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Abstract--The notion of modeling is essential to modern 
techniques of control and operation process. Developing a control 
process in fact means developing a model that allows us to 
predict the action and reduce the amount of feedback required. 
Recently the fuzzy modeling has become driving force that today 
is reflected in many different software and hardware products. 
The paper presents improvements of the fuzzy load models by 
clustering techniques in distribution networks planning. The 
hierarchic clustering techniques, conjunctively with fuzzy 
modeling, are proposed in this paper for determination of the 
typical load profiles, customers’ categories, and so on. Obtained 
results demonstrate the ability of the fuzzy load models to 
overcome difficult aspects encountered in process control and 
operation problems. 

 
Index Terms--Clustering techniques, distribution networks, 

fuzzy load models, load profiles, optimal planning. 

I.  INTRODUCTION 
HE electric load in distribution system varies with time 
and place. Therefore electric companies need accurate 

load data of customers for distribution network planning and 
operation, load management, customer service and billing. 
There are several factors that influence the customers’ load 
[1], [2], [5]: 
• customer factor: type of consumption, type of electric 

heating, size of building; 
• time factor: time of day, day of week, time of year; 
• climate factor: temperature, humidity; 
• other electric loads correlated to the target load; 
• previous load values; 
• load curve patterns and so on. 
 For an electric customer, the behavior is represented by a 
load profile reflecting the electric power consumption for 
every period of time. Availability of such data depends on the 
type of customer. Generally, small customers (like residential 
ones) are poorly described since a communicating meter is too 
expensive with respect to their consumption: for these 
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customers there are only a few points of the curve every year. 
For larger customers, a communicating meter is often 
available for many reasons: the billing is done every month, 
the consumption is high and justifies the communicating 
meter investments, and a detailed record of consumption is 
necessary because prices depend on the period.  

II.  CLUSTERING TECHNIQUES 
 Cluster analysis is the organization of a collection of 
objects (usually represented as a vector of measurements) into 
clusters based on similarity. It is a wonderful exploratory 
technique to help us understand the clumping structure of the 
data. Clustering is useful in several exploratory pattern 
analysis, grouping, decision-making, and machine-learning 
situations, including data mining, document retrieval, images 
segmentation, and patterns (objects) classification, [1], [3], 
[6]-[8].  
 A pattern (object) (or feature vector, observation, or datum) 
x is a single data item used by the clustering algorithm. It 
consists, typically, of a vector of d measurements: x = (x1, x2, 
… xd). The individual scalar components xi of a pattern x are 
called features (or attributes). A distance measure is a metric 
(or quasi-metric) on the feature space, used to quantify the 
similarity of patterns. 
 There are two major methods of clustering: hierarchical 
clustering and k-means clustering. 
 Hierarchical clustering is subdivided into agglomerative 
methods, which proceed by series of fusions of the n objects 
into groups, and divisive methods, which separate n objects 
successively into finer groupings, Fig. 1.  
 

 
 

Fig. 1.  Example of dendogram 
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 Agglomerative techniques are more commonly used. 
Hierarchical clustering may be represented by a two-
dimensional diagram, known as dendogram, which illustrates 
the fusions or divisions made at each successive stage of 
analysis. Hierarchical clustering is appropriate for small 
tables, up to several hundred rows.  
 Differences between agglomerative methods arise because 
of the different ways of defining distance (or similarity) 
between clusters. Several agglomerative techniques will now 
be briefly described in the following, [6]-[8]. 
 Single linkage clustering (connectedness or minimum 
method). The defining feature of the method is the distance 
between groups: 

  ( ){ } ( )1,min),( jidsrD =  

where object i is in cluster r and object j is in cluster s. 
 

 
 

Fig.  2.  Single linkage clustering 
 
 Complete linkage clustering (diameter or maximum 
method). The distance between groups is now defined as the 
distance between the most distant pair of objects, one from 
each group, Fig. 3: 
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where object i is in cluster r and object j is in cluster s. 
 

        
 
Fig.  3.  Complete linkage clustering 
 
 Average linkage clustering. The distance between two 
clusters is defined as the average of distances between all 
pairs of objects, where each pair is made up of one object 
from each group, Fig. 4:  
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where Trs is the sum of all pair wise distances between cluster 
r and cluster s, Nr and Ns are the sizes of the clusters r and s 
respectively.  

 
 

Fig.  4.  Average linkage clustering 
 

 Centroid Method. In the centroid method the distance 
between two clusters is defined as the squared Euclidean 
distance between their means. The centroid method is more 
robust to outliers than most other hierarchical methods. 
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 At each stage of hierarchical clustering, the clusters r and s, 
for which D(r, s) is the minimum, are merged, Figs. 2-4. 
 K-means clustering. The k-means is one of the simplest 
unsupervised learning algorithms that solve the well-known 
clustering problem. The main idea is to define k centroids, one 
for each cluster so as to minimize an objective function, in this 
case a squared error function:  
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point ( )j
ix and the cluster centre c j, [2], [6]-[8]. 

III.  MEMBERSHIP FUNCTIONS 
 Mathematical models and algorithms in electric power 
system theory aim to be as close to reality as possible.  
 Modeling can be performed in numerous ways, inclusively 
using the Fuzzy Techniques (FT). The basic idea of FT is to 
model and to be able to calculate with uncertainty. 
Uncertainty in fuzzy logic is a measure of nonspecifically that 
is characterized by possibility distributions. Linguistic terms 
used in our daily conversation can be easily captured by fuzzy 
sets for computer implementations. A fuzzy set is a set 
containing elements that have varying degrees of membership 
in the set. The membership values of each function are 
normalized between 0 and 1.  
 There are different ways to derive membership functions. 
Subjective judgment, intuition and expert knowledge are 
commonly used in constructing membership function. Even 
though the choices of membership function are subjective, 
there are some rules for membership function selection that 
can produce well the results, [2].  
 The uncertainty of the load level, reliability indices, the 
length of the feeders and so on will be represented as fuzzy 
numbers, with membership functions over the real domain ℜ. 
A fuzzy number Ã can have different forms but, generally, this 
is represented in triangular or trapezoidal form, usually 
represented by its breaking points: 
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Fig. 5.  Triangular and trapezoidal membership function 
 
 Using clustering techniques, the steps for defining some 
trapezoidal membership function in the case of a set of two 
dimensional objects, are presented in Fig. 6, Fig. 7, and Fig. 8. 
This is an improved fuzzy model by clustering techniques 
because the breaking points are calculated with statistical 
characteristics, (7), [1]-[3]:  
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where m is average value and σ is standard deviation value. 
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Fig.  6.  Example of ungrouped objects 
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Fig.  7.  Grouping of the objects 
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Fig.  8.  Defining of the membership function 

IV.  LOAD MODELING OF THE DISTRIBUTION TRANSFORMERS 
 In distribution networks, except for the usual measurements 
from substations, there is little information about the network 
state. The feeders and the loads are not usually monitored. As 
a result, there is a high degree of uncertainty about the power 
demand and, consequently, about the network loading, voltage 
level and power losses. Therefore, the fuzzy approach may 
reflect better the real behavior of a distribution network under 
various loading conditions, [2].     
 Thus, the hourly loading factor of a particular distribution 
transformer can be employed to approximate the transformer 
load. And, because most utilities have no historical records of 
feeders, it is proposed to use linguistic terms, usually used by 
dispatchers, to describe the uncertain hourly loading factor.  
 Two primary fuzzy variables can be considered for 
modeling of the loads from distribution substations: the 
loading factor kI (%) and power factor cosϕ, so that the fuzzy 
representation of the active and reactive powers result from 
relations, [2]: 

    ( )9tan;cos
100

ϕ⋅=ϕ⋅⋅= PQSkIP n           

where Sn is the nominal power of the transformer from the 
distribution substations. 
 The fuzzy variables, kI and cosϕ, are associated to 
trapezoidal membership functions, (7), Fig. 5. The two fuzzy 
variables must be correlated, just like that fuzzy variables P 
and cosϕ, [2].  
 In the Table I, the loading factor kI and the power factor 
cosϕ were divided into five linguistic categories (L.C.) with 
the trapezoidal membership function. 
 

TABLE I 
 LINGUISTIC CATEGORIES OF THE KI AND COS φ 

 
x x Linguistic 

Categories kI (%) cos ϕ 
Linguistic 
Categories kI (%) cos ϕ 

x1 10 0.75 x3 55 0.87 
x2 10 0.77 

M 
(Medium) x4 65 0.89 

x3 15 0.79 x1 55 0.87 

VS 
(Very 
Small) 

x4 25 0.81 x2 65 0.89 
x1 15 0.79 x3 75 0.91 
x2 25 0.81 

H 
(High) 

x4 85 0.93 
x3 35 0.83 x1 75 0.91 

S 
(Small) 

x4 45 0.85 x2 85 0.93 
x1 35 0.83 x3 95 0.95 M 

(Medium) x2 45 0.85 

VH 
(Very 
High) 

x4 95 0.97 

   
 The fuzzy load modeling (linguistic categories) can be 
employed for the steady-state calculation of the distribution 
networks under conditions of lack of information, especially 
for evaluation of the power losses, optimal reconfiguration, 
missing data treatment and so on.  

V.  LOAD PROFILE MODELING OF THE DISTRIBUTION 
SUBSTATION 

 In this section, an approach to determine the daily load 
profile for the nodes of the electric distribution network (20 
kV) is presented.  
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 The shape of load profiles is influenced by the type of node, 
by the type of day or season of the year. Because a large 
number of load profiles regarding various nodes create 
unnecessary problems in handling them, they could be 
grouped into coherent groups, given that some similarities 
exist between load profiles. The typical load profile (TLP) for 
each cluster is obtained by averaging the values for each hour. 
 For this purpose the use of the hierarchic clustering method 
conjunctively with fuzzy models is applied to a 20 kV 
distribution system, containing the data for 39 substations, to 
classify load profiles into groups, representing typical load 
profiles. 
 The active power profiles corresponding to the considered 
distribution system were normalized relatively to the proper 
energy consumption (during the day when the load peak was 
recorded), using the following relation: 
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where h
iP is the active power [kW], demanded by the i node at 

hour h, Wi represents the active energy [kWh], consumed by 
the i node during the day when the peak load was recorded, 
and NR is the total number of nodes that were taken into 
consideration in the clustering process, for the active power. 
 Thus, four groups were determined for the active power in 
this case. For every obtained group, CP1, CP2, CP3 and CP4, the 
statistical values, average and standard deviation 
( h

Pk
m and h

Pk
σ , k =1, 2, 3, 4), during the peak load day of the 

distribution system, were calculated, Table II: 
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where: NG represents the number of the resulted groups from 
the clustering process, and 

PkCN is the total number of nodes 
from every group. 
 The signification of the coefficients m is following: these 
coefficients transform the active energy consumed by the 
average member of the group in average active power 
demanded by it. These coefficients lead us to TLPs 
corresponding to the active power variation, for the 
distribution substations, Fig. 9, Table 2. 
 Using these TLPs for the active power and the factor cosϕ, 
the loading factor of every transformer from the distribution 
substations can be calculated.  
 In addition, the fuzzy load models can be determined from 
hourly loads, using the average values (Table II, Table III and 
(8)). 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Fig.  9.  TLPs for the obtained groups 
 

TABLE II 
 AVERAGE VALUES FOR THE GROUPS CP1 – CP4 

 

Hour 1PCm          
2PCm             

3PCm            
4PCm  

(kW / kWh) 
1 0.0396 0.0325 0.0411 0.0237 
2 0.0344 0.0278 0.036 0.0213 
3 0.0298 0.0250 0.032 0.0201 
4 0.0271 0.0234 0.0301 0.0194 
5 0.0261 0.0229 0.0294 0.0188 
6 0.0257 0.0232 0.0290 0.0191 
7 0.0277 0.0271 0.0292 0.0256 
8 0.0324 0.0345 0.0279 0.0412 
9 0.0366 0.0422 0.0279 0.0531 
10 0.0387 0.0459 0.0287 0.0570 
11 0.0418 0.0497 0.0312 0.0594 
12 0.0441 0.0530 0.0359 0.0614 
13 0.0467 0.0551 0.0395 0.0646 
14 0.0510 0.0579 0.0451 0.0651 
15 0.0535 0.0589 0.0486 0.0655 
16 0.0528 0.0577 0.0504 0.0643 
17 0.0519 0.0549 0.0523 0.0616 
18 0.0509 0.0511 0.0526 0.0522 
19 0.0482 0.0470 0.0539 0.0450 
20 0.0471 0.0445 0.0554 0.0373 
21 0.0509 0.0444 0.0586 0.0364 
22 0.0511 0.0429 0.0608 0.0318 
23 0.0480 0.0407 0.0560 0.0285 
24 0.0439 0.0376 0.0485 0.0277 

 
TABLE III 

BREAKING POINTS FOR GROUPS CP1 – CP4 
 

CP1 CP2 CP3 CP4 

x1 11
1.1

PP GGm σ−
22

12.1
PP GGm σ−  

33
11,1

PP GGm σ−
44

12.1
PP GGm σ−

x2 11 PP GGm σ−
22 PP GGm σ−  

33 PP GGm σ−  
44 PP GGm σ−

x3 11 PP GGm σ+
2P2P GGm σ+  

33 PP GGm σ+  
44 PP GGm σ+

x4 11
1.1

PP GGm σ+
22

12.1
PP GGm σ+  

33
11.1

PP GGm σ+
44

12.1
PP GGm σ+

 
 As an example, Fig. 10 presents TLP for CP1 versus its 
breaking points. 
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Fig.  10.  Typical load profile CP1 versus its breaking points 

 
 For each load profile, CP1 – CP4, considering VH load at 
the peak, Table I, the fuzzy hourly loads are presented in 
Table IV and Fig. 11. 
 

TABLE IV 
 LOADING FACTORS FOR THE  GROUPS CP1 – CP4 

 
kI ( Table I) 

CP1 CP2 CP3 CP4 h 
(%) (L.C.) (%) (L.C.) (%) (L.C.) (%) (L.C.) 

1 0.600 M 0.497 M 0.608 H 0.326 S 
2 0.521 M 0.425 M 0.533 M 0.293 S 
3 0.451 M 0.382 S 0.474 M 0.276 S 
4 0.410 M 0.358 S 0.445 M 0.267 S 
5 0.395 S 0.350 S 0.435 M 0.258 S 
6 0.389 S 0.355 S 0.429 M 0.262 S 
7 0.419 M 0.414 M 0.432 M 0.352 S 
8 0.491 M 0.527 M 0.413 M 0.566 M 
9 0.554 M 0.645 H 0.413 M 0.730 H 

10 0.586 M 0.701 H 0.425 M 0.783 H 
11 0.633 H 0.759 H 0.462 M 0.816 VH 
12 0.668 H 0.810 VH 0.531 M 0.844 VH 
13 0.707 H 0.842 VH 0.585 M 0.888 VH 
14 0.772 H 0.885 VH 0.667 H 0.894 VH 
15 0.810 VH 0.900 VH 0.719 H 0.900 VH 
16 0.799 H 0.882 VH 0.746 H 0.883 VH 
17 0.786 H 0.839 VH 0.774 H 0.846 VH 
18 0.771 H 0.781 H 0.778 H 0.717 H 
19 0.730 H 0.718 H 0.798 H 0.618 H 
20 0.713 H 0.680 H 0.820 VH 0.513 M 
21 0.771 H 0.678 H 0.867 VH 0.500 M 
22 0.774 H 0.656 H 0.900 VH 0.437 M 
23 0.727 H 0.622 H 0.829 VH 0.392 S 
24 0.665 H 0.575 M 0.718 H 0.381 S 

  
 In the Table IV the (L.C.), shading columns, represent 
linguistic categories of the loading factors in accord with 
Table I. 
 From these results, it is evident that the obtained profiles 
can be useful in view of the estimation of power/energy 
losses, demand-side management, optimal operation and 
planning of distribution system, missing data treatment and so 
on.   
 The loading factors (kI (%) from Table IV) permit a more 
accurate determination of the energy losses in distribution 
systems.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  11.  The weight of the load linguistic categories for the profiles, reported 
to the installed power of transformers 
 
 An important simplification of the energy losses evaluation 
is obtained by using the weights of linguistic categories, 
[L.C.], Fig. 11, in conjunction with the Table I. 
 By extending the fuzzy typical load profile to high voltage 
networks it is possible to ensure the optimal control planning 
of these networks and prevent unnecessary tap operations, 
based on the near future voltage and reactive power. Most 
control actions are conditioned by the tendency of the load (to 
increase, decrease, or remain steady). The operators will not 
be willing to change the voltage set point if they take for 
granted that the opposite action will be necessary in the near 
future, in twenty minutes, for example, [9]. 

VI.  CONCLUSIONS 
In this paper, a methodology based on clustering techniques 

is proposed for improving fuzzy load models. These models 
can be extremely useful for assisting the distribution services 
providers in the process of electric customer classification 
based on load profile. The results obtained on a database 
demonstrate that the methodology can be used with success in 
the optimal operation and planning of distribution system. 
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