safety and economy in several
operating conditions, optimal control strategies are, therefore,
necessary. Since the Brazilian interconnected system is mostly
supplied with energy provided by hydroelectric power plants
and its planning and operation follow other directives, it will
be considered the optimal reactive dispatch problem.
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