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Abstract-- In this paper, the performance of the most 

popular non-linear programming solvers (e.g. IPOPT, 
KNITRO, LOQO, MINOS and SNOPT) is evaluated for 
applications in power systems and treatment of ill-conditioned 
systems related to Optimal Power Flow (OPF) solutions. 
Regarding the applications, the maximum loading point 
problem modeled as an optimization problem is used as an 
OPF example. Also, it is used to describe the ill-conditioned 
OPF solutions, the sensitivity matrices obtained in the OPF 
process, and conditions related to linear independence (LI) loss 
singularity analysis. Simulations using a simple two-bus and 
IEEE test systems are carried out to evaluate the performance 
of solvers for solving LI loss singularity cases, which were 
obtained upon the original data systems. Some of the Lagrange 
multipliers corresponding to the constraints tend to infinity 
when the LI condition is violated, which implies that the OPF 
solution is ill-conditioned. In this case, the number of iterations 
increases (convergence problems) significantly for all solvers, 
and some  solvers presented  oscillatory process. 
 

Index Terms-- Maximum loading point, voltage stability, 
load flow analysis, step size optimization. 

I.  INTRODUCTION 
HE application of optimization techniques to power 
system planning and operation problems has been an 

area of active research in the recent past. Optimal Power 
Flow (OPF) is a generic term that describes a broad class of 
problems in which we seek to optimize a specific objective 
function while satisfying constraints dictated by operational 
and physical particulars of the electric network. The general 
problem of OPF subject to equality and inequality 
constraints was formulated in 1962 [1]. Because very fast 
and accurate optimization methods have evolved, it is now 
possible to solve the OPF efficiently for large practical 
systems. 

A wide variety of optimization techniques has been 
applied to solving OPF problems. The techniques can be 
classified as [2]: nonlinear programming (NLP), quadratic 
programming, Newton-based solution of optimality 
conditions, linear programming (LP), hybrid versions, and 
interior-point (IP) methods. Now more than twenty years 
after Karmarkar’s publication [3], IP methods are a well 
understood area both in theory and practice. The current 
implementations are sophisticated optimization tools 
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capable to solve very large linear programs. Moreover, the 
IP methods have proved to be significantly more efficient 
than the best available simplex implementations for many 
LP problems [4]. Many applications of IP methods in NLP 
were implemented with relative success. 

Ill-conditioned systems were studied under several power 
systems analysis scenarios as: load flow [5], state estimation 
[6], OPF [7], among others. For ill-conditioned systems, a 
small change in some system parameter produces large 
changes in the unknowns, thus different problems can occur 
during the solution process as: non-convergence (oscillatory 
process) and divergence, mainly because the estimated point 
is close to singularity condition in sensitivity matrices. In 
order to explain ill-conditioned OPF solutions, it is 
necessary to perform sensitivity analysis using nonlinear 
parametric programming, which can be achieved from the 
first-order Karush-Kuhn-Tucker (KKT) optimality 
conditions for a point respect to changes in the model 
parameters. For explaining and solving ill-conditioned OPF 
problems few publications have been realized until now. In 
[7], parametric optimization techniques were used. It 
allowed the development of methods for the solution of the 
OPF problem and the differentiation of various critical 
conditions where most algorithms fail to find the solution. 

Analyzing the structure of the optimal solution, the ill-
conditioning occurs when (i) the solution falls within the 
infeasible region, and (ii) it becomes a singular point. There 
are different types of singularity in the optimal solution 
path, as the optimality loss and linear independence loss. 
The authors are interested in the singularity due to linear 
independence loss, since optimality loss cases are difficult to 
obtain for realistic power systems applications. The number 
of iterations obtained when different solvers are applied to 
small and large scale systems depends whether the solution 
is close to singularity points, thus different examples were 
obtained to study the characteristics of this singularity. 

The goal of this work is to describe the ill-conditioned 
OPF solutions (as singular points), the sensitivity matrices 
obtained in the OPF process, and conditions related to 
singular points (as feasibility loss). The maximum loading 
point problem formulated as an optimization problem is 
used as an OPF example. Simulations using a simple two-
bus and IEEE test systems, are carried out using the most 
popular non-linear programming solvers to evaluate their 
performances. Solvers as IPOPT, KNITRO, LOQO, MINOS 
and SNOPT are used in this paper since some of them are of 
public domain in an executable or even in a source code 
form. 
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II.  SINGULARITIES IN THE OPTIMAL SOLUTION PATH 
A.  NLPP standard form and KKT stationary conditions 

Nonlinear parametric programming (NLPP) tracks the 
behavior of the parameterized solution of the corresponding 
nonlinear program. The NLPP standard form is as follows. 

min  f (x, ε) 
x (P1)

s.t. 
gk (x, ε) = 0,  k∈K,  K={1,…,m}, 

hi (x, ε) ≤ 0,  i∈I,  I={1,…,l}, 

where x∈ℜn is the decision variable vector, ε∈ℜp is the 
parameter vector, g and h are function vectors corresponding 
to the equality and inequality constraints, respectively. The 
Lagrangian of (P1) is given as: 

∑∑
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A point x* that is a local minimum for (P1) satisfies the 
first-order KKT stationary conditions:  
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I0 is the index set of the active inequalities at point x* 
defined as: I0 = { i∈I/hi (x*,ε) = 0}. In addition to the KKT 
conditions, the gradients of the active constraints at point x* 
are assumed to form a set of linearly independent vectors 
which is an assumption known as the linear independence 
constraint qualification (LICQ) which guarantees the 
uniqueness of the Lagrange multipliers at point x*. 

The stationary conditions (2) and (3), combined with the 
feasibility relation (5), form a set of parameterized nonlinear 
equations. Since the Lagrange multipliers that correspond to 
the inactive inequalities πi (i∉I0) are equal to zero, then the 
equation set takes the following form: 
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The number of equations is equal to n + m + r, where r≤ l 
is the number of the active inequality constraints, including 
n + m + r + p unknowns. Thus the system has p degrees of 
freedom, equal to the dimension of the parameter space.  

B.  Optimal solution path 
The set of the KKT points for (P1) for different values of 

the parameter vector ε is obtained by solving (7) with the 
addition of the strict complementary condition (4), that 
requires the Lagrange multipliers which correspond to the 
active inequality constraints πi (i∈I0) to be positive. That 
sequence of KKT points is named “optimal solution path” 
which involves local minima, local maxima, saddle points or 
boundary points of the feasible region of (P1).  

The continuous deformation of the optimal solution path 
could be studied through perturbations of one free 
parameter, thus, the definition of regular and singular points 
was necessary for understanding its behavior. 

C.  Regular and singular points of F 
A point z0 = (x0, λ0, π0) which satisfies (7), for some 

parameter values ε0, and has a non-singular Jacobian of F 
respect to z (∇zF) is called a regular point of F. If ∇zF is 
singular, then the point is called a singular point of F. 

The entire analysis of the behavior of the optimal 
solution path as the parameter vector ε varies is based upon 
the following theorem [8]: 
Theorem: Let (z0, ε0) be a solution of (7) and assume that f, 
h, g are twice continuously differentiable in a neighborhood 
of (x0, ε0). Then a necessary and sufficient condition that 
∇zF is nonsingular is that each of the following three 
conditions hold: 

C1.  Strict complementary condition; πi > 0, for i∈I0.  
C2. {∇xgk (x,ε), k∈K U ∇xhi (x,ε), i∈I0} is a set of 

linearly independent vectors; (LICQ). 
C3. The reduced Hessian of the Lagrangian ZT∇2

xLZ is 
nonsingular at (z0,ε0), where Z is a matrix whose 
columns form a basis for the null space of the 
gradients of the active constraints. 

D.  Singularities in the optimal solution path 
For simplicity, the Jacobian ∇zF and components have 

the following form: 
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For the detection and study of the behavior of the optimal 
solution path around singular points, the analysis is realized 
for matrix (8). This contains the full Hessian of the 
Lagrangian function which is evaluated with procedures that 
require great computational effort. 

The type of singularity in the optimal solution path 
depends upon the violated conditions C1-C3. For example, 
the linear independence (LI) loss and optimality loss 
singularities are due to that C2 and C3 are violated, 
respectively. The authors are interested in the singularity of 
linear independence loss since optimality loss cases are 
difficult to obtain for realistic power systems applications. 
Definition of LI loss singularity: Let (z0, ε0) be a solution of 
(7) and the rank of J at that point is equal to m + r – 1 while 
around this point the rank of W is equal to n + m + r, which 
implies that W becomes singular. It can then be shown that 
the optimal solution path of (P1) exhibits a quadratic turning 
point [9].  

III.  MAXIMUM LOADING POINT PROBLEM AND OPF 
SOLUTION PATHS 

This section deals with the application of optimization 
techniques to power system planning and operation 
problems, involving the well known Optimal Power Flow 
(OPF) problem. The maximum loading point (MLP) 
problem is chosen as an OPF example and the main 
characteristics of LI loss singularity are described using a 
simple two-bus test system. In Sec. V, IEEE test systems are 
used to verify similar behavior related to LI loss singularity. 
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A.  Maximum loading point 
The operating point is obtained when the load flow 

equations are solved, thus ΔP = Psch – Pcal =0 and ΔQ = Qsch 
– Qcal = 0, where ΔP∈ℜnPQ+nPV and ΔQ∈ℜnPQ are the 
mismatches of real and reactive powers, respectively; nPQ 
and nPV are the number of PQ and PV buses, respectively, 
the subscript sch and cal belong to scheduled and calculated 
terms, respectively. This work considered a constant 
direction of generation and load increase, which is defined 
as proportional to the base case, so Psch = ρPsch-bc and Qsch 

=ρQsch-bc where ρ∈ℜ is the loading factor, bc is base case 
(ρbc = 1). Also, Psch-bc = Pg-bc – Pl-bc and Qsch-bc = Qg-bc – Ql-bc 
where l and g are the terms associated to load power and 
generation, respectively. This load increase direction is 
usually adopted by utilities and regulatory agencies for the 
definition of secure loading margins [10,11]. 

The loading factor reaches its value maximum ρ = ρcr (cr 
stands for critical point) on voltage stability boundary Σ; this 
point is named maximum loading point (MLP). Boundary Σ 
divides the space in two regions: (i) region where there are 
two solutions for system, or feasible region; and (ii) region 
where there are not solutions, or unfeasible region. 

B.  MLP problem in OPF form 
The basic computation of the MLP can be defined as an 

OPF problem according to 
min  f = -ρ (9)

s.t. 
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where x=(θ,V,ρ) is the decision variable vector; θ∈ℜnPQ+nPV 
and V∈ℜnPQ are bus voltage angles and magnitudes, 
respectively; ρ∈ℜ is the loading factor; nPQ and nPV are 
the number of PQ and PV buses, respectively. In (9), the 
maximization the loading factor is sought. Eq. (10) 
represents the load flow (LF) equations with a constant 
generation and load increase direction proportional to 
loading factor ρ and scheduled powers (active and reactive) 
in base case. Eq. (11) represents the reactive generation 
limits; h∈ℜ2nPV+2 considering the PV and slack buses; Qg,max 
and Qg,min are upper and lower reactive power generation 
limits, respectively. 

An analysis of the behavior of the optimal solution path 
is performed for (8) using (9)-(11). Without loss of 
generality, it is assumed that ε is one-dimensional. The 
reactive compensation variable vector Bc at some PQ buses 
is chosen as parameter ε. 

C.  Two-bus test system and OPF solution path for MLP 
problem 

The two-bus test system shown in Fig. 1 has a lossless 
transmission line 1-2 with a reactance x= -0.25 p.u. 
(capacitive). Bus 1 (slack) has E = 1 p.u.; the lower and 
upper reactive generation limits of bus 1 are fixed to Qg-min= 
-100 and Qg-max = +100 MVAR, respectively. Bus 2 (load) 
has Pl-bc= 50 MW and Ql-bc = 30 MVAR.  

 
 

 
 

ρ (Pl-bc + jQl-bc) 

jBc 

jx 
E∠ 0 V∠ θ 

1 2 Qg-min ≤ Qg  
Qg ≤ Qg-max 

Pcal,1 + jQcal,1 
(Qg=Qcal,1) 

 
Fig. 1.  Two-bus test system with variable reactive compensation. 
 

Subscripts g and l are associated to generation and load 
powers, respectively, and bc is base case (ρbc = 1). The 
reactive compensation at bus 2 is variable, being capacitive 
when Bc is positive and inductive when Bc is negative. 

The LF equations (10) originate a set of operating points 
for each different value of Bc, and is defined as 
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where b = –1/x, ,,),( 2,2, bclschcal PPVEbsenVP −−=−= ρθθ  

,,cos)(),,( 2,
2

2, bclschcccal QQVEbBbVBVQ −−=++−= ρθθ  

also to NLPP problem is defined x = [θ V ρ]T and ε = Bc. 
Fig. 2 shows the OPF solution path respect to ρ for MLP 

problem.  

0 0.4 0.8 1.2 1.6 2 2.42.4
0

1

2

3

4

5

6

7

ε = Bc [p.u.]

lo
ad

in
g 

fa
ct

or
 ρ

Local maxima 

Local minima 

Singularity 
of LI loss 

A 

B

h2 active 
Qg = Qg-min 
π2 ≥ 0 

C 

 
Fig. 2.  OPF solution path for MLP problem. 
 

1) OPF solutions 
It is important to clarify that the number of decision 

variables of the two-bus system is n = 4 (θ2, V2, ρ and Qg–1) 
and the number of equality constraints is m = 2 (ΔP2 and 
ΔQ2). According to Fig. 2, the OPF solution is obtained 
when the inequality constraint associated to Qg–1,min is active, 
thus the number of active inequality constraints is r = 1. 

In Fig. 2, the local minima segment represents the OPF 
solutions and local maxima segment represents the 
impractical OPF solutions (due to that the problem objective 
is to minimize ρ). For all points on the two segments, except 
point B, the rank of J is equal to m + r = 3 and W is 
nonsingular, thus the system is well-conditioned. 

For example, points A and C are calculated for the same 
ε = 1.6 but only point A minimizes ρ. Also, both are defined 
when only h2 (inequality constraint related to Qg-min) is 
active, thus the Lagrange multiplier that corresponds to h1 
becomes greater than to zero (π2 ≥ 0). 
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2) Singularity of LI loss 
At point B (ε = +1.7765 p.u.) the rank of J at that point is 

deficient (equal to 2 < m + r) while around this point is 
equal to 3, which implies that W becomes singular. It can be 
shown that the OPF path of the MLP problem exhibits a 
quadratic turning point close to point B with transition from 
local minima to local maxima; thus, it is a saddle point of W. 

IV.  NON-LINEAR PROGRAMMING SOLVERS 
Several efficient non-linear programming (NLP) codes 

have been developed in recent years and most of them are 
based on interior-point, CPLEX and sequential quadratic 
programming algorithms. There exist several commercial 
vendors e.g. AT&T, CPLEX, DASH and IBM as well as 
numerous research codes, some of them public domain in an 
executable or even in a source code form. The codes studied 
and used in this paper are as follows. 

A.  MINOS (Modular In-core Nonlinear Optimization 
System) 

This package uses a stable implementation of the primal 
simplex method to solve linear programming problem. For 
linearly constrained problems, a reduced-gradient method is 
employed with quasi-Newton approximations to the reduced 
Hessian. For nonlinear constraints, MINOS solves a 
sequence of subproblems in which the constraints are 
linearized and the objective is an augmented Lagrangian, 
step length control is heuristic but superlinear convergence 
is often achieved [15]. This software is sold through 
Stanford University Office of Technology Licensing, coded 
in Fortran 77. (http://www.sbsi-sol-optimize.com). 

B.  IPOPT (Interior Point OPTimizer) 
This package includes a primal-dual interior-point 

algorithm with filter line-search method to ensure global 
convergence. In [12] it is provided a comprehensive 
description of the algorithm, including the feasibility 
restoration phase for the filter method, second order 
corrections, and inertia correction of the KKT matrix. 
Heuristics are also considered for allowing faster 
performance. IPOPT is an open source software coded in 
C++, C, Fortran and MATLAB. (http://www.coin-
or.org/Ipopt/). 

C.  KNITRO (Nonlinear Interior-point Trust Region 
Optimizer) 

This package provides three algorithms for solving NLP 
problems: a) interior-point direct algorithm, b) interior-point 
conjugate gradient algorithm, and c) active-set algorithm. It 
is possible to use every independent form algorithm or to 
use a crossover procedure implemented internally switching 
the three algorithms during the solution process. The 
primary technical reference is [13]. The interior-point direct 
algorithm applies barrier techniques and directly factorizes 
the KKT matrix of the nonlinear system. The interior point 
conjugate gradient algorithm applies barrier techniques 
using the conjugate gradient method to solve KKT 
subproblem. The active-set algorithm implements the 
sequential linear-quadratic programming method. All 
algorithms have fundamental differences that lead to 
different behavior on NLP problems. Together, they provide 
a suite of different ways to tackle difficult problems. This 

software is sold through Ziena Optimization, available in 
C++, C, Fortran. (http://www.ziena.com/knitro.html). 

D.  LOQO 
This package is based on an infeasible primal-dual 

interior-point method and solves both convex and non-
convex optimization problems, including smooth 
constrained optimization problems. To convex problem, 
LOQO finds a globally optimal solution. Otherwise, it finds 
a locally optimal solution near to a given starting point. 
LOQO is coded in Fortran 77 and more information can be 
found in [14]. It is an open source software but requires a 
license file before it can be used. 
(http://www.princeton.edu/~rvdb/). 

E.  SNOPT (Sparse Nonlinear OPTimizer) 
This package uses a sequential quadratic programming 

algorithm. Search directions are obtained from quadratic 
programming subproblems that minimize a quadratic model 
of the Lagrangian function subject to linearized constraints. 
An augmented Lagrangian merit function is reduced along 
each search direction to ensure convergence from any 
starting point. Information about SNOPT can be found in 
[16]. This software is sold through Stanford University 
Office of Technology Licensing, coded in Fortran. 
(http://www.sbsi-sol-optimize.com). 

V.  PERFORMANCE OF NLP SOLVERS 
The latter research codes were used to solve the MLP 

problem for test systems, as a simple two-bus (see Sec. III) 
and IEEE test systems. Some changes were made upon the 
original data systems to obtain singularity cases. 

A.  Two-bus system 
Variable reactive compensation (parameter ε = Bc) was 

applied at bus 2, as shown in Sec. III. The results, as 
Lagrange multiplier norm and number of iterations, are 
shown in Figs. 3 and 4, respectively. 
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Fig. 3.  Lagrange multipliers norm versus reactive compensation Bc in bus 
2, two-bus system. 
 

In Fig. 3, when parameter ε is near to +177.65 MVAR 
the Lagrange multipliers λ1, λ2 and π1 (associated to ΔP2, 
ΔQ2 and Qg–1,max, respectively) correspond to the constraints 
that cause the rank deficiency and tend to infinity when the 
LI condition (C2) is violated, which imply that W becomes 
singular and the OPF solution is ill-conditioned.  
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Fig. 4.  Number of iterations versus reactive compensation Bc in bus 2, two-
bus system. 
 

According to Fig. 4 SNOPT and MINOS solvers 
presented number of iterations smaller than 10 considering 
the simulations of well-conditioned OPFs (before LI loss 
singularity). IPOPT presented large oscillations in well-
conditioned OPF cases for parameter ε between 0 and 1. 
Also, the number of iterations increases (convergence 
problems) significantly for all solvers near to singularity.  

B.  IEEE14 system 
The variable reactive compensation (parameter ε = Bc) 

was applied at bus 5, also the minimum reactive power 
limits of generators at buses 3 and 6 are fixed to -50 and -10 
MVAR, respectively. The results are shown in Figs. 5 and 6. 
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Fig. 5.  Lagrange multipliers norm versus reactive compensation Bc in bus 
5, IEEE14 system. 
 

In Fig. 5, when parameter ε is near to -178.58 MVAR the 
Lagrange multipliers associated to the constraints that cause 
the rank deficiency tend to infinity and the OPF solution is 
ill-conditioned. According to Fig. 6 near to singularity, the 
number of iterations increases significantly for all solvers. 
Considering the simulations of well-conditioned OPFs, 
SNOPT, MINOS and KNITRO solvers maintained numbers 
of iterations smaller than 10. The number of iterations near 
to LI loss singularity of all solvers is shown in Fig. 7. 
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Fig. 6.  Number of iterations versus reactive compensation Bc in bus 5, 
IEEE14 system. 
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Fig. 7.  Number of iterations performance near to LI loss singularity, 
IEEE14 system. 
 

According to Fig. 7 LOQO solver presented the worst 
performance for calculating the solution with adequate 
precision, KNITRO and MINOS solvers presented the best 
performance. IPOPT solver slightly decreased in iterations 
near to singularity but it is consequence of interruption 
criteria. 

C.  IEEE57 system 
The variable reactive compensation (parameter ε = Bc) 

was applied at bus 15, also the reactive power limits of 
generators at buses 2, 6, 8, and 9 are fixed to +300/-300, 
+200/-200, +300/-300 and +300/-300 MVAR, respectively. 
The results are shown in Figs. 8 and 9. 

Analogously to previous cases, when parameter ε is near 
to -585.82 MVAR the Lagrange multipliers associated to the 
constraints that cause the rank deficiency tend to infinity and 
the OPF solution is ill-conditioned (see Fig. 8). According to 
Fig. 9 near to singularity, the number of iterations increases 
for all solvers. Considering the simulations of well-
conditioned OPFs, SNOPT, MINOS and KNITRO solvers 
maintained number of iterations smaller than 10. The 
number of iterations near to LI loss singularity of all solvers 
is shown in Fig. 10. 
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Fig. 8.  Lagrange multipliers norm versus reactive compensation Bc in bus 
15, IEEE57 system. 
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Fig. 9.  Number of iterations versus reactive compensation Bc in bus 15, 
IEEE57 system. 
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Fig. 10.  Number of iterations performance near to LI loss singularity, 
IEEE57 system. 
 

According to Fig. 10, LOQO solver presented the worst 
performance again for calculating the solution with adequate 
precision, KNITRO and MINOS solvers presented the best 
performance. Additionally, IPOPT solver showed a small 
number of iterations near to singularity, which allows the 
understanding of the interruption criteria. 

VI.  CONCLUSIONS 
In this work the ill-conditioned OPF solutions (as 

singular points), the sensitivity matrices obtained in the OPF 
process, and conditions related to LI loss singularity were 
described. The two-bus system allowed studying the main 
characteristics of the LI loss singularity using the optimal 
solution path and Lagrange multipliers. 

The performance of solvers as IPOPT, KNITRO, LOQO, 
MINOS, and SNOPT were not similar near to LI loss 
singularity, but all of solvers reproduced the typical 
characteristics of this singularity as Lagrange multipliers 
that tend to infinite.  

Considering the simulations of well-conditioned OPFs 
(before of LI loss singularity), SNOPT, MINOS and 
KNITRO solvers maintained number of iterations smaller 
than 10. Near to LI loss singularity, LOQO solver presented 
the worst performance again for calculating the solution 
with high precision, and KNITRO and MINOS solvers 
presented the best performance in all simulation cases. 
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