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Abstract: In this paper, a new method based 
on singular value decomposition (SVD) is 
proposed to solve the problem of optimal 
placement of meters for static estimation of 
harmonic sources in a power system. Also, the 
binary genetic algorithm (BGA) is used to 
solve the problem of optimization. IEEE 14-
bus test system is provided to validate the 
measurement placement algorithm. It has been 
observed that the quality of estimation is 
improved and the number of observable 
variable (NOV) is increased. Moreover, the 
BGA-based meter placement strategy yields 
the same solution as obtained from the 
complete enumeration technique but in shorter 
time. 
Keywords:  Harmonic state estimation (HSE), 
Singular value decomposition, Optimal meter 
placement, Binary Genetic algorithm (BGA). 

I. INTRODUCTION 
Harmonic distortion has experienced a 
continuous increase in power systems owing 
to the growing use of nonlinear loads. Many 
studies have shown that harmonics may cause 
serious effects on power systems, 
communication systems, and various 
apparatus [1]. As a result, there is a growing 
concern to limit the amount of harmonics in 
the system and out of this concern, harmonic 
standards have been formulated [2]. To 
effectively evaluate and diminish the 
harmonic distortion in power systems, the 
locations and magnitudes of harmonic sources 
have to be identified. This problem of 
determination of locations and magnitudes of 
the harmonic sources is generally termed as 

“reverse harmonic power flow problem [3] 
and to solve it, appropriate locations of the 
harmonic meters are very important [4]. The 
number of harmonic instruments available is 
always limited due to cost, and the quality of 
the estimates is a function of the number and 
location of the measurement points [4]. 
Therefore, a systematic procedure is needed to 
design the optimal measurement placement. 

A measurement placement algorithm for 
harmonic component identification is 
presented in [5], based on minimum variance 
criteria. The optimal procedure in [5] needs 
load and generation data at each harmonic 
order for all busbars, which is usually not 
available. In [6] a symbolic method for 
observability analysis is presented. This 
method identifies redundant measurements 
thus giving the minimum number of 
measurements that are needed to perform 
HSE. It should be noted that this method 
cannot detect cases when there are two 
dependent measurement equations because the 
actual values are lost. Also In [7] a technique 
based on the minimum condition number (CN) 
of the measurement matrix has been proposed 
for designing the harmonic instruments points. 
As shown in this paper, minimizing the CN of 
the measurement matrix doesn’t necessarily 
lead to the better estimation quality. Thus, an 
alternative criteria for deciding the optimal 
measuring locations is still needed. 

The optimization technique used to solve 
the problem is also an important issue which 
needs to be determined with care. Farach and 
Grady [5] have developed a sequential 
procedure (SP) for this object. In this method, 
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for an N-bus system with P meters, only 
P(2N+1-P)/2 combinations of meter placement 
need to be checked. Moreover, the SP yields 
only a good approximate solution and the best 
solution can only be obtained by complete 
enumeration (CE) of all the combinations of 
meter placements [4]. But CE technique for 
finding optimal meter placement is too 
exhaustive even for a moderate size of power 
system and hence cannot be implemented 
practically [4]. Thus an alternative method for 
deciding the optimal measuring locations, 
which gives the same locations as that 
obtained by the CE technique, is still needed. 
In [4] a genetic algorithm-based method has 
been proposed to solve the problem of optimal 
meter placement. It is worth noting that line 
measurements have not been used in [4], and 
the optimization problem has been solved with 
continuous genetic algorithm (CGA). 

To address the above mentioned needs, in 
present paper, a genetic algorithm-based 
method has been proposed to solve the 
problem of optimal meter placement for HSE. 
For fitness evaluation of the GA strings, a new 
criteria based on SVD has been presented in 
this work. It has been found that using the 
obtained combination of meters from the 
proposed criteria, the quality of the estimation 
is improved and, also GA-based technique 
gives the same results as that obtained by the 
CE technique and is better than the sequential 
technique. 

This paper is organized as follows. In 
section II the mathematical formulation of 
HSE is outlined. In section III principles of the 
SVD is described and in section IV the 
proposed criterion is presented. In section V 
BGA-based algorithm is presented in detail. In 
section VI the results obtained in IEEE 14-bus 
test system are given. Finally, concluding 
remarks are made in section VII. 

 

II. HARMONIC STATE ESTIMATION 
Harmonic state estimation technique uses 

few synchronized harmonic measurement data 
as input to find the complete harmonic 
information for the whole network [8-10]. A 
framework of HSE can be found in [11].  

A general mathematical model which relates 
the measurement vector Z  to the state variable 
vector X  which is to be estimated can be 
formulated as follows: 

)()()()( hhhh EXHZ +=              
(1) 

Where )(hZ is a measurements vector, )(hH  is 
a measurement matrix, )(hX  is a state vector 
to be estimated, )(hE  is the measurement 
noise at hth harmonic order. 

The measurement matrix can be considered 
as the matrix whose elements relate the 
measurement vector to the state variable 
vector. As a result, the proposed algorithm 
considers only one harmonic order of at a 
time, and the variable of hth harmonic order in 
the previous equation will be left. 

Various methods are possible, the most 
widely used is the weighted least square 
(WLS). The WLS estimate is, therefore, the 
vector X  that minimizes the weighted sum of 
the squares of the residuals ( HXZR −= ) 
between the actual measurements and 
estimates levels, i.e. 

)()()( 1 HXZRHXZXJ −−= −T Minimise          
(2) 

Where 1−R  is the inverse of the covariance 
matrix. 

Matrix R  is diagonal and contains the 
covariance’s of the measurements (if they are 
known). This permits applying higher 
weighting to measurements that are known to 
be more accurate. R is replaced by the identity 
matrix if the same instrumentation is used to 
obtain them[14]. 

The solution to (1) in the WLS sense is 
obtained by solving the following equation. 
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ZRHXHRH )()( 11 −− = TT              
(3) 

The measurement equation can be linear by 
choosing the phasor busbar voltages as state 
variables and measuring phasor busbar 
voltages, phasor line and injection currents 
[14]. It is important to emphasize that the 
estimation algorithm for this case is direct (not 
iterative). 

Equation (1) is usually under-determined 
system because of limitation of harmonic 
instruments and different ownership of 
different parts of the system. This results in 

)( 1HRH −T  being singular and a result can not 
be obtained with normal equation approach 
[11]. Furthermore, even in completely or ever-
determined system, the normal equations may 
be very singular or ill-conditioned. Although 
several methods have been suggested to solve 
such ill-conditioned problem, e.g.,[12], [13], 
observability analysis is still needed prior to 
estimation. 

 

III. SINGULAR VALUE DECOMPOSITION 
(SVD) 

A. Principles of the SVD 

 To solve the HSE problem when only 
observable islands exist, SVD needs to be 
applied, since standard techniques for solving 
such equations will fail [11]. In addition using 
SVD removes the need for observability [6]. 

The matrix H (m × n) of (1) can be replaced 
using the SVD by product of three matrices, 
i.e., 

TUWVH =  
                      
(4) 

where W  is a diagonal matrix (n × n) with 
positive or zero elements, which are the 
singular values of H . U  is a column 
orthogonal (m × n) matrix and TV  is the 
transpose of an (n × n) orthogonal matrix. 
SVD constructs special orthonormal bases for 

the null space and range of a matrix. It can be 
shown that U  is eigenvector matrix of THH  
and V  is the eigenvector matrix of HHT . 
Moreover, TWW  is a diagonal matrix of 
eigenvalues. The column of U , corresponding 
to the nonzero singular values are an 
orthonormal set of basis vectors that span over 
the range of H . The column of V , 
corresponding to the zero singular values are 
an orthonormal set of basis vectors that span 
over the null space [7]. 

The solution process for measurement 
systems using SVD can be found in [11]. 
Equation (1) is solved in the WLS sense for 
over-determined measurement system as: 

ZHHHX TT 1)( −=                       
(5) 

Substitute SVD of gain matrix into (5), it 
yields: 

ZUVWZUVWUWVUVWX TTTTTT 11 −− == )(          
(6) 

Also for completely determined and 
underdetermined systems, the equation (6) is 
valid.  

B. Detection unobservable region using SVD 

 In singular measurement systems, while 
most traditional techniques fail, SVD is able to 
provide a particular solution and a null space 
vector for each singularity. In such cases, 
there is no unique solution but an infinite 
number of solutions. The infinite solutions of 
such system are expressed as [6]: 

∑
−

=

+=
)(

1
niP ]x[]x[]x[

Hrankn

i
ik                    

(7) 
where ]x[ P  is the particular solution, ik  is a 
constant and ]x[ ni  is the null space vector. 
The null space vectors can be multiplied by 
any constant and added to the particular 
solution to give another valid solution to the 
set of equations, thereby specifying the 
infinite number of solutions. Variables 
corresponding to zeros in all the null space 
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vectors will not be changed by this process 
and, hence, are completely specified by the 
particular solution. These variables correspond 
to estimates of quantities in the observable 
islands. The variables corresponding to 
nonzero elements in the null space vectors are 
in the unobservable regions as they cannot be 
uniquely determined [6]. 
 

IV. OPTIMAL HARMONIC METER 
PLACEMENT 

 
The number of measuring devices available 

is limited due to cost, and the quality of 
estimates is a function of the number and 
locations of the measurements. A proper 
methodology is needed for selecting optimal 
sites for the measuring devices. In this section 
a new criteria is proposed for optimal 
harmonic meter placement. Since the proposed 
method is based on the SVD and minimum 
condition number of the measurement matrix, 
the minimum condition number criteria is first 
expressed for the sake of clarity followed by 
the proposed criteria. 

A. Minimum Condition Number criteria 

 In solving linear equations, condition number 
relates the results variations ( x ) to the data 
variations (D): 

D
DD

CN
x

xx −
=

−
                   

(8) 

Based on the above definition, CN shows 
sensitivity of mathematical equation to the 
variations of data. For example consider the 
system bAx =  with following matrixes: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

254.0
217.0

,
659.0913.0
563.078.0

bA  

True answer of this equation is: 

x= ⎥
⎦

⎤
⎢
⎣

⎡
−1
1  

 If there are some errors in the equation 

data )(A as:  

⎥
⎦

⎤
⎢
⎣

⎡
−−

=
001.0002.0

001.0001.0
E  

Then after solving the equation bE)x(A =+ , 
the answer will be: 

 ⎥
⎦

⎤
⎢
⎣

⎡
−

−
3085.7
5  

This shows that a small variation of data leads 
to great variations of response. Now the CN of 
matrix )(A  is calculated: 
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≈
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x

x
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It’s observed that the CN of matrix )(A  is too 
large. 

As shown in [3] the CN of a matrix is the 
ratio of the largest (in magnitude) to the 
smallest singular value. A matrix is singular if 
its condition number is infinite, and it would 
be considered ill-conditioned if its condition 
number is too large. 

Based on this criterion, combination that the 
CN of its measurement matrix is a minimum is 
selected as optimal combination for available 
meters. 

 

B. Proposed criteria 

 As stated in section III, if all the null space 
vectors have zero entries in a particular 
position, the corresponding state variable will 
be observable as any linear combination of 
null space vectors will not alter its value, and 
can be estimated without any error. Based on 
this subject, a new algorithm is proposed for 
placing available meters: 

step 1)First, combination is searched for meters with 
entire nonzero singular value elements. If 
various combinations are found with this 
property, combination with the least CN of 
measurement matrix is selected. Otherwise, 
the next step is used. 
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step 2) If combination for measurements with 
entire nonzero singular value elements 
not found, combination that null space 
vectors of its measurement matrix have 
more zero entries is selected. In fact in 
this method more variables are 
estimated without error (the number of 
observable variables (NOV) will be 
increased). 

step 3) If several combinations are found with 
the same NOV, combination with the 
least CN of measurement matrix is 
selected. 

However, to improve the quality of state 
estimation, virtual and pseudo measurements 
can be included in the measurement matrix. 
Virtual measurements provide the kind of 
information that does not need metering (e.g., 
zero harmonic current injections at switching 
substation and at nonharmonic source bus) [6]. 

 

V. BGA-BASED METE PLACEMENT 
 

Genetic algorithm searches for an optimal 
solution using the principles of evolution and 
heredity. By simulating “the survival of the 
fittest” evolution strategy among chromosome 
(i.e., string) structures, the optimal string is 
searched by randomized information 
exchange. The major advantage of using the 
GA is that the solution obtained is globally 
optimal [4]. Also GA is capable of obtaining 
the global solution of a wide variety of 
functions such as differentiable or 
nondifferentiable, linear or nonlinear, 
continuous or discrete, and analytical or 
procedural [16]. For the problem of optimal 
meter placement for static harmonic 
estimation, the global solution obtained using 
GA requires a lesser number of iterations 
compared to the CE technique and at the same 
time eliminates the disadvantage of the 
sequential meter placement technique, which 
gives suboptimal solution [4]. 

The placement of measurement points is 
normally assumed to be symmetrical (e.g., 
either three or no phases measured at a 
location). All possible measurement locations 
for an N-bus system in this paper include all 
injection currents (N locations), all node 
voltages (N locations), and all line currents (L 
locations, both sending and receiving ends). 
Therefore all possible measuring locations are 
equal 2N+L. The algorithm of the proposed 
BGA technique is described in detail as 
follows. 
The BGA begins, by defining the optimization 
variables and population size in each 
generation. The size of each string is 
considered to be a row vector with ‘2N+L’ 
elements, which have been combined zero and 
one values. In each string elements one and 
zero imply existing and not existing 
measurement device in related location 
respectively. Each string is actually denoting 
some combination of the meter locations, and 
the number of each chromosome’s ones is 
equal to the number of available harmonic 
meters (m). Hence, each element of each 
string should be initialized to represent a 
particular location, where a meter to be 
placed. In the present work, the population 
size (i.e., the number of strings) has been 
taken to be 10. 
The proposed criteria is to find combination 
for meters so that the number of observable 
variables (NOV) is maximized and the CN of 
measurement matrix is minimized (approach 
to one). Therefore the cost function is selected 
as below: 

NOV
kCNFunctionCost 1

+=                  
(9) 

Where coefficient k  is selected so that the 
influence of CN and NOV be reasonable in the 
cost function. 
To produce the new generation, the amount 
of rateX , the percent of chromosomes that are 
survived and directly transferred to the next 
generation, has been selected equal to %50. 
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For the selection of parents’ chromosomes, the 
tournament selection method is used. The best 
chromosome (the first) becomes a parent and 
the other parent is selected from the remaining 
of the %50 of the first chromosomes. This 
operation is repeated until all of the needed 
offspring are produced. 
In this step, the next generation of GA is 
created as described below. The two strings, 
whose fitness values are the lowest and the 
second lowest respectively, are directly copied 
to the next generation. Then, by performing 
crossover another strings for the next 
generation are created as following. Two 
numbers are randomly created between the 
first and last bits of the parents’ chromosomes 
that are termed as “crossover points”. The bits 
between these two numbers are exchanged 
between offspring cruciformly and the bits 
that are outside of crossover points are directly 
transferred to the related offspring. The 
number of each chromosome’s ones is equal to 
the number of available harmonic meters. 
Therefore the number of offspring’ ones is 
checked and if it is less than ‘m’, 
chromosome’s zeros is randomly selected and 
converted to one; if it is more than ‘m’, 
chromosome’s ones is randomly selected and 
converted to zero. 
If the best string does not change for two 
successive generations, then the mutation 
operator is applied to it. Over the first 
chromosome, which has the least amount of 
costs, mutation won’t be done and is directly 
transferred to the next generation. After 
selecting the location of bits which mutation is 
done; if these bits are zero converted to one, 
and if they are one converted to zero. 
However, it’s noted that in this work the 
amount of µ , the percent of population bits 
that mutation is done over them, is selected 
equal to %20. 
After mating, mutation, and ranking, the 
population is used as the starting population 
for the next generation. The number of 

generations that evolve depends on whether an 
acceptable solution is reached or a set number 
of iterations is exceeded. After a while all the 
chromosomes and associated costs would 
become the same if it were not for mutations, 
at this point the algorithm should be stopped 
[16]. 
Fig. 1 shows the flowchart of optimal 
measurement placement algorithm. 

Determine GA parameters 
and produce first population  

No 

Yes 

Input system data and No 
of Harmonic Meters  

Selection  

Calculate cost for each 
chromosome and ranking 

Start 

Convergence? 

Mutation 

Mating 

Calculate cost for each 
chromosome 

End 

 

 
Fig.1:    Flowchart of optimal measurement placement 

Algorithm 
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VI. TEST SYSTEM AND 
SIMULATION RESULTS 

 
In this section IEEE 14-bus test system is used 
to test the proposed measurement placement 
algorithm. A schematic of this test system is 
shown in Fig. 2 and its total data are provided 
from [15]. There are 14 busbars, 35 branches, 
and 41 lines. The equivalent П model is used 
to represent each transmission line. The 
system consists of 10 loads connected at 
busbars 3–5, and 8–14 that contains two 
harmonic sources. One is a twelve-pulse 
HVDC terminal at bus 3 and the other is a 
SVC at bus 8. Because the system has 
balanced bus loads and the transmission lines 
are transposed, a balanced harmonic analysis 
is generally sufficient for determining 
harmonic distortion levels in this case[15]. 
There are 69 possible measurement locations 
(m), given that there are 14 injections current 
measurements, 14 busbars voltage 
measurements and 41 lines current 
measurements (both sending and receiving 
ends).  
In order to obtain a unique solution for 
harmonic state estimation, the minimum 
required numbers of harmonic instruments has 
to be equal to the number of state variables. 
As a result, the optimal number of harmonic 
instruments is equal to the number of state 
variables. Actually the state variable of the 
test system is 14, which using HSE algorithm 
can be reduced to the number of suspicious 
nodes (i.e. 10). The proposed algorithm for 
measurement placement is written using 
MATLAB. 

 

A. Investigating of the proposed criteria 

 In this part, the performance of the proposed 
criteria in (9) is compared with the minimum 
condition number criteria. Also, the sequential 
procedure has been used for harmonic meter 
placement. 
Furthermore the measurement placements are 
different among harmonic orders, but all of the 
measurement placements from all harmonic 
orders are sufficient to uniquely calculate all 
state variables for all harmonic orders of the 
system correctly. The measurement 
placements of this system, using minimum 
condition number of the measurement matrix 
of the 5th harmonic, are node voltages at 
busbars 3 and 8-14 and line currents in lines 7 
and 40. 
On the other hand, if proposed criteria in (9) at 
the 5th harmonic is used, the measurement 
placement will be the node voltages at busbars 
1, 3, 6, 7, 9-11, 13 and 14 and injection 
current at busbar 8, resulting in the fully 
observable system. 
Table 1 shows the results for two different 
criterions that verify the effectiveness of the 
proposed criteria. Table 2 illustrates the results 
where the virtual measurements (harmonic 
current injections at nonharmonic source 
busbars) have been included. The numbers in 
parenthesis at table 2 are the locations related 
to the virtual measurements.  
 

 
Fig.2:  IEEE 14-bus test system 
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Table 1: Measurement Placement: Without Virtual  
Measurement 

Proposed 
Criteria

CN 
Criteria

Measuring 
Locations 

8 - Injection 
Currents 

1, 3, 6, 7, 
9-11, 13, 14 3, 8-14 Bus 

Voltages 

- 7, 40 Line 
Currents 

2.8 1.6 CN 
10 8 NOV 

0.05 0.08 Error(%) 
 

 
Table 2: Measurement Placement: With Virtual   Measurement 

Proposed 
Criteria

CN 
Criteria 

Measuring 
Locations 

8,(1,2,6,7) (1,2,6,7) Injection Currents 
1, 3, 6, 7, 

9-11, 13, 14 3,8-14 Bus Voltages 

- 7, 40 Line Currents 

39.8 23.1 CN 
14 8 NOV 

0.00 0.06 Error(%) 
 
 
According to tables 1 and 2, the following 
results are obtained: 

• Although the CN of measurement 
matrix that obtained based on the proposed 
criteria is more compared to the CN of 
measurement matrix of the minimum 
condition number criteria, but as the NOV has 
been increased and the square of errors 
between true and estimated fifth harmonic 
voltages has been decreased, thus these 
locations are more desirable for meters. 

• By using virtual measurements, the error 
of estimation is decreased. Thus to improve 
the quality of estimation, these can be 

included in the measurement matrix. 
• By adding the virtual measurements to 

the obtained combination for meters based on 
minimum condition number criteria, the NOV 
has not been increased and only the error of 
state estimation has been decreased a little. 
Whereas by adding them to the obtained 
combination for meters based on proposed 
criteria, the system has been completely 
observable and the error of state estimation 
approaches to zero. 
 

B. Investigating of the proposed BGA 
 In this section, to test the effectiveness of the 
proposed BGA for optimal harmonic meter 
placement; simulation studies have been 
carried out in IEEE 14-bus test system. The 
results obtained by the proposed BGA have 
been compared with those obtained by both 
CE and sequential techniques. In tables 3 and 
4 the results have been shown based on 
minimum CN of the measurement matrix and 
proposed criteria, respectively. It’s noted that 
in these tables the virtual measurements have 
not been included. Based on tables 3 and 4, it 
is observed that BGA is able to find out the 
optimal combination of meters with 
significantly less computational time 
compared to the CE technique, whereas, the 
sequential procedure fails to do so. 

 
 

 
Table 3: Measurement Placement: Using Minimum CN Criteria 

Measuring 
Locations 

CE 
Metho

d  

SP 
Metho

d 

BGA 
Metho

d 
Injection 
Currents  -  - - 

Bus 
Voltages  3,8-14 3,8-14 3,8-14 

Line 
Currents  6,31 7,40 6,31 

NOV  9 8 9 
Error(%) 0.05 0.08 0.05 

Time 235 7 19 
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(min) 
 
 

 
 

Table 4: Measurement Placement: Using the Proposed Criteria 
Measuring 
Locations 

CE 
Method  

SP 
Method 

BGA 
Method 

Injection Currents 6,8  8 6,8 

Bus Voltages 1,3,7,10,1
1 ,13,14 

1,3,9-11 
6,7,13,14 

1,3,7,10,1
1 ,13,14 

Line Currents 31 - 31 
NOV 10 10 10 

Error(%) 0.035 0.05 0.035 
Time (min) 251 12 25 

 

VII. CONCLUSIONS 
In this paper a new method based on SVD 

and BGA has been proposed to place meters 
optimally for estimating and identifying the 
unknown harmonic sources. The performance 
of the proposed criteria has been compared 
with the minimum condition number criteria, 
and performance of the proposed optimization 
technique (BGA) has been compared with 
those of CE and sequential techniques in IEEE 
14-bus test system. Based on this study the 
major conclusions of this work are: 

a) Minimizing the CN of the measurement 
matrix doesn’t necessarily lead to the better 
estimation quality. 

b) Although the CN of the obtained meters 
combination based on proposed criteria is not 
less as compared to the obtained meters 
combination based on minimum condition 
number criteria; but as the measuring residual 
errors has been minimized and also the NOV 
increased, these locations are more desirable. 

c) The proposed BGA-based method finds 
the optimal meter locations while the 
sequential technique can guarantee only near 
optimal solutions. Moreover, BGA is capable 
of finding out the optimum combination in 
significantly less computational time as 

compared to the CE technique. 
d) To improve the quality of harmonic state 

estimation, virtual measurements can be 
included in the measurement matrix. 
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