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Long Term Multi-Scale Analysis of the Daily Peak
Load Based on the Empirical Mode Decomposition

M.Ould Mohamed Mahmoud, F.Mhamdi, M.Jaı̈dane-Saı̈dane

Abstract—In this paper, an original technique to explore the
long term load dynamics using a multi-scale analysis of the
daily peak load based on the Empirical Mode Decomposition
(EMD) is presented. The signal is decomposed into intrinsic
oscillatory components called Intrinsic Mode Functions (IMFs).
These modes are derived from the signal itself and not on a
specific basis function. In this work, the EMD is used to extract
and separate the suitable load component for long term forecast.
Physical interpretations and statistical description of the modes
are discussed. A comparison is made between load components
extracted by the EMD approach and that of a classical multiple
linear regression model. The load component predictability was
investigated using the mutual information function. Real load
data of the Tunisian power systems are used in this study.

Index Terms—Load modeling, empirical mode decomposition,
model regression, load analysis, predictability.

I. INTRODUCTION

The load modeling and forecasting is an important aspect
in the development of any model for electricity planning and
for short term operation[1], [2], [5]. The load characteristics
change as the factors affecting load (the day of the week, hol-
iday periods, seasonal variations, the weather, socioeconomic
trends.) change. Thus for mid and long term load forecasting
it is of great interest to extract and isolate the seasonal effects
on daily, weekly, and yearly time scales and trend from the
underlying load series and treat them separately. For this
we propose in this study to introduce an empirical analysis
algorithm for extraction of the meaningful load component
from the global consumption particularly to extract the trend
load component.

The main motivation of the empirical modal decomposition
(EMD) is to define decompositions of the load signals which
do not use any predetermined bases (as the wavelet techniques,
Fourier transform) which depend on the choice of a particular
basis function. Furthermore, the EMD is an adaptive method
which is entirely empirical and preserves the characteristics in
the separate IMFS. It is particularly powerful for time series
data that are nonstationary and non linear, explaining why it
has been successfully applied in many engineering fields, e.g.
[6], [8], [7].

The load data used in this study are represented by the daily
peak load series (see Fig.1) recoded in 2000-2006.

This work was supported by the 2005/2007 VRR (Projet de Valorisation
des Rsultats de Recherche du Ministère de la Recherche Scientifique de la
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Fig. 1. The daily peak load evolution 2000-2006 from Tunisian power
systems.

As shown in Fig. 1, the load data reflects as in others country
[3] :

• seasonal patterns
• high, variability and fluctuations
• long-term trend
The purpose of this paper is to present the preliminary

results relative to the application of the EMD technique to
the Tunisian daily peak load data recorded in the period
2000 to 2006 (see Fig.1) which is inherently nonlinear and
nonstationary time series. We propose after the IMFs con-
struction a comparison between load components extracted by
the EMD approach and those obtained by applying a classical
multiple linear regression model. To compare the predictability
of different load components, the mutual information function
was used here.

II. DAILY PEAK LOAD DECOMPOSITION DERIVED FROM
EMD

A. Empirical Mode Decomposition Technique
Empirical Mode Decomposition (EMD) has recently been
introduced by Huang et al. [4], as an important alternative to
traditional methods for analyzing time series such as wavelet
methods, Fourier methods.
The concept of the EMD is to decompose data pt into so-called
intrinsic mode functions (IMF) [4] :

pt =

K∑

k=1

IMFk(t) + r(t) (1)
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- K is the number of IMF s
- IMF is defined as a function that satisfies the following

two properties : 1. The mean value of the upper envelope
defined by the local maxima and the lower envelope defined
by the local minima must be zero; 2. The number of zero-
crossings and the number of extrema are equal or differ at
most by one.

- r(t) denotes the final residue which can be considered as
the trend component [15].

The algorithm for the extraction of IMFs from real load data
is called sifting and it consists of the following steps [4], [6]:

i Initialize the residue r0(t) = pt (pt represent the daily
peak load), set g0(t) = rk−1(t) and i = 1; and index of
IMF k = 1;

ii Construct the lower (minima of load data) Imini−1 and
the upper (maxima of load data ) Imaxi−1 envelopes of
the signal by the cubic spline method.

iii Calculate the mean values mi−1 by averaging the upper
envelope and the lower envelope :
mi−1 = [Imaxi−1 + Imini−1]/2

iv Subtract the mean from the original signal
gi = gi−1−mi−1 and i = i+1. and repeat steps (ii)-(iv)
until gi being an IMF. If so, the kth IMF is given by
IMFk = gi

v update residue rk(t) = rk−1(n) − IMFk. This residual
component is treated as a new data and subjected to
the same process described above to calculate the next
IMFk+1.

vi Repeat the steps above until the final residual component
becomes a monotonic function. Fig.2 illustrates the sifting
process
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Fig. 2. Sifting process to compute EMD components for the load data p(t)

At the end of EMD the log load series pt is represented
as:

pt =
K∑

k=1

IMFk(t) + r(t) (2)

The advantage of this method is the fact that the IMFs or
(mode decomposition) which are generated by this method
are strongly related to the load data p(t).

B. Relevant parameters of the EMD algorithm
The EMD decomposition is sensitive to the choice of the

method of interpolation and the choice of the stopping criterion
• Interoplation procedure to find lower and upper envelopes

To find local minimum and maximum points, a sliding
window is moved through the time series. The minimum
and maximum values within the window are picked out
as the local minimum and maximum points. The interpo-
lation to produce two envelopes from local maxima and
local minima points can be done in different ways [4].
We here use the cubic splines interpolation method which
has the advantage to be simple and sufficient [4].

• The stopping criterion for the sifting algorithm
In order to accomplish the second IMF condition, several
criterions has been defined [10], [4].
In this paper we have used the criterion proposed in [10],
which consists in comparing the amplitude of the mean
of the upper and lower envelopes with the amplitude of
the corresponding IMF. This criterion is based on two
thresholds (θ1 and θ2) and a tolerance parameter (α).

σ(j) = | mi−1(j)

Imaxi−1(j) − Imini−1(j)
| (3)

- σ(j) ≤ α, (∀j)
- θ1 ≤ jσ(j) ≤ θ2

In this work we have used the default values proposed in
[10] α = 0.05, θ1 = 0.05 and θ2 = 0.5.

C. Daily peak load IMFs components
We have applied the empirical mode decomposition method
described by the above algorithm to daily peak load from 2000
to 2006. Fig.3 shows the complete decomposition.

For physical interpretation of the obtained components, we
calculate the mean period defined as the number of data
samples divided by the total number of maxima [14] :

Mean period =
data length

number of local maximum
(4)

the percentage of variance of each component defined as
the ratio of variance between a specified IMF and the original
signal (σ2

IMFk(t)/σ2
p(t)).

Table I shows the parameters values of the mean period and
the variance provides the idea about the amount of information
contained by each IMF components.

Based on the preliminary results of EMD decomposition of
the daily peak load it possible to notice the following :

• IMF1 to IMF3 are the high frequency components and
represents the very short term fluctuations demand related
probably to difference between the working day and
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Fig. 3. EMD applied to Tunisian peak load series (2000-2006) to find the
IMF (1-8) components and the final residue (signal trend).

TABLE I
AVERAGE PERIOD, IN DAYS, AND % OF VARIANCE OF THE LOAD

COMPONENT (IMFS) OBTAINED WITH EMD ALGORITHM

imf Mean period (days) % of variance

imf1 3.49 0.35
imf2 7.00 0.38

imf3 14.20 0.13
imf4 24.60 0.13

imf5 50.13 0.10
imf6 116.22 0.18

imf7 232.45 0.25
imf8 426.16 0.23

weekend load data. The corresponding period is on the
order of 3 days and one week and two weeks.

• IMF4 to IMF5 their period is between 1-2 months for
these IMFs the percentage of variance is very small
indicating that such IMFs are not significant.

• IMF6 has approximately 3 months periodicity oscilla-
tions, it allow to capture mid-term effects described by
seasonal variations. As shown in Fig.2 The IMF7 has very
regular oscillations on yearly time scales. So the peaks
load in these fluctuations corresponds with the summer
dates marked by a high temperature, and the troughs with
winter where the temperature decrease.

• Trend : It is represented as the residue component in
EMD, it could represent the major trend of load demand
in the long term which may be related to economic
growth in Tunisia.

III. EMD AND CLASSICAL MULTIPLE LINEAR REGRESSION
MODELING

In this section we analyze the relationships between the
IMFs peak load components of the Empirical Mode Decom-

position and that extracted by the use of the Least Square
modeling estimation. There are various models [13], [16], [17],
[18], [19] for modeling and forecasting the load consumption
applied in many countries.
In our case, Tunisian daily peak load demand (pt) from
2000 to 2006 was used. This series presents the following
characteristics :

• linear trend that related to the long run economic growth.
• weekly seasonal component
• annual seasonal component related to the industrial ac-

tivities and temperature fluctuations.

To consider the seasonal variations independent seasonal
dummy variables that capture the day of the week (wit),
holiday (ht) and month (mjt) effects are included in the
model. The classical multiple linear model can be represented
as folow :

ln(pt) =

7∑

i=2

αiwit + γht +

12∑

j=2

βjmjt + c + at + εt(5)

=

2∑

i=1

SCi(t) + T (t) + εt (6)

where

• SC1(t) =
∑7

i=2 αiwit : represents the weekly seasonal
load component.

• SC2(t) =
∑12

j=2 βjmjt : annual seasonal component.
• T = c + at : trend load component.
• a, c, αi, i = 2..7,βj, j = 2..12 are the regression

coefficients to be estimated.

The model was identified using sample data from 2000 to
2006. Linear regression has been performed using Eviews.
Based on the Auto Correlation Function (ACF) and the Partial
Auto-Correlation Function (PACF) of the residue, a first-order
autoregressive process in the error term (eq. 4).

(1 − φ1L)εt = ξt (7)

where L is the backward shift operator which is a special
notation used to simplify the representation of lag values.
The parameter estimation is given at the table below : The

TABLE II
SUMMARY OF PARAMETERS ESTIMATION

par. est. (10−3) p-value par. est. (10−3) p-value

ĉ 6979 0 β̂5 −15.68 0.02
â 0.13 0 β̂6 15.25 0

α̂2 9.66 0 β̂7 49.48 0

α̂3 9.64 0 β̂8 46.22 0
α̂4 10.30 0 β̂9 19.26 0.01
α̂5 4.07 0.03 β̂10 0.60 0.04
α̂6 −48.53 0 β̂11 −25.41 0.02
α̂7 −61.65 0 β̂12 −12.40 0.04
β̂2 −23.40 0 γ̂ −71.56 0
β̂3 −37.92 0 φ̂1 88.30 0
β̂4 −35.10 0

R2 = 95.5%
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determination coefficient (eq. 6) is calculated to determine the
robustness of the model.

R2 =

∑2557
t=1 ( ˆln(pt) − ¯̂

ln(pt))
2

∑2557
t=1 (ln(pt) − ¯ln(pt))2

(8)

where t indicates the day in the sample from 2000 to 2006.
The results in table II illustrate the parameters estimation of the
model. As expected, all the parameters are significant which
improve that daily peak load time series contains a daily and
annual seasonal components. It is of great interest to extract
this seasonality and remove it from the underlying time series.
In the section below we will investigate if the EMD, which can
fully capture the local fluctuation of data, can be considered as
an efficient method for seasonal extraction in complex signal.
To evaluate its accuracy we have calculated the correlation
coefficients between seasonal components and IMFs.

ρT,P = cov(T,P )√
cov(T,T )cov(P,P )

(9)

where cov is the covariance matrix defined as

cov(X, Y ) = E[(X − E(X))(Y − E(Y ))] (10)

We consider

TABLE III
CORRELATION COEFFICIENTS BETWEEN SEASONAL COMPONENTS AND IMFS

IMF SW LS SALS

IMF1 0.42 0.00

IMF2 0.60 0.00
IMF3 0.01 -0.01

IMF4 0.00 -0.03
IMF5 0.01 0.02

IMF6 0.00 0.55
IMF7 0.00 0.50
IMF8 0.00 0.47

• ŜW
LS

=
∑7

i=2 α̂iwit : Least Square estimated weekly
seasonal load component.

• ŜA
LS

=
∑12

j=2 β̂jmjt : Least Square estimated annual
seasonal load component.

Table III presents the computation of the correlations between
the estimated weekly, annual seasonal variation and each
IMF. As illustrated in the table III, we notice that there are
significant correlations between the Least Square estimated
daily and annual seasonal components and some IMFs. In
particular, we notice the significant correlation between the
estimated weekly seasonal load component and the IMF1, 2.
However, it is possible to aggregate some IMFs to find better
results (see table below)

TABLE IV
CORRELATION BETWEEN SEASONAL COMPONENTS AND AGGREGATED IMFS

aggregated IMFs SW LS SALS

IMF1+2 0.72

IMF6+7+8 0.85

05/01/2004 30/03/2004
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Fig. 4. Reconstructed peak load components by aggregation of IMFs

As shown in Fig.3, we can see that
• weekly seasonal component can be reconstructed by

aggregation of the first and second IMFs (Fig.4.a). This
is confirmed by the raised value of correlation coefficient
equal to 0.72.

• the sum of IMF 6, 7 and 8, is very close with annual sea-
sonal component estimated by the Least Square estimated
linear regression model (Fig.4.b).

• the trend components have the same slope in the two case
(Fig.4.c).

The results shown that the EMD gives an interesting load
decomposition into IMF components with physical meaning
related to time series characterizes. These are very interesting
results since, unlike multiple linear regression model, this
method is a non-model based approach to seasonal adjustment
of time series. This allows method to capture the changes in
the structure of the seasonal variation that can occur.

In the following section we propose to analyze the load
component predictability. This predictability problem of daily
peak load was the object of a previous study [11] based on
measure of Lyapunov exponent. We propose now the use
of mutual information function[9] combined with EMD load
decomposition.
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IV. MULTI SCALE PREDICTABILTY OF THE DAILY PEAK
LOAD SERIES

Due to the different physical nature of information con-
taining in each IMF, it is important to know how these
components contribute to the original signal, and to measure
their predictability degree. This can be done in measuring
the lack of information by the mutual information function
(Iyy(τ)) which is a measure of the information that one can
obtain from the past.

The mutual information function is defined as

Iyy(τ) =

N∑

i

pr(y(i), y(i + τ))log
pr(y(i), y(i + τ))

pr(y(i)).pr(y(i + τ))
(11)

wher N the sample size, pr is a measure of probability,
pr(x, y) is the joint probability.

Iyy(τ) represents the amount of information that one can
know about signal values that are separated by the time lag τ .
The mutual information function shows a minimum when the
delayed signal is strongly statistically independent from the
original signal. On the computation of Iyy(τ) see [9], [12].

The computed mutual information function for load compo-
nents IMFs are shown in Fig.5. We notice that mutual function
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Fig. 5. Measure of load component predictability : The mutual information
function computed for the obtained IMFs of the daily peak load 2000-2006.

decreases quickly for the higher frequency modes (IMF1
to IMF4). However, we notice that the mutual information
decreases slowly in the last constituents (IMFS 5, 6, 7, 8 and
9). This decreasing is connected to long-term memory effect.
Thus the IMF6 to IMF9 bring enough information for load
dynamic characterization. For this reason the IMFs that seems
to be more suitable for a long-term forecast. are the IMFS 5,
6, 7, 8 and 9.

V. CONCLUSION

The EMD method provide a new decomposition for long
term load demand analysis. Especially, the IMFs components
produced by the EMD method are usually physical and allow
to capture long-run seasonality, short-run effects and trend
effect. A comparative study between the EMD decomposition

and a classical parametric method based on regression analysis
was performed.

The mutual information function,which on can characterize
the predictability, was used here to measure the load com-
ponent predictability. In particular we concluded that there
are some load components that are more adapted for average
and long term load forecast and others less predictable for
these horizons. These preliminary results show that the EMD
seems to be a powerful approach, suitable for nonstationary
load analysis.
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