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Risk-Based Strategies for Wind/Pumped-Hydro
Coordination under Electricity Markets

Franck Bourry, Luı́s M. Costa, Member, IEEE, and George Kariniotakis, Member, IEEE

Abstract—When participating in an electricity market, wind
power generation may be penalized by increased regulation costs
due the stochastic nature of the wind resource. The negative
impact associated to the stochastic nature of wind may be reduced
by coupling the wind farm with energy storage facilities, thus
constituting a virtual power plant. In this paper, focus is put on
advanced methods for reducing regulation costs. A novel method
is proposed for the intra-day scheduling and operation of such a
plant in an electricity market environment. Such method is able
to minimize the imbalance penalty risks associated to wind power
forecast uncertainty through a rolling-window approach. Results
based on a real-world test case are presented and discussed.

Index Terms—Decision-Making, Risk, Virtual Power Plant
Operation, Wind Power, Pumped-Hydro, Electricity Markets,
Wind Power Forecasting.

I. INTRODUCTION

INCREASING environmental and security of supply con-
cerns as well as technological advances compose a favor-

able environment for the deployment of generators based on
renewable energy sources (RES). However, the operation of
RES units such as wind or solar plants presents the inconve-
nience of being intrinsically dependent on the variability of the
wind or solar resource. This makes large scale integration of
renewable units into power systems particularly challenging.

Due to the unbundling process in several countries, renew-
able energy generators will often operate under electricity
market conditions. However, electricity markets have been
originally designed to integrate power producers having the
possibility to control their individual power production at
all times, which is not the case of power producers using
non-dispatchable RES units (e.g.: wind or solar plants). As
a consequence, RES power producers may consequently be
penalized by electricity market rules [1].

Under an electricity market participation framework, power
producers may place bids in several types of markets, such as
day-ahead or intra-day electricity markets. For participating
in short-term markets, power producers must make market
bidding decisions about the amount of energy to contract and
at which price to contract it. The market bidding decision
has to be made a given amount of time prior to the actual
delivery with imperfect knowledge about what the actual
future power generation will be. At the delivery time, any
existing differences between contracted and produced energy
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may occur, constituting energy imbalances. Such imbalances
may be penalized a posteriori by balancing markets, which
are also commonly named real-time markets, or regulating
markets [2].

For placing bids in the market, power producers relying
on non-dispatchable renewable energy sources must use some
kind of forecasts of the amount of energy that will be produced
during a given future period of time. However, the stochastic
nature of their production results to some forecast uncertainty.
This uncertainty is at the origin of the energy imbalances
described in the previous paragraph.

Some research efforts have been made in the past on
methodologies for reducing the imbalance costs paid by re-
newables participating in electricity markets [3] [4] [5] [6].
These studies consider a direct participation of wind farms in
the electricity market. However, in a more general case, virtual
power plants composed by some combination of renewable
energy sources with conventional units and, eventually, energy
storage devices could be considered. Examples of such types
of combinations can be found in [7] [8] [9].

The main objective of this work is to propose a method
for managing a virtual power plant under electricity market
conditions, where focus is put on the minimization of imbal-
ance penalties. The considered virtual power plant consists
of a wind farm coupled with an energy storage device. The
advantages that might be obtained from the application of
an advanced intra-day scheduling of the virtual power plant
are evaluated. This is done by performing a rolling-window
approach for dispatching the energy storage device with the
objective of minimizing the imbalance penalty risks associated
to the wind power forecast uncertainty.

II. GENERAL DESCRIPTION OF THE PROBLEM

A. The Virtual Power Plant Model

In order to reduce the imbalance penalties resulting from the
renewable power variability, several options can be envisaged.
For example, one can aggregate geographically distributed
RES sources to profit from a spatial smoothing effect of
their production [10]. Alternatively, one can combine RES
sources with dispatchable conventional units or energy storage
device. Such options aim to increase the controllability and
predictability of the overall generation mix. A prerequisite
is that the market rules permit such joint participation. The
combined plant is defined as a Virtual Power Plants (VPP)
in [11]. Commercial VPPs consist in aggregating different
distributed generation units in order to participate in the market
as single entity and thus facilitate trading in electricity markets.
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Fig. 1. Commercial VPP composed of a combination of a wind farm and a
pumped-hydro plant

They can experience economies of scale in market participa-
tion and benefit from intelligent bidding to maximize revenue
opportunities. The same concept is described in [12], where the
authors develop a market interface for distributed generation
units to formalize their participation in the wholesale market
as an equivalent power producer. The VPP considered in
the present study is a commercial one and consists of a
combination of a pumped-hydro station with a wind farm, as
described in Figure 1.

B. Main Hypotheses about the Considered Market Participa-
tion

1) Energy producer: The priority in the management and
operation of the storage is given to the reduction of energy
imbalances. As a consequence, the energy storage device is
not used for buying energy in periods where the market price
is considered to be low enough, for selling it back in periods
where the market price is estimated to be sufficiently high.
Such a possibility has already been considered by the authors
in [9], where its advantages were discussed.

Consequently, in the present study, the VPP operator is
considered to be only an energy producer, and not an energy
consumer. In other words, the VPP operator is not able to buy
energy from the market for charging the storage device. The
storage is solely charged by the wind farm production when
produced wind energy exceeds contracted energy.

2) Day-ahead market: Electricity markets are usually com-
plex due the amount of energy trading possibilities they
offer, to their rules, and to the way they operate, which is
usually market-specific. In this work the virtual power plant
is supposed to participate only in the day-ahead market.

3) Price taker player: In our work, the electricity market is
considered to be competitive and composed of a relatively high
number of market participants. In addition, the total capacity
of the virtual power plant is considered to be small enough
so that its owner does not possess sufficient market power.
In such a case, in the electricity market context, the VPP is
considered to be a price taker. As a consequence, the quantity-
price bid is reduced to a quantity bid, at zero price. The bid is
thus always accepted, and the market price is defined by the
other participants.

Fig. 2. Coordination of the Market participation, Intra-day Scheduling and
Operation of the VPP. The vertical black lines indicate the instants when
decisions are made.

4) Balance responsible entity: The VPP is assumed to be
balance-responsible. The VPP is thus liable to pay penalties
for the energy imbalances it generates according to the market
rules. In that present study, an energy imbalance is defined as
the difference between the energy delivered by the VPP and
the energy contracted in the day-ahead market.

C. Intra-day Scheduling and Operation of the VPP

The definition of the bid or contract for the day-ahead
market participation is the first decision that the VPP operator
has to make under the hypotheses presented in section II-B.
In order to sell energy for the next day (D + 1), the VPP
operator proposes its quantity bid before the gate closure time
during the present day (D). Such bid is based on available
wind power forecasts. The first blue line in Figure 2 illustrates
the day-ahead bidding with a gate closure time at 12:00 PM.
The quantity bid is considered to be always accepted, as
stated in section II-B3, and constitutes the energy contract.
Energy imbalance between the contracted energy and the
delivered energy is often penalized, as explained in section
II-B4. In this section, we propose a decision-making method
for scheduling the energy storage device during the period of
time corresponding to the day-ahead market contract, in order
to minimize the imbalance penalty risks associated to wind
power forecast uncertainty.

During the operation stage, the limited capacity of the
device implies that the possibility to store or to deliver energy
depends on the state-of-charge (SOC) level of the device. The
SOC level depends on the past operation of the device. In
other words, the operation of the storage device at a time ti
depends on the operations performed prior to ti. The temporal
dependence of the storage operation leads to the need of
an anticipation of the management of the storage device.
For example, if the VPP operator wants to avoid extreme
energy imbalances, the intra-day storage management will
permit to adapt the SOC level so that the storage device has
the ability to store or inject power at that critical point of
time. More precisely, updated wind power forecasts are used
to estimate the expected imbalance between the contracted
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energy and the future delivery. As a result, the storage schedule
is continuously updated for anticipating these imbalances.

This process is performed in a rolling-window scheme as
shown in Figure 2. Each schedule consists of the storage output
power time series covering the length of the rolling-window.
The red lines in Figure 2 show examples of the followed
procedure. In the graphical example, the rolling-window lasts
for 12 hours and is updated every 3 hours. The length of the
rolling-window is of particular importance for integrating the
temporal dependence of the storage operation into the decision.

The operation of the VPP is then based on the storage
schedule. More precisely, the latest available storage intra-
day schedule is considered as a series of storage setpoints for
the operation of the VPP. Such setpoints are represented in
dark red in Figure 2. The operation points are represented as
the last grey line.

III. PROBLEM FORMULATION

A. Day-ahead Market Model

Each electricity market has its own rules, defining the way
electricity is to be sold or purchased, how the prices are
settled, and the obligations the participants are committed to.
An overview of different European electricity markets is given
in [13].

Most day-ahead electricity markets are auction-based, also
called spot markets. In such markets, the market system
price and volumes are determined for the whole market area
by matching purchasing and selling curves. The obtained
market system price is called spot price. For markets including
different regions, regional spot market prices are derived from
system prices taking into account transmission bottlenecks.

The VPP is assumed to be a price-taker, as detailed in
section II-B3, and the quantity-price bid is reduced to a
quantity bid, at zero price. Under such conditions, the day-
ahead market participation consists in proposing an energy
contract for the next day D+ 1 at the gate closure time tc of
the day D. The energy storage device is not considered for the
day-ahead market participation, as explained in section II-C,
and consequently, the energy contract EC is based on the wind
power forecast P̂WF

tc+k/tc
, available at time tc:

ECt = P̂WF
tc+k/tc

×∆t (1)

where k is the horizon, also called look-ahead time of the
prediction; it is selected so that the prediction P̂WF

tc+k/tc
is the

prediction of the variable PWF
t for the time t = tc + k. The

symbol ∆t is the market time step, also called Program Time
Unit (PTU).

B. Balance Settlement

The transmission system operator (TSO) is responsible
for maintaining the physical balance between production and
consumption. The VPP is assumed to be a balance responsible
entity that is thus paying a market imbalance price for any
contribution to the global system imbalance.

The market model used in this work for representing the
regulation market is similar to those used in [4], [5]. In

general terms, for a given time-step t, the income It of a
VPP that participates in the market can be formulated as the
combination of the income from the contracted energy ECt at
the spot price pt, minus the cost ct associated to the energy
imbalance dt:

It = pt × ECt − ct (2)

The energy imbalance dt is the difference between the
energy Ẽt delivered by the VPP and the contracted energy
ECt . The energy delivered by the VPP is the sum of the energy
delivered by the wind farm and the energy delivered by energy
storage device.

dt = Ẽt − ECt
=

(
ẼWF
t + ẼESDt

)
− ECt (3)

The imbalance cost ct is a function of the energy imbalance
dt. This function depends on the spot price as well as on the
regulation prices for positive and negative energy imbalances.
Here it is denoted as δt: ct = δt(dt). The determination of the
regulation prices varies according to the considered market. In
general such price are time dependent. That is why function δ
is denoted as δt. The imbalance cost function is generally an
increasing function of the absolute energy imbalance in order
to encourage market participants to have their energy contract
as close as possible to their energy delivery.

C. Intra-day Scheduling of the Virtual Power Plant

1) Formulation of the Rolling-Window approach: This sec-
tion focuses on the main contribution of the present study.
Indeed, it provides the formulation of the decision-making
method for scheduling the energy storage device throughout
the period of time of the day-ahead market while minimizing
the imbalance penalty risks associated to wind power forecast
uncertainty.

The scheduling method is dynamic and based on a rolling-
window approach. In other words, the method is carried out for
a period of time (window) which is then moved forward by an
increment. The window width is denoted as Tw. The increment
time is denoted as Tinc. Figure 2 illustrates the rolling-window
approach with Tw = 12h and Tinc = 3h.

For a given time t0 within the period of time of the day-
ahead market, the objective of the method is to determine
the optimized power output of the energy storage device for
the time span [t0, t0 + Tw]. The storage power outputs are
determined for every time step ∆t and are denoted as PESD,∗t .
In the following equations, ti denotes a given time within the
window and is defined as ti = t0 + i × ∆t, i ∈ [1, n]. The
window width Tw is a multiple of the time step : Tw = n×∆t.

At a given time ti within the window, the estimated imbal-
ance d̂ti is obtained from Equation 3 by taking into account
the updated forecasts P̂WF

ti instead of P̃WF
ti .

d̂ti =
(
P̂WF
ti + PESDti

)
×∆t− ECti (4)
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Similarly, the imbalance cost function δ is based on regu-
lation prices that are determined after the real-time operation
and, consequently, a posteriori to the given market time ti.
The decision about the storage management is thus made with
an estimation of the penalization function δ̂. The estimated
imbalance penalty ĉti is:

ĉti = δ̂ti
(
d̂ti

)
(5)

2) Formulation of the Optimization Problem: The proposed
approach is based in a decision-making method for scheduling
the storage output power PESD during the period [t0, tn]. For
simplifying the mathematical expressions, the variable PESD

is renamed u:
PESD = u (6)

The following notation is adopted in general for every time
series:

[ut0 , ut1 , ..., uti , ..., utn ] = [u]tnt=t0 (7)

For a given time ti, the day-ahead contract energy ECti is
already determined the day before at the gate closure time
and the wind power production is estimated by P̂WF

ti . Con-
sequently, the estimated imbalance d̂ti given in Equation 4 is
only a function of the storage output power uti . The estimated
imbalance penalty can thus be rewritten from Equation 5 as a
function of the storage output power uti :

ĉti = δ̂ti
(
d̂ti (uti)

)
(8)

The market rule model described by Equation 2 indicates
that the imbalance penalties δti(dti) reduce the VPP market
income. Managing the storage for reducing these imbalance
penalties can then be formulated as a minimization problem,
where the goal is to find the energy storage device output
power u that minimizes a norm N of the imbalance penalty
throughout the period of time of the considered window:

[u∗]tnt=t0 = arg min
[u]tn

t=t0

N
(

[ĉ (u)]tnt=t0
)

(9)

where ĉ (u) is formulated through Equation 5.

3) The Choice of the Optimization Norm: For a given
market time ti, the estimated imbalance penalty is a real
number: ĉti (uti) ∈ R. The time series [ĉ (u)]tnt=t0 is thus
a n-dimension vector. As a consequence, the related norm
N : Rn → R is a real-valued function on Rn.

The choice of the norm is dependent on the VPP operator
risk preference regarding imbalance penalties. If the operator
focuses on the total imbalance penalty during the interval
[t0, tn], one example of norm N1 could be defined as:

N1

(
Ĉ (U)

)
=

n∑
i=1

ĉti (uti) (10)

Focusing on extreme values of energy imbalances could lead

to another norm N2 defined by:

N2

(
Ĉ (U)

)
= max

i
ĉti (uti) (11)

These two alternative norms reflect different strategies re-
garding decision-making under uncertainty. The first one refers
to the expected value and is called the expectancy choice in
[14]. Alternatively, the second norm refers to the preference of
minimizing the risk of large penalties and is denoted as robust
choice in [14].

4) Technical Constraints and Temporal Dependence of the
Storage Management: This paragraph formulates the temporal
dependence in the schedule, which results from the limited
capacity of the energy storage device. The storage output
power depends both on the nominal charging and discharging
rates of the device and on its actual SOC level. Such level
will determine whether the storage device allows to deliver or
absorb the required amount of power. Consequently, for any
time ti, uti is bounded by the storage nominal charging and
discharging rates, respectively rnomch and rnomdis . The SOCti
is bounded by the minimum and maximum SOC levels,
respectively SOCmin and SOCmax. These constraints define
the constraint set C relative to the market time ti:

Cti :

{
rnomch ≤ uti ≤ rnomdis

SOCmin ≤ SOCti ≤ SOCmax
(12)

The output power of the energy storage device is assumed to
be positive when delivering power to the grid (i.e. discharging)
and negative when charging. Consequently, rnomch < 0 and
rnomdis ≥ 0.

The SOCti of the energy storage device is defined as the
fraction of stored energy among the nominal storage capacity
of the device CapESD. The SOCti at a market time ti depends
on the previous value of SOCti−1 and on the output power
of the storage device uti during the period [ti−1, ti]. Charging
and discharging modes are considered separately:

SOCti =


SOCti−1 − ηch ×

uti
×∆t

CapESD ⇐ uti < 0

SOCti−1 − 1
ηdis
× uti

×∆t

CapESD ⇐ uti ≥ 0
(13)

where ηdis and ηch represent, respectively, the storage de-
vice discharging and charging efficiencies. The aim of this
paragraph is to formulate the SOC constraints defined in
Equation 12 as a constraint on the decision variable u. In
other words, the goal is to define the SOCti as a function
of the variable [u]tnt=t0 . The two cases corresponding to the
consideration of the storage device efficiencies lead to a non-
linearity in the recursive definition of the SOC in Equation 13.
This non-linearity makes the general expression of SOCti
from [u]tnt=t0 quite complex.

For the present study, we consider a simplified formulation
by assuming a 100 % charging and discharging efficiency.
Under such hypotheses, the two case definition is not necessary
anymore and the SOC level at time ti can be recursively
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defined as:

SOCti = SOCt0 −
i∑

k=0

utk ×∆t
CapESD

(14)

The energy storage schedule is determined at a given time t0
for the period Tw. The SOC is known at the time t0 and
will be determined as the integration of the u variable for
the further time steps. Consequently, the storage SOC level
limitation defined in Equation 12 can be written as:{∑i

k=1 utk ≤ b = (SOCt0 − SOCmin)× CapESD/∆t∑i
k=1 utk ≥ b = (SOCt0 − SOCmax)× CapESD/∆t

(15)
with i = 1...n. Therefore, considering Equation 7, the con-
straints can be formulated as linear constraints on the vector
U = [u]tnt=t0 as follows:

C′ :


rnomch · 1 ≤ U ≤ rnomdis · 1
A · U ≤ b · 1
A · U ≥ b · 1

(16)

where b and b are derived from Equation 15. 1 is a n × 1
vector and A is a n× n matrix defined by:

A =


1 0 0 . . . 0
1 1 0 . . . 0
...

...
...

...
...

1 1 1 . . . 1

, 1 =


1
1
...
1

.

The simplified decision-making problem can thus be for-
mulated as the following linear optimization problem:

U∗ = arg min
U

N
(
Ĉ (U)

)
(17)

subject to C′

with
Ĉ (U) = [ĉ (u)]tnt=t0 (18)

D. Real Time Operation of the VPP
This section formulates a real-time operation model of the

VPP. At operation time top, the energy delivered by the VPP
Ẽtop

is the sum of the energy ẼWF
top

delivered by the wind
farm and the energy ẼESDtop

delivered by the energy storage
device :

Ẽtop
= ẼWF

top
+ ẼESDtop

(19)

Ẽtop
=

(
P̃WF
top

+ P̃ESDtop

)
×∆t (20)

In the scope of this study, the output power of the renewable
source P̃WF

top
is assumed to be non-dispatchable. The output

power delivered by the storage device P̃ESDtop
is assumed to

be dispatchable with respect to the technical constraints Ctop

obtained by transforming Equation 12 into Equation 21.

Ctop
:

r
nom
dis ≤ PESDtop

≤ rnomch

SOCmin ≤ SOCtop ≤ SOCmax
(21)

For the real-time operation of the VPP, the variable values
for the previous time steps are known. More precisely, the
SOC level at time step top − ∆t is known, and the SOC
level at top only depends on the energy storage output PESDtop

:

SOCtop = SOCtop−∆t + PESDtop
×∆t/CapESD (22)

The technical constraints of the device at top can be rewrit-
ten by combining Equation 21 and Equation 22:

Ctop :


rnomdis ≤ PESDtop

≤ rnomch

PESDtop
≥
(
SOCmin − SOCtop−∆t

)
× CapESD

∆t

PESDtop
≤
(
SOCmax − SOCtop−∆t

)
× CapESD

∆t
(23)

The operation model distinguishes two cases:
1) Reference Operation: The reference case is the case

without strategic intra-day storage schedule. The reference ap-
proach does not take into account any estimation of regulation
price. It is based on the analysis that the imbalance penalties
are generally increasing functions of the absolute value of the
energy imbalance, as explained in section III-B. Consequently,
reducing the absolute energy imbalance reduces the imbalance
penalty. The operation of the energy storage device P̃ESDtop

is thus based on the real-time minimization of the energy
imbalance between the contracted energy in the day-ahead
market ECtop

and the energy delivered by the VPP Ẽtop .

P̃ESDtop
= arg min

PESD

∣∣dtop
(PESD)

∣∣ (24)

P̃ESDtop
= arg min

PESD

∣∣∣(P̃WF
top

+ PESD − ECtop

)
×∆t

∣∣∣ (25)

subject to Equation 23

2) Strategic Operation: The strategic coordination of the
wind farm and the energy storage considers the latest available
storage intra-day schedule PESD,∗top

derived in Equation 17 as
a series of setpoints for the storage device, while respecting
the technical constraints.

P̃ESDt = arg min
PESD

∣∣∣PESD − PESD,∗top

∣∣∣ (26)

subject to Equation 23

IV. CASE STUDY

The advanced storage management strategy was applied in
a real case study described below in detail. Various simulation
runs are presented and analyzed in order to evaluate the
benefits from the strategic storage management. The analysis
focuses on the influence of the decision-making criteria on the
resulting imbalance penalties.

A. Overall Simulation Methodology

1) Description of the Methodology: This section briefly
presents the methodology followed for estimating the ben-
efits related to the strategic intra-day management of the
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Fig. 3. Schematic representation of the overall simulation including the
scheduling and the operation phases.

wind/pumped-hydro VPP, when operating under market con-
ditions. The methodology combines the scheduling and the
operation phases described in the previous section.

As shown in Figure 3, wind power measures and Numerical
Weather Predictions (NWP) are used by the wind power
forecasting module to produce wind power forecasts. The
market evaluation consists in the quantification of the global
outcome of the simulations resulting from the utilization of
the proposed method. Such outcome includes the revenue, the
penalties and the energy imbalances associated to the operation
of the considered virtual power plant.

2) Wind Power Forecasts: Forecasts of wind power are used
as input to both the day-ahead market participation and the
intraday scheduling modules. In this work, such forecasts were
obtained using a state-of-the-art statistical model described
in [15]. It aims to model the relationship between the wind
speed forecasts and the power output of the wind farm without
any other considerations. This approach is often referred as
power curve modeling. Here, the power curve is modeled by
a piecewise least squares linear fitting of the wind-speed to
power relation.

The forecasts used for the intra-day scheduling are updated
forecasts, produced using as recent as possible wind power
measurements as well as updated Numerical Weather Pre-
dictions (NWP). The errors of these updated forecasts are
normally lower than the errors of the forecasts used for the
day-ahead market participation.

3) Imbalance Penalty Forecasts: The intra-day scheduling
method is based on the minimization of the estimated imbal-
ance penalties given by Equation 5. More precisely, the imbal-
ance cost function δ in Equation 5 is based on the difference
between the spot price and the regulation price. Consequently,
forecasts of both the spot and the regulation price would
be necessary to perform the minimization. However, market
prices are highly variable and hardly predictable as they may
exhibit a feature of spikes in trajectories, as described in [16].

The present case study considers the NordPool market,
where market participants are only penalized for their imbal-
ances if these are opposite to the regulation measure taken by
the TSO. The interested reader may refer to [17] for obtaining
further information on NordPool market rules. The imbalance
cost function δt can be formulated as:

δt(dt) =
{
pc,+t × |dt| , dt ≥ 0
p−,ct × |dt| , dt < 0

(27)

where pc,+t , p−,ct ≥ 0 are defined by:

pc,+t = pct − p+
t (28)

p−,ct = p−t − pct (29)

with pct , p
+
t and p−t being the market spot price and the

regulation prices for positive and negative energy imbalances,
respectively.

The estimation of the imbalance cost function δ̂ is modeled
in the present study by the absolute function:

δ̂t (dt) = |dt| (30)

for any energy imbalance dt. Advanced imbalance cost func-
tion models require market price forecasting (e.g. [18]).

B. Description of the Case Study

In this study, the considered VPP is composed of a 18
MW wind farm located in the North West of Denmark and a
pumped-hydro station with a nominal capacity of 40 MWh,
a nominal charging rate rnomch of − 6MWh/h and a nominal
discharging rate rnomdis of 6 MWh/h. We have considered the
case where this VPP participates in the NordPool electricity
market for the whole month of April 2002 [17].

To produce the wind power forecasts, Hirlam Numerical
Weather Predictions were used as well as measured wind
power from the years 2000 and 2001 as learning and testing
sets, respectively. Wind power forecasts have been derived
from Numerical Weather Predictions every 6 h of the month
of April 2002.

In NordPool, the contracts for the coming day are traded on
the day-ahead market, named Elspot. The Elspot gate closure
time is at 12:00 pm (local time) of the preceding day. Hence,
we used the last available wind power forecasts (11:00 am
of the same day) as input to day-ahead market participation
module. Forecast horizons were selected in order to get the
forecasts for the next day. The intra-day storage scheduling
is carried out every hour from updated wind power forecasts.
The rolling-window width Tw and the increment time Tinc
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defined in section III-C1 are chosen to be Tw = 12 h and
Tinc = 1 h.

Two optimization norms related to two different decision-
making strategies are proposed in section III-C3. These two
different strategies have been simulated in order to evaluate the
benefits of the proposed methodology. Both of these strategies
are compared to the reference case where no intra-day storage
scheduling is used, as described in section III-D. The strategies
related to the norms N1 and N2 are denoted as N1 and N2

respectively. Similarly, the reference case is denoted by N0.

C. Results and Discussion

Fig. 4. Operation of the VPP, the 04/04/2004.

Figure 4 describes the operation of the virtual power plant
during the 24 hours of the 4th of April 2002. On the top graph,
the blue line represents the energy contract related to the day-
ahead market participation and the dashed black line represents
the energy output of the wind farm. The area between the black
line and the blue line represents the energy imbalance without
considering the storage. The imbalance energy is relatively
low for the first 11 hours. From hour 12 to hour 24, the wind
farm output is greater than the contracted energy, which leads
to positive energy imbalance for that period.

On the second graph, the red line marked with squares
represents the energy output from the combined plant energy
output for the reference case N0. Similarly, the orange line
marked with circles and the green line marked with stars
represent the energy output from the combined plant for the
strategies N1 and N2, respectively. The two last graphs plot

the energy storage device power output and SOC level for the
various cases.

The second graph shows that the combination of the storage
device with the wind farm reduces the (positive) energy
imbalance for the period from hour 12 to hour 24, for all
the three cases.

From hour 1 to hour 11, the three cases are similar and the
energy storage device delivers or stores energy so that the VPP
energy output matches the day-ahead contract. However, for
the period from hour 12 to hour 24, the storage device (ESD)
operation depends on the strategy:
• In the reference case N0, the surplus energy is stored

till the energy storage device is completely loaded, at
hour 16. Note that, from hour 13 to hour 15, the storage
charge is limited by its nominal charging rate equal to
rnomch = −6 MWh/h. For hours 17 to 24, the storage
device is completely loaded (the SOC level is equal to
1). Consequently, no more energy can be stored and the
storage output power is null.

• In the N1 case, the storage charging power remains
approximately constant for the period between hour 12
and hour 22. The storage charging power is then reduced
for hour 23 and hour 24 since the energy imbalance is
reduced for the same hours.

• In the N2 case, the energy storage device is discharged at
hour 12, which leads to an energy imbalance greater than
the one obtained without storage for this hour, as shown
in the second graph. From hour 13 to hour 20, the second
graph shows that the difference between the green line
and the blue line remains approximately constant. In other
words, the charging power is set so that the imbalance is
kept constant and as small as possible, which is in line
with the objective of this N2 strategy. The goal of the
discharge at hour 12 is to get the storage SOC level as
low as possible at hour 13 in order to be able to store as
much as possible energy during the period from hour 13
to hour 20, thus reducing the maximum imbalance during
the same period.

energy imb. |d| (MWh) imb. costs c (DKK)
mean(|d|) q99(|d|) mean(c) q99(c)

N0 0.68 7.78 18.2 482
N1 0.69 7.76 14.9 304
N2 0.72 5.22 16.0 247

TABLE I
ENERGY IMBALANCE OBTAINED THROUGHOUT THE SIMULATED MONTH

OF OPERATION.

Table I presents results about the distribution of the hourly
absolute energy imbalances |d| and thet hourly imbalance costs
c obtained from the simulation of the combined wind/pumped-
hydro plant for the month of April 2002. The results from
the strategies N1 and N2 are compared to the reference case
N0. The mean columns give the average of the |d| and c for
each hour of operation. The q99 columns present the 99% −
quantile of the distributions of the hourly |d| and c. This
quantity gives an estimate of extreme values. It is defined as
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the value q99(c) for which the number of occurrences of c
greater than q99(c) is equal to 99% of the total number of
occurrences:

n(c < q99(c)) = 99%× ntot (31)

Table I shows that the average of the absolute energy
imbalances obtained with the N1 strategy (0.69 MWh) is
similar to the one obtained in the reference case (0.68 MWh).
The same strategy N1 reduces the extreme values of energy
imbalance since the q99 value is lower than the one in the
reference case. Also, the N1 strategy reduces the average
imbalance costs by 18 %.

Strategy N2 strongly decreases both extreme values of
absolute energy imbalance (by 37 %) and extreme values of
imbalance cost (by 49 %). However, this strategy slightly
increases the average energy imbalance by 6 %. Such an
increase can be observed in Figure 4 at hour 12 when the
storage device output power is increased for maximizing the
capacity to store energy from hour 13 to hour 20.

Eventually, the benefits from the N1 strategy which aimed
at reducing the total imbalance penalty are confirmed in the
decrease of the average imbalance cost by 18 %. Similarly,
the benefits from the N2 strategy which aimed at reducing the
extreme values of imbalance penalties are confirmed in the
decrease of the q99 value of the imbalance costs by 49 %.

Such results were obtained by considering the assumption
of a 100 % storage device efficiency. A more realistic value
for pumped-hydro station round-trip efficiency could be 75 %,
which is in line with the one used in [7] [8]. The influence
of the storage efficiency on the benefits from the N1 and N2

strategies should be tested in the future for confirming these
results.

V. CONCLUSIONS

In this work, a novel method is proposed for the ma-
nagement of a combined wind/pumped-hydro power plant
under electricity market. The method focuses on the intra-day
management of the energy storage device in order to reduce the
penalty risk associated to energy imbalances, for the combined
power plant operator.

The method was presented in detail and applied to a
realistic test case, where real-world measured data and forecast
obtained by a state-of-the-art wind power forecasting model
are used.

The results clearly show that a strategic coordination of the
energy storage device is a way to manage energy imbalances
and the penalties associated to these imbalances. The results
also demonstrate the strong influence of the scheduling strate-
gies on the risk associated to the imbalance penalties.
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