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Abstract-- Energy storage, traditionally well established in the 

form of large scale pumped-hydro systems, is finding increased 
attraction in medium and smaller scale systems. Such expansion 
is entirely complementary to the wider uptake of intermittent 
renewable resources and to distributed generation in general, 
which are likely to present a whole range of new business 
opportunities for storage systems and their suppliers. In the 
paper, by assuming that Distribution System Operator has got 
the ownership and operation of storage, a new software planning 
tool for distribution networks able to define the optimal 
placement, rating and control strategies of distributed storage 
systems that minimize the overall network cost is proposed. 

This tool will assist the System Operators in defining the 
better integration strategies of distributed storage systems in 
distribution networks and in assessing their potential as an 
option for a more efficient operation and development of future 
electricity distribution networks. 
 

Index Terms-- Distributed Energy Storage, Network Planning, 
Genetic Algorithm, Dynamic Programming. 

I.  INTRODUCTION 
HE restructuring of the electricity supply market, with the 
accompanying set of drivers for distribution companies, 

along with the increasing penetration of distributed energy 
resources, have raised requirements for new distribution 
network planning methodologies. The distribution network 
planning aims at defining the expansion plan and the 
reinforcements that are necessary to face the natural rise of 
energy demand, the connection of new customers and 
distributed generation (DG) [1-3]. Furthermore, the goal of 
planning is to minimise the sum of CAPEX (capital 
expenditure) and OPEX (operation expenditure) during a 
given time period. The solution has to comply with several 
engineering constraints e.g., on the voltage profile, the 
maximum exploitation of feeder capacity, the maximum 
allowable customer minute loss, the maximum allowable 
frequency of interruptions, etc. 

Energy storage, traditionally well established in the form of 
large scale pumped-hydro systems, is finding increased 
attraction in medium and smaller scale systems. Such 
expansion is entirely complementary to the wider uptake of 
intermittent renewable resources and to DG in general, which 
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are likely to present a whole range of new business 
opportunities for storage systems and their suppliers [4-6].  

Through its potential of balancing fluctuations in the 
supply and demand of electricity, energy storage can 
introduce important benefits to the whole electric system. It 
has a significant impact on both ends of the network: to the 
generator side, storage has the potential to improve the 
generator’s efficiency and, to the end-user of the network, 
storage will enhance power quality and reduce peak loads. 

In fact, electricity storage devices, located where utility 
distribution systems are approaching a capacity limit, can 
provide significant economic assessment. These benefits are 
associated with deferred or avoided distribution equipment 
upgrades that often involve a large increment in capacity such 
as the addition of a second transformer in a substation or 
refurbishment in a long line segment.  If storage is located at 
critical points in the distribution system, important benefits 
can be achieved:  

 Enhanced service reliability and power quality using 
active VAR compensation and voltage stabilization;  

 Load shifting, using low cost off-peak electricity for 
resale when electricity prices are higher, thus reducing 
market risk exposure to volatile on-peak prices and 
controlling high cost energy imbalance charges 
(“arbitrage” is the practice of buying at a low price and 
selling at a higher price at the imbalance market, or the 
day-ahead market); 

 Joule losses avoided by serving peaks with local 
supply and actively correcting power factor and 
maintaining system voltages. 

Distributed energy storage (DES) might be viewed both as 
a consumer and producer of power, thereby participating in 
the market as both a load and generator. Alternatively, storage 
might be viewed as an integral part of the distribution 
network, thereby removing it from the normal energy market. 
This might be linked to the question of who owns storage: 
load customers, generators, independent storage operators, or 
the network operator. Regulation concerning the separation of 
roles in the electricity system varies from place to place and 
the ownership and operation of storage will vary as a 
consequence.  

In case of independent storage operators, it is worth to 
notice that energy storage can introduce additional benefits to 
the network utilities. In fact, it can provide ancillary services, 
like voltage control, power quality, system reliability, 
frequency response, spinning reserve. 

T
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If the DSO is allowed to own storage devices, it can profit 
of DES by compensating possible negative effects caused by 
the connection of the DG. In fact, in Italy, the connection rules 
fixed by the Authority force the DSO to accept any request of 
DG connection with a predetermined connection cost, 
independently from the effects that DG may have to the 
network. In particular, energy storage systems are useful with 
renewable generation, due to their potential capacity to 
compensate the variability of the power produced. 

In the paper, by assuming that DSO has got the ownership 
and operation of storage, a new software planning tool for MV 
distribution networks able to define the optimal placement, 
rating and control strategies of DES systems that minimize the 
overall network cost is proposed. 

This tool will assist the DSOs in defining the better 
integration strategies of DES in distribution networks and in 
assessing the potential of DES as an option for a more 
efficient operation and development of future electricity 
distribution networks. 

II.  THE DISTRIBUTION NETWORK PLANNING INCLUDING 
ENERGY STORAGE 

In past years the authors have developed a software for 
optimal network planning [7], based on probabilistic 
techniques, that allows the optimal planning of MV 
distribution networks with DG, taking into account expansion 
over time and usual technical constraints. The optimization 
procedure minimizes the generalized cost of the network 
constituted by the CAPEX (investments for new lines, for 
upgrading existing lines and primary substations, and for 
network automation) and the OPEX (e. g. losses and 
maintenance). The optimal solution has to comply with 
several technical constraints on the voltage profile, the 
maximum exploitation of assets, the quality of service, etc. 
The random behaviour of both distributed generation and 
loads is fully considered with the adoption of a probabilistic 
load flow. 

The aforementioned planning software has two main goals: 
find the optimal network expansion over time knowing 
location and characteristic of customers (loads and DG), and 
optimize the position and the power rate of DG units of 
different typologies in a given distribution network. In this 
paper, by exploiting their know-how, the authors have 
developed a new planning optimization tool that takes 
advantages of the opportunity of employing DES. By 
considering a given distribution network with fixed topology 
during the whole planning period and loads and DG units 
known through their typologies, locations and power rates, the 
proposed methodology finds the optimal places and sizes of 
energy storage devices in order to maximize the network 
benefits they can introduce, both in technical and economical 
terms,. The use of storage is limited by constraints on energy 
reserve, charge and discharge times and efficiency, effect on 
losses, and hourly energy prices . For these reasons, the daily 
load and generation curves have to be used and the optimal 
scheduling of energy resources must be found, based on a 

daily time scale. In fact, Dynamic Programming (DP) is 
adopted to solve the DES optimal scheduling problem. 
Summing up, the procedure may be described as follows: 

1. A Genetic Algorithm is used to produce a set of planning 
alternatives (DES placement and ratings); 

2. For each alternative, the DP algorithm is used to define 
the optimal DES control strategy that minimize the 
network losses; 

3. By using the daily charge/discharge profiles obtained in 
step 2, the overall network cost (sum of CAPEX and 
OPEX) is assessed; 

4. Based on the overall network costs, the GA evolves the 
population of solutions and identifies the optimal one. 

At the end of the optimization procedure the optimal 
solution is the one that, complies with the constrains and 
minimises the global costs finding the best compromise 
between investments and benefits. The output of the whole 
optimal planning methodology will be not only the design of 
the network in the given planning horizon with an indication 
of CAPEX and OPEX, but also the optimal integration of 
DES at minimum cost. In addition, the daily scheduling of the 
storage planned (charge and discharge time intervals) will be 
provided. In this sense the DES may be regarded as a 
technology that allows the integration of DG overcoming the 
existing technical and economical barriers and improving the 
efficiency of the power delivery. 

Focusing on the network benefits that can be achieved, the 
key point is the evaluation of the amount of DES needed to 
maximize its potential benefits. This point requires 
simultaneously solving two problems the identification of the 
optimal placement of energy storage plants, and the estimation 
of their optimal sizes. Particularly, regarding the second 
problem, storage systems have two equally important 
characteristics: the equipment’s power rating and its discharge 
duration. The energy storage plant power rating indicates the 
rate at which the system can discharge the stored energy, 
generally expressed in kW or MW or, more appropriately, in 
kVA or MVA. The second characteristic is related to the fact 
that storage systems must contain enough stored electric 
energy to operate for as long as needed. Thus, discharge 
duration is the amount of time that the storage plant can 
discharge at its rated power without being recharged. 

III.  DYNAMIC PROGRAMMING 
Dynamic Programming (DP) is an approach developed to 
solve multi-stage decision problems and is based on the well 
known Richard Bellman's Principle of Optimality: “An 
optimal policy has the property that no matter what the 
previous decisions have been, the remaining decisions must 
constitute an optimal policy with regard to the state resulting 
from these previous decisions” [8]. Actually, this approach is 
equally applicable for decision problems where multi-stage 
decision making is not in the nature of the problem but is 
induced only for computational reasons, as it is the 
optimization problem at hand. DP tends to break the original 
problem into sub-problems and finds the best solution of the 
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sub-problems, beginning from the smaller in size. When 
applicable, DP dramatically reduces the runtime of some 
algorithms from exponential to polynomial. 
DP can be successfully applied when: 

• the problem can be divided into stages and a decision 
is required at each stage; 

• a finite number of states is associated with each 
stage,  

• the decision at one stage transforms one state into a 
state in the next stage,  

• there exists a recursive relationship that, provided 
that the states at stage j-1 are known, identifies the 
optimal decisions to reach the states at stage j,  

• the recursion for determining the optimal decisions 
at the stage j only depends on the states at stage j-1 
and not on the way these states have been reached. 

The problem of the optimal scheduling of storage to minimize 
losses and favorite the integration of DG can be solved with 
DP following the approach used in the hydrothermal 
coordination. The DP gathers the position and the size of DES 
in the network from the GA or, that is the same, an individual 
from the population used for the evolutionary optimization is 
assessed with the DP to assess the optimal pattern of charges 
and discharges. A state of the system in the DP algorithm 
identifies the level of charge in the DES used (a suitable 
discretization is used to describe the charge of each storage 
device). The stages or levels in the DP algorithm are the hours 
of the day. The constraints are the maximum charge and 
discharge per hour and the invariance of the total charge of 
each DES at the end of the time interval (the day). 
Figure 2 depicts the bottom-up approach used to solve the 
optimal coordination of DES with DG according to the 
dynamic programming paradigm. Each state represents a 
charge level of given set of DES at a certain hour of the day. 
In order to clarify the process let us suppose that the state β at 
the DII has to be reached from DI. Possible states in DI are 
α, β, γ, and … η each one labeled with the optimal value of 
the objective function, LI, that is related to network losses. It 
should be noticed that not all the transition from one state in a 
hour and another one in the successive one are permitted. 
Generally speaking, those transitions that require a charge or a 
discharge flow greater than the maximum allowable are 
neglected. The state β at the level DII is then labeled with the 
value of the function LII(β) that is the minimum value of the 

objective function calculated considering the couples formed 
with β and the remaining available candidates. By so doing, 
the optimal policy to reach β at level DII from DI is univocally 
determined (in Fig. 1 the optimal path to β has been assumed 
through γ). By repeating this procedure for all the states at the 
DII stage, the optimal policies to reach hour II can be found. 
The state that minimizes the cost function is simply the one 
with the smallest label. The optimal policy corresponds to 
reach the state in DII with the smallest label but it is worth 
noticing that all the states in DII are reached through an 
optimal policy. By so doing, each policy to reach DIII from DII 
will necessarily contain optimal sub-policies and the 
Bellman’s Principle will be satisfied. The procedure iterates 
until the last hour of the day is reached. The final state, the 
one that has the same charge of the starting hour, is then 
reached through a sequence of optimal sub policies or, that is 
the same, the charge-discharge path followed by DES in the 
day is the one that minimizes energy losses and replace the 
energy stored in DES 

IV.  GENETIC ALGORITHM FOR THE OPTIMAL ALLOCATION OF 
STORAGE UNITS 

In the implemented methodology, the network architecture 
is assumed to be fixed during the planning period, while 
changes regards load energy demand and power generation, 
according to appropriate modeled load and generation daily 
curves. In this context, DES can be a valuable option for the 
planning engineer to defer or reduce investments for network 
upgrading [9]. 

The greater attention should be paid in the siting and sizing 
of DES because their installation in not optimal locations can 
result in an increasing of power losses. For these reasons, 
optimization tools, capable to find the correct siting and sizing 
of DES units in a given network, can be a valid aid for the 
planner who has to face with the worldwide growth of DG 
penetration, mainly for DG units with renewable sources. In 
the paper, a GA optimization technique has been developed 
for the optimal DES allocation in MV distribution networks 
that is deeply described in the following. 

A.  Coding of the solution 
The first important aspect of a correct implementation of 

the GA is the coding of the potential solution. Considering 
that the network structure is fixed, all the branches between 
nodes are known, and the evaluation of the objective function 
depends only on size, type and location of the DES units. For 
this reason each solution can be coded by using a vector, 
whose size is equal to the number of nodes, in which each 
element contains the information on the presence or not of a 
storage unit. In order to perform not only the location but also 
the size of DES, a prefixed number (NDES) of DES sizes have 
been assumed and classified in input data (e.g. size number 1 
corresponds to a 100 kW for 4 hours REDOX storage unit, 
size number 2 corresponds to a 200 kW for 5 hours ZEBRA 
storage unit, etc.). Therefore, each element of the solution 
vector is represented by means of the following alphabet: 

0  no DES located in the node; 
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Fig.  1 

Fig. 1. Schematic flow chart of Dynamic Programming 



 4

1, …, NDES size/type index of storage unit installed in 
the node. 
Of course, the vector elements corresponding to the 

HV/MV primary substations are fixed to 0. 
The type of code used is suitable for every kind of network 

structure (radial, meshed, etc.), that influences only the 
assessment of the usual technical constraints (voltage profile, 
thermal feeder capacity and short circuit current limit) 
considered during the evaluation of the objective function, but 
does not affect the optimal allocation procedure.  

B.  GA Implementation  
The flowchart of the proposed procedure is shown in Fig. 

2. In the first phase, an initial population of possible solutions 
is randomly generated by means of the following procedure: 

• for each solution a value of DES penetration is chosen 
between 0 and a maximum limit of DES penetration, 
fixed by the planner on the basis of economical and 
network security considerations; 

• a number of DES units of different sizes is randomly 
chosen until the total amount of power installed 
reaches the DES penetration level assigned;  

• the DES units are randomly located among the nodes 
of the network; 

• for each DES configuration the optimal profile in terms 
of charge-discharge is evaluated by using Dynamic 
Programming (DP) 

• a load flow is performed to update the current in each 
node with storage resources  

• the objective function (OF) for each solution is 
evaluated verifying all the technical constraints; if one 
of them is violated, the individual is discarded. 

Regarding the population size, the best results have been 
found assuming it equal to the dimension of the problem, i.e. 
the number of nodes in the network. 

In the second phase, the genetic operators are applied in 
order to produce the new solutions. In the paper the following 
implementation details for the operators have been considered: 

• Selection: the “remainder stochastic sampling without 
replacement” scheme has been adopted, whereby the 
number of selections of each individual is calculated in 
the following way: expected individual count values 
are calculated as a fraction between the OF value of the 
individual and the average of OF value of the whole 
population. Then integer parts of the expected numbers 
are assigned, and fractional parts are treated as 
probabilities. For example, a solution with an expected 
number of copies of 1.4 would receive one sure single 
copy and another with probability 0.4. This process 
continues until the population is full. 

• Crossover: the “uniform crossover” is adopted, by 
which each allele is swapped with probability 0.5. 

• Mutation: all the vector elements are mutated, 
according to a small mutation probability, choosing a 
different value in the defined alphabet. 

Each offspring is accepted if all technical constraints are 

verified and the total amount of DES does not exceed the 
maximum level of DES penetration. 

After several tests, a generational GA model has been 
implemented, because it seems to guarantee better solutions 
than the steady state model, even if with a greater number of 
iterations. Therefore, the offspring replaces all their parents, 
creating the new population. The procedure terminates when a 
maximum number of generations has been explored.  
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Fig. 2.  Flow chart of the optimal DES allocation algorithm. 

C.  DP nested in the DES optimal allocation procedure 
 The optimal profile in terms of charge-discharge of each 

DES is evaluated by using Dynamic Programming (DP). In 
order to find the optimal delivery and distribution of power a 
load flow calculation is performed to update the current in 
each node with DES. 

The objective function to be optimized within the technical 
constraints refers to the total cost of the network which 
considers the cost of network upgrading and the cost of Joule 
losses. In fact, the objective function to be minimized in the 
problem at hand is thus represented by the total cost C0G of the 
generic network, with present value taken at the beginning of 
the whole planning period of N years. This cost can be 
expressed by using the sum:   

∑
−

=

=
CpTot NN

j
jG CC

1
00              (1) 

where NTot is the number of network nodes, NCp is the number 
of substations, NTot-NCp the number of branches in the network 
and C0j the present cost of the jth branch. 

The cost of every branch j is the sum of the construction, 
residual, management costs, and cost of losses in the 
subperiods, transferred to the cash value at the beginning of 
the planning period by using economical expressions based on 
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the inflation rate, the interest rate and the load growth rate (all 
of them constant) [7] . 

The cost of every branch can be expressed by using: 

∑
=

+=
m

1k
pjk0j0j0 CCC '                           (2) 

where  C0j is the total cost of the branch j, C0j' the portion of 
cost independent of power flow, C0pjk the cost term 
proportional to the power flow through the branch in the kth 
subperiod (cost of losses) and m is the number of subperiods 
into which the planning period of N years has been divided. 

Denoting with: 
− C0cj  is the construction costs, 
− R0j is the residual value, 
− C0gj is the management costs, 
− ej is a binary factor that is equal to 1 for a resized branch 

and 0 for an existing one. 
The cost C0j', independent of power, can be written by 

using  (3): 

gj0ojcj0jj0 CRCeC +−⋅= )('                  (3) 

The cost of resizing the jth branch C0cj takes into account 
the year of reconstruction to transfer the cash value to the 
beginning of the planning period, while the residual value Roj 
considers the fact that the planning period does not coincide 
with the life duration of the component.  

The cost of Joule losses in the kth subperiod C0pjk can be 
calculated transferring, to the cash value at the beginning of 
the planning period, the annual cost of such losses Cpjk, 
evaluated by using: 

)( 2
jkjjjkWhpjk IccpLrcoeff87603CC ⋅⋅⋅⋅⋅⋅⋅=    (4) 

where: 
− CkWh is the cost of kWh, 
− coeff is the utilization factor of energy losses under full 

load, different for overhead and underground, 
− 8760 are the number of hours per year, 
− rj is the  resistance per km of line [Ω/km], 
− Lj is the branch length [km], 
− Ijk is the phase current in the jth branch [A] at the 

beginning of the kth subperiod, 
− ccpj is a corrective coefficient of the losses due to the 

simultaneity of loads. 
In the paper the allocation of DES is based on the normal 

operation of the network. The use of DES to supply loads 
during emergency states following network faults is not 
considered. For this reason, the cost C0j is not included in the 
DP objective function and the solutions that require any 
network upgrading are discarded. 

For each DES configuration analyzed by the GA, the DP 
gives the optimal daily profile in terms of charge/discharge of 
DES considered. Obviously, in DP optimization suitable 
coefficients have been assumed in order to consider DES 
efficiency during the charge/discharge phases and opportune 
constraints in minimum and maximum charge level have been 
assigned as security margins. 

D.  The objective function for the DES optimal allocation  
The objective function OF to be optimized during a given 

time period within the technical constraints refers to the total 
cost C0G of the network already defined in (1), which 
considers upgrading cost and Joule losses cost, and the cost of 
installation of DES: 

∑
=

+=
DES

i

N

i
DESGOF CCC

1
0                           (5)  

where CDESi is the cost of installation of the DES unit j, and 
NDES is the number of DES units allocated by GA. 

The solution has to comply with several technical 
constraints e.g., on the voltage profile, the maximum 
exploitation of feeder capacity, the maximum allowable 
frequency and duration of interruptions, etc. 

V.  RESULTS AND DISCUSSION 
In order to check the methodology described in the paper, a 

small test network, built on the basis of a real distribution 
network, constituted by 17 MV/LV nodes and 2 primary 
substations has been considered (Fig. 3). The network 
topology is characterized by one existing overhead open loop 
feeder between the two substations with two overhead laterals. 
The period taken into account for the planning study is 20 
years. This long duration has been assumed only to stress the 
network, in consideration of its small dimension. 

Four typologies of loads have been considered (residential, 
industrial, tertiary and agricultural), modeled with the daily 
load curves depicted in fig. 4. For each MV/LV node a 
constant power demand growth rate of 3% per year has been 
assumed. Also two existing renewable generators have been 
included in the network: a 2 MW wind turbine (WT, in node 
17) and a 1 MW biomass turbine (BT, in node 11), modelled 
with typical production curves that take into consideration the 

 
Fig. 3.  Test network.  
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unpredictability and availability of the primary source (wind, 
biomass), by means of normal probabilistic distribution 
function (pdf). In particular, the wind generation is modelled 
with a constant value of the mean output power with high 
standard deviation, equal in each hour. The biomass DG unit 
is represented with a firm generation, i.e. with constant output 
power without uncertainties  

Only one type of storage system has been used for the 
simulations (REDOX battery). The DES sizes chosen and the 
alphabet of the solution coding used by the GA is illustrated in 
tab. I. The cost of the storage installation for network 
application is given on €/kWh or €/MWh, because the DES 
primary use is to store/supply energy for a long period. 
Typical per unit costs for REDOX battery are between 150 ÷ 
400 €/kWh, with decreasing cost as the energy rate increases. 
Obviously, this price will be much lower when these systems 
are produced on large scale. In the paper, due to the small 
dimension of the test case, the storage installation cost has 
been disregarded, even if the developed procedure is fully 
able to consider it.  

Firstly, the total cost of the network without installing DES 
is evaluated.  C0G is equal to 545 k€, given by the sum of the 
cost of network upgrading (CI = 75.7 k€) and the cost of Joule 
losses (CL = 469.3 k€). It is important to notice that the 
network upgrading is not caused by the load growth during 
the planning period, but by the presence of the wind turbine 
that originates some conditions of excessive overvoltage, 
especially during the night when the power demand is lower.  

Then, the proposed optimization procedure has been 
applied to evaluate the role of DES on this network. The 
corresponding optimal DES configuration is reported in Fig. 
5. Three DES units have been allocated: 2 x 200 kW – 5h 
Redox batteries in node 12 and 16, and 1 x 300 kW – 5h 
Redox battery in node 15. 

Numerical results (Table II) show that the total cost of the 
network is reduced by the installation of DES units in the 
optimal configuration given by the algorithm. In fact, the total 
cost COF is equal to 441.9 k€, with the cost of network 
upgrading reduced to less than one third of the case without 
DES (CI = 20.1 k€) and the cost of Joule losses cut by about 
10% (CL = 421.7 k€). The presence of DES has limited the 

negative effects of the wind turbine, limiting the need to 
upgrade the network mainly by increasing the demand in the 
critical hours. The charge/discharge pattern depicted in fig. 6 
shows that by charging DES in the off peak hours the network 
may be operated at less operation costs (less energy losses) 
and with less capital expenditures (smaller upgrading costs). 
In fact, the charge periods are concentrated in the first 5 hours 
of the day, when all the loads considered have low demand 
(see fig. 4). The general remark is that DES reduces losses by 
avoiding that excessive power generation may cause reverse 
power flows in the network. By artificially increasing with 
DES the load close to intermittent power generation excessive 
power is used close to DG. Also the need of network 
upgrading is reduced with DES because the mismatch 
between power generated and load often causes network 
refurbishment. Indeed, in the off-peak hours line overload is 
due to excessive power generation and reverse power flow, in 
the peak hours overload is caused by high load demand that 
exploits lines beyond the allowable rated ampacity. DESs are 
capable to reduce the negative effects caused by the lack of 
simultaneity between load and generation. In conclusion, the 
use of DES is very useful to increase the amount of DG in 
distribution systems without implementing active distribution 
networks. The DSO has only to control the DES to operate the 
network without any sharing of responsibilities with 
producers.   

 

Fig. 4.  Daily load curves assumed in the test case. 

Fig. 5.  Optimal network with DES units allocated. 

TABLE I 
ALPHABET USED FOR CODING THE SOLUTION IN THE TEST CASE 

code DES type DES size [kW] Charge time [h] 

0 No DES allocated 

1 REDOX 100 4 

2 REDOX 200 5 

3 REDOX 300 5 
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TABLE II 
OF VALUE WITH AND WITHOUT DES SITING AND SIZING OPTIMIZATION 

 NO DES WITH DES 

CI [k€] 75.7 20.1 

CL [k€] 469.3 421.7 

COF[k€] 545.0 466.2 

VI.  CONCLUSIONS 
In the paper a new planning tool for MV distribution 

networks is proposed, based on Genetic Algorithm and 
Dynamic Programming, able to locate the optimal placement 
and rating of energy storage plants that minimize the overall 
network cost. The cost includes the capital and operational 
costs of the allocated storage systems. By so doing, the 
optimization procedure finds the amount of DES that makes 
storage the lowest cost option in the network expansion 
planning process. It is intuitive that the results of the planning 
procedure depends on the storage technology, due to the 
differences existing in capital and annual costs, in their power 
rating and discharge duration ranges, in their life cycles and 
relative maintenance and replacement costs, etc. 
Consequently, the proposed planning tool is able to consider 
the principal energy storage technologies available for 
network applications. 

The proposed procedure considers the presence of DG and 
to correctly assess the impact that energy storage can have on 
the capability of the distribution network to accept large 
amount of DG. Simulation studies performed by the authors 
have shown that the algorithm permits establishing the 
optimal distributed energy storage allocation on an existing 
MV distribution network, achieving the related technical 
benefits. 
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