
 

Abstract- In this paper, a geometrical based approach is used 
to define the undetectability index (UI) that gives the distance 
of a measurement from the range of the jacobian matrix. The 
higher the value of this index the closer this measurement will 
be to the range of that matrix; the error in measurements with 
high UI is not reflected in their residues. A critical 
measurement has infinite UI, belongs to the range of the 
Jacobian matrix, and its error is totally masked. Using the UI, 
it is shown measurements not classified as leverage points, 
and having large masked gross errors in the state estimation 
process.  As example to illustrate the way that UI index 
works, a two bus power system will be used; to test the index 
efficiency in identifying the measurements that have the gross 
errors masked by the state estimation process the IEEE-14 bus 
system will be used. 

Index Terms—State Estimation, Orthogonal Projections, 
Gross Errors Analysis, Recovering Errors, Undetectability 
Index. 

I.   INTRODUCTION 
HE ability to detect and identify gross errors is one of the 
most important attributes of the state estimation process 
in power systems. This characteristic to deal with gross 

errors makes the results of the state estimation process 
preferable if compared to the SCADA raw data [1]. 
In order to mitigate the influence of gross errors on the state 
estimation results, some robust estimators have been 
introduced in power systems [2]. One of the first robust state 
estimators applied to power system was the Weighted Least 
Squares (WLS) Estimator endowed with the largest 
normalized residual test [3] for gross error detection and 
identification. However, this combination is not robust in the 
presence of single and multiple non-interacting gross errors 
[2]. Also, this estimator is not able to reliably identify 
multiple interacting gross errors, especially when the errors 
are conforming and/or occur in Leverage Points [4], which are 
highly influential measurements that “attract” the state 
estimation solution towards them [5], [6]. 
Other alternative estimators, which are more robust than the 
WLS Estimator, have been proposed. The Weighted Least 
Absolute Value Estimator (WLAV), for example, can deal 
better with multiple gross errors but it is prone to fail in the 
presence of a single gross error at a Leverage Point [2], [4]. 
The Least Median of Squares Estimator (LMS) [7, 8] is 
another estimator alternative. This estimator is a member of 
the family of estimators known collectively as high-
breakdown point estimators. It is inherently resistant to 
outliers in Leverage Points and can handle multiple 

interacting gross errors, even when they are conforming. 
However it requires excessive computing time for on-line 
applications [1]. 
Despite the existence of more robust estimators, the WLS 
Estimator is the most used estimator in power systems. This is 
due to its simplicity and velocity. 
The idea of exploring geometry to detect gross errors in 
power systems is not new. Based on a geometric 
interpretation of the residue estimation for single gross error, 
a method for detection/identification of multiple gross errors 
was developed in [10]. The authors claim that their method is 
able to determine whether the residue vector lies in a subspace 
defined by the suspect measurements (suspect in terms of 
having gross errors) and whether any portion of that subspace 
is orthogonal to the residual vector.  They also claim to find 
the suspect measurements of the measurement set; however, 
the algorithm to find them is complicated and difficult to be 
implemented. 
In this paper, using the WLS Estimator, more insights related 
to detectability of gross errors in power system state 
estimation, using geometrical approaches are provided. This 
is achieved decomposing the measurement error into two 
parts: the undetectable part and the detectable one. The ratio 
between the norms of those quantities, the undetectability 
index (UI), gives the distance of a measurement from the 
range of the jacobian matrix. In another words, the UI is a 
measure of how difficult is to detect errors in those 
measurements. That index presents a more comprehensive 
picture of the problem of gross error detection in power 
system state estimation than critical measurements and 
leverage points.  

II.   BACKGROUNDS 
Consider a power system with n buses and m measurements. 
The power system is modeled, for state estimation purposes, 
as a set of nonlinear algebraic equations as: 

( ) exhz += , (1) 
where z ∈ Rm is the measurement vector, x ∈ RN is the state 
vector, h: RN → Rm (m > N) is a continuously nonlinear 
differentiable function, “e” is the (mx1) measurement error 
vector with zero mean and Gaussian probability distribution, 
and N=2n-1 is the number of unknown state variables to be 
estimated. Since the number m of measurements is higher 
than the number N, a common solution to estimate the states 
variables is the well known WLS method that searches for the 
state x that minimizes the functional 

( ) ( ( )) ( ( ))TJ x z h x W z h x= − − , where W is a symmetric 
and positive definite real matrix. In power system state 
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estimation, the weight matrix W is usually chosen as the 
inverse of the measurement covariance matrix. The functional 
J is a norm in the measurement vector space Rm that is 
induced by the inner product <u,v>=uTWv, that is: 

=−−=−= fp )(),()()( 2 xhzxhzxhzxJ W  

= [ ] [ ])()( xhzWxhz T −− . 
(2) 

Let x̂  be the estimated state, that is, the solution of the 
aforementioned minimization problem, and define the 
estimated measurement vector as ˆˆ ( )z h x= . The residue 
vector is defined as the difference between z and ẑ , that is, r 
= z- ẑ .  
The linearization of equation (1), at a certain point x*, gives: 

z H x e∆ = ∆ + , (3) 

where x
hH ∂
∂=  is the Jacobian of h calculated at x*, 

( *) *z z h x z z∆ = − = −  is the measurement vector 
mismatch, and *x x x∆ = − .  
If system (2) is observable, that is, rank(H)=N, then the 
vector space of the measurements Rm can be decomposed into 
a direct sum of two vector subspaces, that is, 

( )( ) ( )mR H H ⊥= ℜ ⊕ ℜ  in which the range of H, ℜ(H), is a 

N-dimensional vector subspace into Rm and ℜ(H)┴ is its 
orthogonal complement, that is, if ( )u H∈ℜ  and 

( )v H ⊥∈ℜ , then <u,v>=uTWv=0.  
In the linear state estimation formulation, equation (3), the 
solution can be interpreted as a projection of the measurement 
vector mismatch ∆z onto the ℜ(H). Let P be the linear 
operator which projects vector ∆z onto ℜ(H), that is, 

ẑ P z∆ = ∆  and ˆr z z= ∆ −∆ be the residue vector for the 
linearized model. The projection operator P that minimizes 
the norm J is the one that projects ∆z orthogonally onto ℜ(H) 
in the sense of the inner product <u,v> =uTWv, that is, the 
vector ˆẑ H x∆ = ∆  is orthogonal to the residue vector. More 
precisely: 

( ) ( )ˆ ˆˆ, 0Tz r H x W z H x∆ = ∆ ∆ − ∆ = . (4) 

Solving this equation for x̂∆ , one obtains: 

( ) 1
ˆ T Tx H WH H W z

−
∆ = ∆ . 

As ˆẑ H x∆ = ∆ , the projection matrix P will be the idempotent 
matrix: 

( ) 1T TP H H WH H W
−

= . (5) 

Obs.: if W is a diagonal matrix given by W=cI, where c>0 is 
a real number, and I is the identity matrix, then P=PT and P is 
said to be an orthogonal projection.  
In power system literature, matrix P is usually called the Hat 
matrix and is also known as the K matrix [11]. The residue 
vector is found to be: 

ˆ ( )r z z z P z I P z= ∆ − ∆ = ∆ − ∆ = − ∆ , (6) 
where the idempotent matrix (I-P) is an operator that projects 
∆z onto ℜ(H)┴. Matrix (I-P) is given by: 

( ) ( ) 1T TI P I H H WH H W
−

− = − , (7) 

and is usually called the residual sensitivity matrix; it is also 
known as the S matrix [11] in power system literature.              
Figure 1 illustrates operator P acting on the vector ∆z. 
 

 
 
 
 
 

III. UNDETECTABLE ERRORS 
 

In this section, the decomposition of the measurement vector 
space into a direct sum of ℜ(H) and ℜ(H)┴ will be used to 
decompose the measurement error vector e into two parts: the 
detectable and the undetectable components. For that purpose, 
let xtrue be the vector of the true unknown states and define 

( )true truez h x= . Consider the linearized model (3), 
where *true truex x x∆ = − , and true truez H x∆ = ∆ . Assuming the 
available jacobian matrix H is close to the one obtained with 
measurements without gross errors, then ztrue is close to ℜ(H) 
and *true truez z z∆ ≈ − . The measurement error vector is given 
by true truee z z z z= − ≈ ∆ −∆ , and can be written as: 

( )e Pe I P e= + − . Denominating Ue and De  as: 
PeeU =: , (8) 

ePIeD )(: −= , (9) 

respectively, the undetectable and detectable components of 
“e”, one has DU eee += . It is easy to see that eU ∈ ℜ(H) 
while eD ∈ ℜ(H) ┴ and as a consequence:  

2 2 2
D UW W W

e e e= + . (10) 

The next proposition shows that the undetectable part of the 
error does not contribute to the residue vector. 
 
Proposition 1: The residue vector, r, of the WLS state 
estimation is not affected at all by the undetectable component 
eU of the measurement error vector. 
Proof: The measurement vector mismatch can always be 
written as: 

true true U Dz z e z e e∆ ≈ ∆ + ≈ ∆ + + .  
As a consequence: 
 

DUtrue

true

ePIePIzPI
ePIzPIzPIr

)()()(
)()()(

−+−+∆−≈
≈−+∆−≈∆−=

. (11) 

Figure 1- Geometric interpretation of operator P acting 
on vector ∆z 
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Since ( )truez H∆ ∈ℜ  and )(HeU ℜ∈ , one 

has ( ) 0trueI P z− ∆ =  and 0)( =− UePI . Consequently, 

equation (11) becomes: ( ) ( ) Dr I P z I P e= − ∆ ≈ − De≈          

■ 
The previous proposition gives an indication that the 
difficulty, or even the impossibility, of detecting gross errors 
in some measurements is due to the fact that these errors have 
a significant undetectable component as compared to the 
detectable one. As a consequence, their residuals are small 
even when those measurements are contaminated with gross 
errors. The largest normalized residual test is often employed 
to check the existence of gross errors in the measurement set. 
If the random error vector e has a normal distribution with 
expected value equal to zero, then it is well known that the 
normalized residue ri

N of the i-th measurement is a random 
variable with normal distribution, expected value equal to 
zero, and variance equal to one. Given a snapshot of 
measurements, one can calculate the normalized residue of 
each measurement and check the existence of gross errors. 
More precisely, if the largest normalized residue ri

N is larger 
than a threshold value we can affirm, with a certain degree of 
confidence, the existence of gross error in the i-th 
measurement. However, the operator (I-P), is not invertible 
and, as a consequence, the backward implication is not true, 
that is, small normalized residues do not imply small errors in 
the measurements due to the presence of undetectable 
components of the errors. More precisely, the residue does not 
change if one adds up, in the measurement vector, an extra 
error that lies in the vector space ℜ(H). In other words, when 
the largest normalized residue ri

N is not larger than a threshold 
value, one can affirm, with a certain degree of confidence, 
only that the detectable components of the errors in all the 
available measurements are small. As a consequence, the 
largest normalized residue test can often fail in the detection 
of gross errors for the measurements that have a large 
undetectable component. However, if additional information 
is provided, one can say more about the relationship between 
residue and the components of the errors in the measurements.  

 

IV.    UNDETECTABILITY INDEX (UI) PROPOSITION 
AND COMPUTATION 

In this section an index, UI, based on the detectable and 
undetectable component of the measurement error vector will 
be proposed. Also an algorithm to calculate the UI for each 
available measurement will be presented.  

For that purpose, suppose the existence of a single error in the 
i-th measurement, that is, i ie bδ=  with 

[0 1 0]
i

T
iδ = K K , and using equations (8) and (9) 

define the corresponding undetectable )( iU bPe
i

δ=  and 

detectable ))(( iD bPIe
i

δ−=  components of that error.  

With that in mind, the following definition of error 
undetectability index for the i-th measurement is proposed: 

i

i

U W
i

D W

e
UI

e
= . (12) 

Remark 2: As can be seen from the previous equation, UIi 
does not depend on the error magnitude b but only depends on 
the projection matrices P.  

A large UI for a measurement indicates a large component of 
the measurement error will be masked in the state estimation 
process and will not contribute to its residue.  In particular, if 
the measurement error ( )ie H∈ℜ , then eDi = 0, and as a 
consequence the associated UI will tend to infinite. That is the 
case of critical measurements. The UI of a measurement will 
allow one to identify measurements that, although do not 
belong to the range of H, are close to that range, making, as a 
consequence, the gross error detection/identification less 
reliable in the largest normalized residue test. This 
geometrical view of undetectable errors presents a more 
comprehensive picture of this problem than the concept of 
leverage points.  
In the following an algorithm to compute the UI index is 
proposed. 
 
Algorithm: 

1. For each measurement “i", suppose the existence of an 
error vector given by i ie bδ= . Repeat this step for each 
measurement i, i from 1 to m. 

2. Compute the undetectable (eUi) and detectable (eDi) 
parts of each error vector ei as previously defined. With these 
vectors in hands compute the measurement i undetectability 
index, using equation (12). 
The algorithm is processed using the estimated state vector 
obtained from the available measurement set 

V.    EXAMPLES OF MEASUREMENTS WITH UI 
VERY HIGH AND VERY LOW 

In this section two examples will be used in order to show the 
position relative to the ( )Hℜ , of measurements that may hide 
errors (very high UI), and measurements that do not hide 
errors (very low UI). 
Remark 3: In the next two examples, the detection test of 
gross errors is made by means of both the largest normalized 
residual test (considering a threshold value 3λ = ) and the 

)ˆ(xJ -test. The threshold value “C” for the )ˆ(xJ -test is 
obtained via Chi-square distribution table for a 2.5% 
probability of false alarm with: ˆ ˆ ˆ( ) ( ) ( )TJ x z Hx W z Hx= − − ( 
See Appendix) 

Example 1: Consider the system of two buses (n = 1) 
connected through two lines, as shown in Figure 2. Taking 
bus 2 as a reference of angle (δ2 = 0), the Jacobian matrix for 

that system becomes .
10
2
⎥⎦
⎤

⎢⎣
⎡

=H  Considering that the 

standard deviations of z1 and z2 are equal to 1p.u. 
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( 1 2 1σ σ= = ), that is, “W = I”, the projection matrix P will be 

⎥
⎦

⎤
⎢
⎣

⎡
=

961.0192.0
192.0038.0

P . 

 
 
 
 
 
 
 
 
Let ( )10.175 0.175true truex δ= = be the vector of the unknown 

states and [ ]0.35 1.75 T
true truez Hx= = be the true unknown 

measurement vector. Suppose the existence of a gross error of 
magnitude 9σz2 in the measurement z2, that is: 

[ ]Tz 75.1035.0= . Solving the linear WLS state estimation 
equations, withW I= , one obtains: 

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

=
−

=
765.1
765.1

,
346.0

73.1 Nrr and 

ˆ ˆ ˆ( ) ( ) ( ) 3.11TJ x z Hx W z Hx= − − = . The threshold value 
5.02C =  is obtained via Chi-square distribution table 

for 2
,1m n αχ − −  (see Appendix). 

As a consequence, the hypothesis of error existence is 
erroneously rejected. This situation is depicted in Figure 3. In 
order to understand the reason for that wrong decision let us 
compute the UI for those measurements, whose values are 
shown in Table I. 
 

Table I –  UI  – Example 3 
 z1 z2 
UI 0.1997 5.0073  

 
As one can see in Table I, the UI of measurement z2 is very 
high, and the UI of measurement z2 is very low.  As it can be 
seen in Figure 3, z2 is closer to the range of H than z1. In this 
way, z2 behaves more similar to a critical measurement than 
z1, and to detect an error in z2 that error has to be very high. 

R(H)
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11 Z  
Figure 3 - Gross error in measurement z2  

(Example 1) 
 
Example 2: Using the same system considered in Example 1 
(Figure 2), but now with a gross error of magnitude 9σz1 in 

the measurement z1, that is, [ ]9.35 1.75 Tz = , solving the 
linear WLS state estimation equations one obtains: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

=
825.8
825.8

,
73.1

65.8 Nrr  and 88.77)( =xJ  (see Figure 4). 

In this case the error is detected ( 3=λ  and 5.024C = ) 
because it occurred in the measurement z1, with low UI. 
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Figure 4 - Gross errors in measurement z1  

(Example 2) 
 

VI.    NUMERICAL TESTS 
For the numerical tests, the IEEE -14 bus system will be used 
(Figure 5). The parameters of this system are available in 
www.ee.washington.edu/research/pstca/. 
The measurements values used in the tests were obtained 
from a load flow solution (zlf) to which normally distributed 
noise was added. The measurement noise was assumed to 
have zero mean and a standard deviation (STD) “σ” given 

by:
*
3

lfpr z
σ = ; with pr, the meter precision, equal to 3%. 

Scenario-I:  In this measurement scenario the measurement 
set shown in Table II will be used. 

 
 

Figure 5 – IEEE-14-bus system 

Remark 4: For the next Tables the following 
nomenclature is used: Ia – injection measurement at bus “a”; 

Figure 2 - Two-bus-system, ⊗ indicates 
power flow measurements 

  ⊗  z1 

   ⊗ z2 

j0.50 1 2 

    j0.10 
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Fa-b – flow measurement from bus “a” to bus “b”; and Va – 
voltage magnitude measurement at bus “a”. All the numbers 
in these Tables are average values (AV), with very small 
STD, corresponding to thirty different cases. 

 

Table II – Measurements Scenario –I:   Gross Error 
Detection Level (AV) 

 Active 
Power 

UI (a) 
Detec. 
Level 
(STD) 

React 
Power UI (r) 

Detec. 
Level 
(STD) 

I:3 -0.942 0.56 3.8 0.099 1.40 5.3 
I:8 -0.150 0.70 3.9 0.308 0.72 3.9 
I:9 -0.295 0.84 3.5 -0.166 0.78 4.5 

I:10 -0.090 3.52 9.7 -0.058 2.77 12.5 
I:11 -0.035 4.21 15.4 -0.018 3.34 9.9 
I:13 -0.135 5.89 23.6 -0.058 5.45 25.7 
I:14 -0.149 1.50 4.5 -0.050 1.66 3.3 

F:1-2 1.656 0.75 3.4 -0.223 1.50 5.2 
F:2-1 -1.601 0.74 3.4 0.311 0.89 3.9 
F:1-5 0.852 0.34 3.2 0.058 3.31 10.8 
F:5-1 -0.817 0.34 3.2 0.035 3.74 11.8 
F:3-4 -0.174 3.17 9.2 0.061 1.05 4.3 
F:4-5 -0.712 0.96 4.4 0.164 0.88 4.0 
F:5-4 0.7165 0.98 4.6 -0.142 1.14 4.5 
F:4-7 0.4929 0.49 3.7 -0.119 0.8 3.8 
F:4-9 0.2189 0.39 3.6 0.021 1.14 3.6 
F:9-4 -0.219 0.39 3.0 0.004 8.48 18.9 
F:11-6 -0.121 0.64 3.0 -0.051 0.62 3.0 
F:6-12 0.085 9.73 36.4 0.027 12.81 17.4 
F:7-8 0.149 0.71 3.9 -0.291 0.69 3.7 
F:8-7 -0.149 0.71 3.7 0.309 0.72 3.5 
F:7-9 0.143 2.26 6.7 0.019 11.26 38.9 

F:11-10 0.087 1.04 3.5 0.033 1.14 6.1 
F:13-14 0.089 0.87 3.5 0.028 1.02 3.0 

 Magnitude UI Detection Level
V:1 1.060 0.21 3.0 
V:3 1.010 0.21 3.0 
V:8 1.090 0.21 3.0 
V:13 1.048 0.21 3.0 

The UI indexes were obtained using the estimated states. 
 
 
In Table II, using the paper proposition, the UI for each 
measurement was calculated, as well as the minimum gross 
error value required, detection level, in order that the error can 
be detected by means of the largest normalized residue test, 
considering a threshold value of 3λ = .  
As it can be seen in that table, there is a close relation 
between the detection level and the measurement 
undetectability index. Measurements with small UIs, in 
general less than one, have gross errors detected /identified, 
using the largest normalized residue test with the detection 
level very close to 3.0STD. 
On the other hand, measurements with high UI require very 
large gross errors in order to be detected/identified that is, the 
masked error due to the estimating process is high. As a 
consequence, the largest normalized residual test may fail, in 
a significant way, when the gross errors are in those 
measurements. 
To solve this kind of problem, the literature on gross error 
detection/identification establishes the solution as increasing 
the measurement set redundancy level. 
However, using a very high redundant measurement set 
scenario this paper’s results do not confirm that affirmative. 

Scenario-II:  In this measurement scenario, the measurement 
set with a very high redundancy level, as shown in Table III, 
is used.  
Obs.: Although voltage magnitude measurements are used in 
this measurement set scenario (V:1, V:3, V:8, and V:13), they 
do not appear in the corresponding tables due to space 
limitation. 
In Table III it can be seen that although the gross error 
detection/identification results were improved, when 
compared to results of Table II, some measurements still 
present high UIs and require very high gross errors level in 
order to be detected/identified. As a consequence, the usual 
gross error detection/identification test on those 
measurements will have a high chance of failing.  
An example of the measurement redundancy level action on 
the UI of a measurement it can be seen at the active power 
flow F3-4: in the Measurement Scenario I its UI was 3.17 
while in the Measurement Scenario II its UI is now 0.58. 
An example of measurement of high UI is the active and 
reactive power injections I:5, shown in Table III.    
 

VII.    MEASUREMENTS OF HIGH UI VERSUS 
LEVERAGE POINTS 

 
In this section, with the Measurement sets Scenarios I an II, 
and the available literature for classification of leverage points 
[13], it will be shown that the UI index presents a more wide 
and comprehensive picture of the problem of gross error 
detection in power system state estimation than critical 
measurements and leverage points. 
In the Measurement set Scenario I, Table II, and applying the 
formulation as in [13], pg. 131, do not exist any measurement 
classified as suspected of being leverage point. However 
many measurements of that Table present a very high gross 
error detection level. That is, they are measurements whose 
gross error detection/identification test may fail in a 
significant way. 
Again but now using the Measurement set Scenario II, and 
with the formulation of [13] the following measurements are 
classified as leverage points: 
(i) The active powers: I5, I6, I7, I11, F9-10, and F10-9 
(ii) The reactive powers: I4, I5, I7, I11, I12, F2-3, F2-4, F9-4, 
F7-9, F9-7. 
Using the UI index, as can be seen in Table III, the following 
power measurements are not measurements having a high 
detection level: 
(i) Active measurements: I7, F9-10, F10-9 
(ii) Reactive measurements: In this case all the results 
matched with the paper proposition. 
In other hand, are measurements of high gross error detection 
level and not suspected of being leverage points: 
(i) Active measurements: I2 
(ii) Reactive measurements: No one measurement found. 
As conclusion one can say that for the measurement set of 
high redundancy level the results using the paper proposition 
matched reasonably well with that of reference [13]. However 
for the measurement set of low redundancy level the results 
are completely different, but the paper proposition is in accord 
with performed tests. 
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Table III – Measurements Scenario –II: 
Gross Error Detection Level (AV) 

 Active 
Power 

UI (a) 
Detec. 
Level 
(STD) 

React 
Power UI (r) 

Detec. 
Level 
(STD) 

I:1 2.501 0.19 3.4 -0.166 0.77 5.4 
I:2 0.384 1.62 7.8 0.358 0.27 3.6 
I:3 -0.942 0.19 3.1 0.099 0.51 4.3 
I:4 -0.477 0.77 3.1 0.039 1.98 3.5 
I:5 -0.076 5.79 24.3 -0.016 4.19 13.7 
I:6 -0.112 1.36 3.6 0.118 0.46 4.1 
I:7 -0.199 0.99 3.5 -0.100 1.67 6.7 
I:8 -0.150 0.66 3.7 0.308 0.33 3.6 
I:9 -0.295 0.40 3.0 -0.166 0.25 3.2 

I:10 -0.090 0.40 3.5 -0.058 0.43 3.6 
I:11 -0.035 2.47 8.4 -0.018 2.14 6.5 
I:12 -0.061 0.63 3.0 -0.016 0.98 5.9 
I:13 -0.135 0.67 3.8 -0.058 0.60 3.0 
I:14 -0.149 0.45 3.2 -0.050 0.50 3.1 

F:1-2 1.657 0.22 3.0 -0.223 0.38 3.5 
F:2-1 -1.601 0.22 3.0 0.311 0.29 3.0 
F:1-5 0.852 0.15 3.3 0.058 0.54 3.6 
F:5-1 -0.817 0.15 3.0 0.035 0.76 5.5 
F:2-3 0.794 0.15 3.2 0.030 1.26 5.7 
F:3-2 -0.768 0.15 3.2 0.039 0.77 3.0 
F:2-4 0.684 0.15 3.0 -0.002 9.10 5.9 
F:4-2 -0.655 0.15 3.0 0.042 0.34 3.0 
F:2-5 0.512 0.15 3.4 0.021 0.28 5.4 
F:5-2 -0.498 0.15 3.0 -0.016 0.73 4.2 
F:3-4 -0.174 0.58 3.3 0.061 0.40 3.4 
F:4-3 0.178 0.58 3.0 -0.068 0.32 3.1 
F:4-5 -0.712 0.22 3.3 0.164 0.18 3.0 
F:5-4 0.716 0.22 3.3 -0.142 0.18 3.3 
F:4-7 0.493 0.21 3.3 -0.119 0.25 3.0 
F:7-4 -0.493 0.21 3.0 0.172 0.15 3.2 
F:4-9 0.219 0.19 3.3 0.021 0.44 3.0 
F:9-4 -0.219 0.19 3.0 0.004 2.95 13.0 
F:5-6 0.524 0.16 3.2 0.107 0.28 3.0 
F:6-5 -0.525 0.16 3.2 -0.046 0.71 5.7 
F:6-11 0.124 0.31 3.0 0.055 0.30 3.0 
F:11-6 -0.121 0.31 3.0 -0.051 0.33 3.0 
F:6-12 0.085 0.33 3.1 0.027 0.40 3.0 
F:12-6 -0.084 0.33 3.0 -0.025 0.42 4.1 
F:6-13 0.203 0.27 3.4 0.083 0.28 3.2 
F:13-6 -0.201 0.26 3.2 -0.077 0.29 3.0 
F:7-8 0.149 0.66 3.9 -0.291 0.32 3.0 
F:8-7 -0.149 0.66 3.5 0.309 0.33 3.3 
F:7-9 0.143 0.70 3.6 0.019 0.89 4.5 
F:9-7 -0.143 0.70 3.6 -0.017 1.10 5.4 
F:9-10 0.004 0.99 4.8 0.026 0.88 4.2 
F:10-9 -0.004 0.99 4.8 -0.026 0.87 4.2 
F:9-14 0.062 0.77 4.5 0.026 0.70 5.2 
F:14-9 -0.062 0.75 4.5 -0.025 0.72 3.0 

F:10-11 -0.086 0.42 3.4 -0.032 0.49 3.9 
F:11-10 0.087 0.42 3.0 0.033 0.47 4.8 
F:12-13 0.023 0.78 3.7 0.009 0.77 3.3 
F:13-12 -0.023 0.77 4.9 -0.009 0.77 6.3 
F:13-14 0.089 0.47 3.0 0.028 0.53 3.0 
F:14-13 -0.087 0.46 3.0 -0.025 0.61 4.2 
The UI indexes were obtained using the estimated states. 

VIII.    CONCLUSIONS 
In this paper, more insights related to detectability of gross 
errors in power system state estimation, using geometrical 
approaches, are provided. This is achieved decomposing the 
measurement error vector into two parts: the undetectable part 
and the detectable one. The ratio between the w-norm of those 
quantities, the undetectability index, gives the distance of a 
measurement from the range of the jacobian matrix. In other 
words, the UI is a measure of how difficult is to detect errors 
in those measurements. That index does not depend on any 
classification, in terms of gross errors detection, those 
measurements might have. The paper’s results lead to the 

conclusion that the higher a UI of a measurement is, in 
general, the higher the masked error will be. It is shown that 
the UI index presents a more comprehensive picture of the 
problem of gross error detection in power system state 
estimation than critical measurements and leverage points. 
Even more, for the measurement set scenario of low 
redundancy level, there exist a big difference between the 
conclusion about gross error detection level test when using 
the paper proposition and the one of reference [13]. 
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APPENDIX: DETECTION AND IDENTIFICATION OF 
GROSS ERRORS 

Given a measurement vector z, the estimated state x̂  will 
depend on the projection operator P, which depends only on 
the inner product choice (W) and matrix H.  
Matrix “W” is given by the inverse of the measurement 
covariance matrix. After finding x̂ , it is interesting to check 
the existence of gross errors in the measurements. Therefore a 
routine for error detection is required. At this point only 
statistic concepts are required. 
Assuming that measurement errors have a normal distribution, 
it is easy to show that index )ˆ(xJ , i.e., the function to be 
minimized in (7), has a Chi-square distribution (χ2) with (m-
n) degrees of freedom. Choosing a probability “1-α” of false 
alarm and being “α” the significance level of the test, a 
number “C” is obtained (via Chi-square distribution table 
for 2

,1m n αχ − − ) such that, in the presence of gross errors )ˆ(xJ  
> C. 
Another way to detect the presence of gross errors is by the 
largest normalized residue test. Based on the same assumption 
about measurement errors, the vector of residuals r is 
normalized and subjected to a validation test: 

( ) λσ ≤= k
krkr

r

N )()( (threshold value), where Nkr )( is the 

largest among all ( ) miir N ,,1, K= ; ( ) ( )kkkr ,Ω=σ  being 
the Standard Deviation of the kth component of the residuals 
vector, and Ω  the residue covariance matrix given by 

1 1
.( )T TW H H WH H− −= −Ω  

If λ>Nkr )( , the measurement with gross error is detected 
and the kth measurement will be the one with gross error 
(usually 3λ = [13]). 
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