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Bifurcations and loadability issues in power systems
Héctor A. Pulgar-Painemal, Peter W. Sauer.

Abstract—This paper deals with bifurcations and loadability
issues in power systems. A single machine system with dynamic
state space represented by a set of differential algebraic equations
is considered. It is emphasized that this small system can give
a first step in understanding the issues discussed in this paper.
Using system loading as a bifurcation parameter and considering
two methodologies for calculating system equilibrium points—
specification of a fixed terminal voltage and a voltage-controller
reference—the incidence of voltage imposed by the machine in
the system stability is studied. The results of this paper reveal that
careful attention must be paid to all methodologies for calculating
equilibrium points, as some may obscure likely solutions in the
state space. In addition, a proper adjustment of a machine
voltage-controller reference can be exploited to provide relief
to a system when it is operating close to collapse.

Index Terms—Voltage Stability, Voltage Collapse, Dynamic
Systems, Bifurcations

I. INTRODUCTION

A power system aims to provide power to loads in a
secure and reliable way. A power system has to withstand the
effects of endogenous and extraneous contingencies as well
as natural growth in the system load. The last stresses the
system and causes contingency effects to be more severe. The
most recent major blackout in North America is an example
of contingencies having a devastating effect due to excessive
loading [1]. Loading is a major issue generally related to low
voltage and voltage collapse.

Typically, the study of this issue is done by considering
loading as a parameter in bifurcation studies. A Hopf bifurca-
tion (HB) point in state space can be considered as a boundary
of a secure operation. If that point is passed the system be-
comes dynamically unstable. If the system is operated far from
an HB point, a stability margin can be obtained. However, due
to power system economics and markets, this margin cannot
be easily found. Nowadays, power systems are highly loaded
during peak hours, making the study of nonlinear bifurcations
and dynamic stability extremely important. When an HB point
is exceeded, new stationary equilibrium points, periodic orbits,
and chaotic behavior may occur. In [2], catastrophic bifurca-
tions, such as the saddle-node bifurcation (SNB), subcritical
HB and chaotic blue-sky bifurcation, have been studied in
a single machine system. Similarly, using three- and nine-
bus test systems, bifurcations and chaotic behavior have been
observed while the effects of flexible ac transmission systems
(FACTS) devices in the elimination of bifurcations have been
explored [3]. In addition, state feedback has been proposed
to control bifurcation and chaotic behavior [4]. However, a
classical model for synchronous machine was used in those
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studies, i.e., a classical swing-equation model. In this article,
a two-axis model is used [5].

Many studies have been done on the effects of loads, as
loading is a prime factor in instabilities. Static loads, e.g.,
constant-power, -current and -impedance; and dynamic loads,
e.g., induction machines of various model orders; have been
addressed [6]–[9]. In respect to the static-load models, it has
been demonstrated that the constant-power-load model causes
the lowest dynamic loading margin [7] and has a considerable
impact on the SNB point [8], [9]. However, the incidence of
voltage imposed by machines in system stability has not been
properly studied.

A single machine system with dynamic state space repre-
sented by a set of differential algebraic equations is consi-
dered. Two methodologies—specification of a fixed terminal
voltage and a voltage-controller reference—for calculating the
system equilibrium points are considered in order to show
the importance of the voltage imposed by the machine in the
system stability. It is emphasized that this small system can
give a first step in understanding the incidence of machine
voltages. Basically, it is shown that by adjusting the voltage-
controller reference, an SNB point in the state space can
be shifted, creating a whole stable neighborhood around the
nose of the power-voltage (PV ) curve. In addition, new
stationary equilibrium points are discovered. Depending on the
machine voltage, several limit points may appear. The results
of this work reveal that careful attention must be paid to all
methodologies for calculating equilibrium points, as some may
obscure likely solutions in the state space. In addition, a proper
adjustment of a machine voltage-controller reference can be
exploited to provide relief to a system when it is operating
close to collapse.

This paper is structured as follows. In Section II a brief
description of nonlinear phenomena is described. In Section
III the dynamic model of the system under study is presented.
In Section IV two cases are presented to show the importance
of the voltages imposed by the machines on system stability.
Finally, in Section V conclusions are presented.

II. BASIC NONLINEAR PHENOMENA

Nonlinearity and parameter dependence are characteristics
inherent in power systems. These are autonomous and typi-
cally described by a set of differential algebraic equations.
Branching or bifurcation diagrams can be used to understand
system behavior. Basically they describe the trajectory of
either stationary equilibrium points or periodic orbits in the
state space when some parameters are varied, i.e., bifurcation
parameters. The number of solutions and the system stability
may change depending on the bifurcation parameter value
and the branch that the system follows (Figure 1). The local
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Fig. 1. Bifurcation diagram of an hypothetic state variable x in terms of the
bifurcation parameter λ

stability of the system around a stationary equilibrium point
depends on the location of the system eigenvalues. Definitions
such as stable node, unstable node, saddle, stable focus,
unstable focus and center are considered [10]. The stability
of system periodic orbits can be determined using Floquet
multipliers [11]. When a single pair of complex eigenvalues
crosses the imaginary axis to the positive real side and no other
eigenvalue has a nonnegative real part, then “there is a birth of
limit cycles” [11]. This bifurcation defines new trajectories of
periodic orbits. The crossing point is called a Hopf bifurcation
point.

Saddle-node bifurcation points (SNB) and turning points
are important for representing system behavior in state space.
An SNB point is characterized by a zero eigenvalue and
receives its name from the collision of a saddle and a node.
Turning points, also known as limit points (LP ), reflect change
in the direction of state variable trajectories. For example, in
the classical PV curve, the limit point corresponds to the nose
of the curve. Note that an LP does not always coincide with
an SNB point [11]. Moreover, when the system hits an SNB
point, new stationary equilibrium points or periodic orbits can
arise [2].

Power system analysis methods, thus, must be carefully
designed due to complex system behavior as well as to the
appearance of new trajectories in state space. Because all
possible trajectories must be identified in order to avoid an
unexpected system behavior, appropriate methods, models, and
procedures to perform power system analysis are needed.

III. SYSTEM MODELING

A. Dynamic Model

The dynamic behavior of a power system is represented by
a set of differential algebraic equations (DAE) as

ẋ = f(x, y, µ) (1)
0 = g(x, y, µ) (2)

where x is a vector of the state variables, y is a vector of the
algebraic variables, µ is a vector of the inputs and f and g are
non-linear functions. The algebraic equations are derived from
high order models where it is assumed that the machine-stator

and electrical-network dynamics are extremely fast compared
to the slow dynamics associated to the machine controllers. A
zero order manifold is obtained to represent the fast variables,
i.e., Equation (2). Based on the level of detail, several dynamic
models, including the two-axis or the flux-decay model, may
be used [5], [12].

Consider a single lossless synchronous machine connected
to a load through a lossless transmission line (Figure 2).
Assume that the machine is represented by a two-axis model
[5] and that the transient reactance at both quadrature and
direct axes are equal, i.e., X ′d = X ′q . Moreover, assume an
IEEE Type 1 Exciter without saturation and a linear speed
governor. Additionally, use an exponential model for the load,
PL = PoV

pv
2 and QL = QoV

qv
2 . Then the set of DAE is

defined by

1) Differential equations:

T ′doĖ
′
q = −E′q − (Xd −X ′d)Id + Efd (3)

T ′qoĖ
′
d = −E′d + (Xq −X ′q)Iq (4)

δ̇ = ω − ωs (5)
2H
ωs

ω̇ = TM − E′dId − E′qIq (6)

TE ˙Efd = −KEEfd + VR (7)

TF Ṙf = −Rf +
KF

TF
Efd (8)

TA
KA

V̇R = − VR
KA

+Rf −
KF

TF
Efd + (Vref − V1) (9)

TCH ˙TM = −TM + PSV (10)

TSV ˙PSV = −PSV + PC −
1
RD

(
ω

ωs
− 1
)

(11)

2) Algebraic equations:

PoV
pv
2 + jQoV

qv
2 = V2e

jθ2(Id − jIq)e−j(δ−
π
2 ) (12)

(E′d + jE′q) = j(X ′d +Xe)(Id + jIq) + V2e
j( π

2 +θ2−δ) (13)

V1e
jθ1 = jXe(Id + jIq)ej(δ−

π
2 ) + V2e

jθ2 (14)

Equations (12)–(14) can be manipulated to obtain the follo-
wing set of real algebraic equations

0 = PoV
pv
2 +

V2

X ′d +Xe

(
E′d cos θ′2 + E′q sin θ′2

)
(15)

0 = QoV
qv
2 −

V2

X ′d +Xe

(
E′q cos θ′2 + E′d sin θ′2

)
(16)

0 = −(X ′d +Xe)Iq − E′d − V2 sin θ′2 (17)
0 = (X ′d +Xe)Id − E′q + V2 cos θ′2 (18)

0 = −V1 cos θ′1 +XeId + V2 cos θ′2 (19)
0 = −V1 sin θ′1 +XeIq + V2 sin θ′2 (20)

where θ′1 = θ1 − δ and θ′2 = θ2 − δ. Note that in this small
system, state variable δ is not required, so that Equation (5)
may be deleted. Thus,

x = [E′q, E
′
d, ω, Efd, Rf , VR, TM , PSV ]T (21)

y = [V1, θ
′
1, V2, θ

′
2, Iq, Id]

T (22)

µ = [Vref , PC ]T (23)
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Fig. 2. Single-machine system

Fig. 3. Steady-state model of a synchronous machine

An important model to calculate equilibrium points or initial
conditions is the steady-state machine model (Figure 3). Given
the complex voltage and current at the terminal of the machine,
δ and Efd can be easily calculated [5]. The angle δ is typically
known as the angle behind the quadrature reactance.

B. Equilibrium point calculation

In general, an equilibrium point is found by solving

f(x, y, µ) = 0 (24)
g(x, y, µ) = 0 (25)

Note that the voltage controller is modeled by Equations (7)–
(9). A tracking control is considered such that the terminal
voltage (V1) follows a voltage reference (Vref ). However,
for simplicity, it has been a common practice to specify a
terminal voltage rather than a voltage-controller reference.
Consequently, for every equilibrium point, Vref has to be
adjusted such that V1 is kept at its specified value.

Specifying a terminal voltage rather than a voltage-
controller reference is convenient because a conventional
power-flow algorithm can be used to calculate voltages and
injected currents at every bus. On the other hand, a generalized
power-flow formulation must be used to calculate voltages and
currents if Vref , rather than the terminal voltage, is specified
[13], [14]. Thus, the calculation of an equilibrium point is
dependent on whether a specified Vref or V1 is assumed.
Methodologies are presented for both cases.

Methodology A – Specify a fixed terminal voltage: This is
the most common methodology used in power system analysis
[8], [9], [15], [16]. Consider our single-machine system with
a fixed terminal voltage, i.e., V1 is constant. Then the steps to
calculate the equilibrium point are the following:
• Using V 1 as angle reference and given Po and Qo, run

a power-flow algorithm to determine V 2 and I .
• Calculate δ using the steady-state model.
• Calculate Id and Iq using Id + jIq = Iej(

π
2−δ).

• Calculate Efd using the steady-state model.
• Sequentially set Equations (3) to (11) to zero and calcu-

late the state variables and the inputs, i.e., PC and Vref .

TABLE I
SYSTEM DATA

Xd Xq X′
d X′

q T ′
do T ′

qo H RD

2.2 1.76 0.2 0.2 8 1 3.5 0.05

KE TE KF TF KA TA TCH TSV

1 0.7 0.03 1 200 0.04 0.05 0.1

In the absence of bifurcations there is a one-to-one corres-
pondence between Vref and V1. However, in the presence of
bifurcations, at a particular Vref multiple solutions for V 1

may exist. Therefore, the main drawback of this methodology
is that for the same calculated Vref , another voltage solution
may exist which will define a different equilibrium point.

Methodology B – Specify Vref : In this case the equilibrium
point has to be found by simultaneously solving the set of non-
linear equations defined by Equations (24) and (25). Having a
fixed Vref , the terminal voltage may drop—depending on the
machine parameters, network parameters and loading level. In
order to avoid an excessive voltage drop, Vref (Po) can be
specified, i.e., Vref in terms of loading level, Po. The main
advantage of this methodology is that all possible equilibrium
points are considered because V 1 is treated as a variable and
not as a specified value.

C. Linearization

Linearize the DAE defined by Equations (1) and (2) at an
equilibrium point to obtain

∆ẋ = A∆x+B∆y (26)
0 = C∆x+D∆y (27)

Using Kron’s reduction, algebraic equations are eliminated:

∆ẋ = (A−BD−1C)∆x = Asys∆x (28)

Eigenvalues of Asys define the stability of the operating point.
Use load Po as a bifurcation parameter. Then, for every single
value of Po, calculate the eigenvalues of Asys to determine
the system stability.

IV. CASES

Two issues are addressed with the following cases. Firstly,
the structural stability of a system is highly dependent on the
voltage imposed by the machine controllers. Secondly, when
Methodology A is used to calculate the system equilibrium
point, some regions of the state space are obscured. New
operating points are discovered using the Methodology B.
Machine parameters are presented in Table I. The transmission
line has a series reactance of Xe = 0.1[pu]. Note that the
secondary frequency control of the governor is not explicitly
modeled, so PC is adjusted at every loading level to maintain
synchronous speed, i.e., ω = ωs. A constant-power load
model is considered, i.e., pv = 0 and qv = 0. Finally, for
Methodology B, a Newton-Raphson routine is used to solve
the set of nonlinear equations.
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A. Effect of machine voltage on system stability

System stability has been studied considering the load as
a bifurcation parameter under different load models without
taking into consideration the importance of the voltage im-
posed by the machine controllers. It has been observed that
the eigenvalue movements follow a well known pattern [5],
[8], [9]. Assume that at a specified loading level the system
is stable, i.e., all eigenvalues are on the left half plane. As the
loading is increased, a complex pair of eigenvalues, generally
associated with the voltage controller variables, moves to the
right and at a point crosses the imaginary axis defining the
Hopf bifurcation point. If the load is further increased, these
complex eigenvalues, on the right half plane, will coalesce
on the real line and then split into two real eigenvalues
moving in opposite directions. The one moving to the right
will keep increasing until it comes back through infinity to
the left half plane. At infinity, the Jacobian associated with
the algebraic variables, i.e., D, becomes singular. This is
known as a singularity-induced bifurcation point. The other
real eigenvalue, still on the right half plane, drifts to the
origin as the load is increased. When it reaches zero the full
Jacobian of the DAE becomes singular. This is an SNB
point. In some cases the SNB point coincides with the LP
or maximum power point, depending on the voltage imposed
by the controllers as well as the load model. In Figure 4,
eigenvalue movement is depicted when Vref is constant and
equal to 1.005.

In order to show the effects of machine voltage on system
stability, both Methodologies A and B are considered. While a
fixed machine terminal voltage is assumed in Methodology A,
a fixed Vref is considered in Methodology B. The PV curves
obtained at bus 2 using both methodologies are presented in
Figure 5. A solid line represents a stable equilibrium point
while a dashed line represents an unstable one. Unsurprisingly,
the maximum transmitted power is reduced when the second
methodology is used. Additionally, the HB point occurs at
an earlier loading level. What is surprising is that the struc-
tural stability around the maximum power point is radically
different. Assuming a fixed terminal voltage, the SNB point
occurs before the LP . The LP is dynamically stable. On
the other hand, assuming a fixed Vref , the SNB point takes
place in a small neighborhood around the LP which is likely
to be unstable. Although not found using a Newton-Raphson
routine, the solution at the SNB point is bounded by the
solutions from the upper and lower side of the PV curve. The
gap between the upper and lower solutions can be considered
small enough (see Table II). From these results, as a proper
adjustment of the voltage-controller reference can make a
whole neighborhood around the LP stable, it is inferred that
this phenomenon can be exploited to provide relief to a system
operating close to collapse.

B. Bifurcations and maximal loadability

In the real world, most of the generating units are contro-
lling voltages in specified buses. Generally, these controlled
buses correspond to machine terminals. A desired terminal
voltage is pursued by setting a reference in the machine voltage

Fig. 4. Eigenvalues of Asys at the upper side of the PV curve

Fig. 5. Comparison between two strategies for voltage control

TABLE II
CLOSEST SOLUTIONS TO THE MAXIMUM POWER THROUGH THE UPPER

AND LOWER SIDE OF THE PV CURVE

Upper side Lower side

E′
q 1.913 1.957

E′
d 0.580 0.566

Efd = VR 14.394 14.747
Rf 0.432 0.442

TM = PSV 4.330 4.330
Id 6.240 6.395
Iq 0.372 0.363
V1 0.933 0.931
θ′
1 -0.777 -0.756
V2 0.693 0.676
θ′
2 -1.511 -1.514

Vref 1.005 1.005
max<(λi) 0.048 -0.046

controller, i.e., Vref . Therefore, specifying a machine terminal
voltage, as in Methodology A, rather than a voltage-controller
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Fig. 6. Vref (Po) for methodology A with V1 = 1 [pu]

reference, as in Methodology B, is not realistic. Moreover,
specifying a terminal voltage may obscure some likely opera-
ting points which show up when a voltage-controller reference
is specified. In the following example, new equilibrium points
are shown in a single-machine system. Methodology B is used.
Vref = Vref (Po) is considered so that V1 = 1[pu].

First, the solution obtained in the previous subsection IV-A
using Methodology A is a particular solution where Vref was
adjusted in order to keep V1 = 1[pu]. Vref (Po) is obtained.
In Figure 6, Vref is shown when the operating point belongs
either to the upper or the lower side of the PV curve. A solid
line corresponds to an operating point on the upper side of
the PV curve while a dashed line correspond to an operating
point on the lower side.

Now, use Methodology B with Vref (Po) of Figure 6 to
solve for the equilibrium points at different loading levels
in the range of Po = 0 to Po = 5[pu]. From Po = 0 to
Po = 4.9848[pu] (SNB point) the same solution is found as
when using Methodology A. However, after the SNB point,
another solution arises with higher values for voltages V1

and V2. This bifurcation in the equilibrium point trajectory
is shown in Figure 7. According to the eigenvalues of Asys,
the new solution that bifurcates upward on the PV curve is
unstable. Thus, after the SNB point, the system can either
take the trajectory 1©→ 2©→ 3©, which is stable, or the trajec-
tory 1©→ 2©→ 4©, which is unstable. Both trajectories reach a
maximum power point at Po = 5[pu]. This example clearly
shows that a solution which is unstable and undetectable using
Methodology A may appear in the system. Moreover, it turns
out that the point of maximum transfer is not unique.

Considering the quadratic characteristic of voltages, the
solution that bifurcates upward has a second solution for V2

by symmetry. This is obtained from

V2 = +

√
V 2

1 ±
√
V 4

1 − 4X2
eP

2

2
(29)

This new solution appears on the lower side of the PV curve
which has a lower value for V2 (trajectory 6©→ 7© in Figure

Fig. 7. PV curve using Vref (Po)

TABLE III
SOLUTIONS AT BIFURCATIONS AND MAXIMUM POINTS

P 2 P 6 P 3 P 4 P 7

(SNB) (Pmax) (Pmax) (Pmax)

E′
q 2.0762 2.2334 2.0085 2.1537 2.3183

E′
d 0.6147 0.5688 0.6391 0.5929 0.5486
δ 0.7663 0.6967 0.0352 0.7328 0.6628

Efd = VR 15.6333 16.898 15.0797 16.2576 17.5729
Rf 0.4690 0.5069 0.4524 0.4877 0.5272

TM = PSV 4.9848 4.9848 5 5 5
Id 6.7786 7.3323 6.5356 7.0520 7.6273
Iq 0.3940 0.3646 0.4097 0.3801 0.3517
V1 1 1 1.0059 1 1.0059
θ′
1 -0.7663 -0.6967 -0.7993 -0.7328 -0.6628
V2 0.7341 0.679 0.7635 0.7080 0.6548
θ′
2 -1.5127 -1.5211 -1.5082 -1.517 -1.5247

Vref 1.0782 1.0845 1.0813 1.0813 1.0938
max<(λi) 0 -0.2573 0.1351 -0.1263 -0.3701

7). This bifurcation also has a maximum power point at P =
5[pu]. Using the full set of DAE, it is verified that in fact this
is effectively a trajectory of equilibrium points. However, these
equilibrium points require an increase of Vref (see dotted line
in Figure 6) which is not allowed. Note that Vref was already
defined as the solid and dashed curve for the upper and lower
side of the PV curve, respectively. Therefore, although both
trajectories are stable, trajectory 5©→ 6©→ 3© is allowed and
trajectory 5©→ 6©→ 7© is not. A summary of the solutions at
the bifurcation points and at the maximum power points is
shown in Table III.

V. CONCLUSIONS

A single machine system with dynamic state represented by
a set of differential algebraic equations is considered. Using
a two-axis dynamic model for the synchronous machine, two
methodologies to calculate power system equilibrium points
are presented. Methodology A considers a machine-controlled
voltage as an input. This voltage is fixed at a specified value
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and the voltage-controller reference has to be adjusted at
every equilibrium point. Methodology B considers the voltage-
controller reference as an input. If the reference is fixed,
the controlled voltage may drop with the loading, depending
on the machine and network parameters. If the reference is
adjusted according to the load level, the voltage drop may be
eliminated, thus keeping the desired voltage at the controlled
bus. With these two methodologies and using a single machine
test system, two important conclusions are obtained.

Firstly, it is shown that the system’s structural stability
strongly depends on the voltage imposed by the machine
controllers. For our test system, using Methodology A, the
SNB point occurs before the LP (nose of the PV curve).
Thus the LP is dynamically stable. Using Methodology B
with a fixed voltage-controller reference, the SNB point and
LP are located at the same place in the state space. Thus,
the LP is dynamically unstable. Secondly, when the voltage-
controller reference is adjusted such that the machine terminal
voltage is constant and nominal, it is observed that as soon
as the SNB point is reached, new stationary equilibrium
points arise. The trajectory of the new equilibrium points
is dynamically unstable and the system bus voltages are
increased. As a consequence, Methodology A, which assumes
a fixed controlled voltage, is blinded before this bifurcation.
In summary, if Methodology A is used in a power system
analysis, careful attention must be paid to the analysis because
this methodology obscures some solutions in the state space. In
addition, it is inferred that a proper adjustment of the machine
voltage-controller references can be exploited to provide relief
to a system operating close to collapse.

In future work, this bifurcation analysis will be applied
to a multi-machine system. In order to exploit the positive
incidence of the machine voltage-controller reference in power
system stability, further analysis needs to be performed due to
the complexity of higher order systems.
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