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Robust Coordinated Tuning of Parameters

of Standard Power System Stabilizers
for Local and Global Grid Objectives
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Abstract—In this paper we revisit the synthesis of the Power
System Stabilizers (PSSs) following some recent objectives and
constraints imposed by the evolution of the European intercon-
nected power system. Some principles of approaches used in
an independent and even concurrent way are combined and
enriched to provide a coordinated way to adjust the parameters
of standard (IEEE-type) PSS loops of several machines in a large-
scale interconnected system in order to simultaneously reach
damping objectives for several oscillatory modes of different
natures, i.e., both local and inter-area ones. The trade-off
performance/robustness is the central point of the approach since,
on the one hand, as the European synchronous zone is being
continuously expanded, approximative models should be used
in order to keep the size of the problem noncritical from the
computational point of view. On the other hand, the increasing
size of the system leads to the slipping to lower values of the
frequency of the inter-area modes. They are thus further from
the local modes which stay at higher frequencies and this makes
the coordination of the damping actions for both classes more
difficult. Full nonlinear validation simulations are run on a
realistic large-scale model of the interconnected European power
system.

Index Terms—PSS tuning, robustness, coordination.

I. INTRODUCTION

HE The Power System Stabilizers (PSSs) are additional

voltage regulation loops of the generators used to
stabilize the behavior of power system. A lot of work has
been dedicated to their synthesis. This was traditionally done
for local purposes, i.c., to damp the oscillatory modes which
involve a limited number of machines close to the studied
machine, the so-called local modes. Large synchronous zones
have also global oscillatory phenomena which involve large
number of distant machines, characterized by the inter-area
modes [11]. A new damping objective has then been assigned
to the tuning of the PSSs in order to manage also the
inter-area modes. The latest UCTE interconnection feasibility
studies have shown that, with the growth of the European
synchronous zone, the frequency of the inter-area modes slips
to lower values. This is a new challenge for the tuning of
the PSSs since the two classes of modes (local and inter-area
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ones) are located in different frequency ranges and thus a
careful coordination of the two actions should be achieved.

Since for a large-scale system the damping cannot be
achieved by tuning only one PSS, coordination between the
tuning actions for different machines has also been envisaged.
To achieve this twofold level of coordination, information
about the structure of the power system must be used in terms
of a control model richer than the machine connected to an
infinite bus model usually used. For this, in [12] sensitivities
of the damping of the studied modes with respect to the gains
of the PSSs have been recently used.

Robustness is an important topic in modern control,
especially in the case of power systems where, due to the
large scale of the problem, the models used for the dynamic
studies are a priori simplified. As an example, for the case
of feasibility studies of the interconnection of two power
systems, the inter-area modes are particularly studied and for
this, the small generation units of the system are neglected or
aggregated in equivalent ones. This does not affect the global
oscillatory behavior of the system, but might have an influence
on the local performances of the PSSs when implemented
on the real system. Well-established and efficient state-space
robust control techniques exist for linear systems (see, e.g.,
[15]). However, when applied to power systems, the obtained
regulators are in state-space form (see, e.g., [3]) and not in
the form usually used in practice for the PSSs (like, e.g.,
the IEEE standard PSS loops [4]). As most of the existing
generators are already equipped with those standard PSS
structures, to implement such a new regulator, a conversion
from the state-space to one of the standard forms is needed
[2]. A more direct approach consists in tuning the parameters
of a given standard PSS form in order to achieve the desired
performances. This leads to a problem of optimization under
constraints [5], [6].

In the present paper we investigate the improvement of
the robustness and coordination which can be achieved when
tuning the parameters of fixed standard PSS structures for
several generators in order to simultaneously damp several
local and inter-area modes of frequencies within a quite wide
range.

The paper is organized as follows: Section II describes
the structure of the control model and the way in which its



parameters are identified. In Section III it is presented the
strategy for the tuning of the parameters of the PSS using the
control model obtained in Section II. At this stage, stability,
robustness and performances of the closed-loop are insured
by solving a constrained optimization problem. The influence
of the constraints in the PSS synthesis as well as the results
provided by this approach are discussed in Section IV via
an application to a large-scale representation of the European
power system. Section V is devoted to concluding remarks.

II. CONTROL MODEL
A. Degrees of detail of the modeling

To synthesize a regulator, a reduced order dynamic model
is needed for the system to be controlled. It is called a control
model and its particularity is to capture only the features
which are relevant to the control objectives. The control
model most used for the machines of the power systems
consists in a machine connected to an infinite bus through
a line of variable reactance (see, e.g., [3]). The value of
the reactance of this line is used to model the short-circuit
power at the grid bus to which the machine is connected.
However, doing so, it is difficult to capture both local and
inter-area oscillatory phenomena especially when they are of
quite different frequencies. To move towards a coordination
of tuning of the PSSs for several local and inter-area modes
in this new context, sensitivities between the damping of the
modes of interest and the gains of the PSSs selected for tuning
were used as a control model in [12] as follows : the sensivity
of a closed-loop eigenvalue A; with respect to the gain K; of
the PSS transfer function I';(s) is given by [10]

oK, i
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where 7!’ is the residue of A; in the open-loop transfer

function Hj;(s) from Vy, to w; in Fig. 1. Vj; is the stabilizing
signal of the AVR of machine j, while w; is the speed of the
same machine. Notice also that the transfer mentioned above
is computed before the installation of the PSSs I';(s), j =
1,...,m.

This residue can be computed from the right (v;) and the
left (w;) eigenvectors of A; and the input (B;), respectively
the output (C;) matrices of a minimal state space realization
of Hj;(s)

i = Cjvw! B; 2)

and r; is an usual output of softwares for small-signal
analysis like, e.g., [13]. From (1) one deduces the impact of
small variations of the gain K; on the modes of interest:

N = )\? + Tin 3)

where A} is the mode computed on the open-loop, i.e., the
situation in Fig. 1 without I'(s).

However, this static characterization can be further enriched
to take into account the dynamics of interest of the overall
system. Overall dynamic models are usually available for
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Fig. 1. Control model

the interconnected systems. They consist in a detailed model
of the machines of the system of significant installed power
(usually the ones of more than 100 MW) along with their
regulations and the 400 kV/220 kV transmission grid (see [1]
for the case of the European system). Although simplified
with respect to reality, this kid of model, called simulation
model is too complex (about 8000 state variables in the case
of the European system) for a control model. It is used for
the full nonlinear simulation of the behavior of the power
system, in particular for the a posteriori validation of an
already synthesized controller. However, it can be used to
extract a suitable control model as shown below.

B. Choice of the control model structure

Let A = {\, .., A} be the oscillatory modes (local
and inter-area) to be damped and M = {My, .., My}
the machines for which PSS loops have been chosen to be
installed or adapted to perform the damping task. The latter
are among the machines with the greatest participation factors
[11] in the modes in the set A [12].

The control model concerns the power system seen from
the PSSs (see Fig. 1), i.e., the transfer matrix H(s) between
the stabilizing signals Vs of the PSS loops of the machines in
the set M and their speeds:

w(s) = H(s)Vs(s) “4)
where:
wi (s) Vs, ()
w(s) = : and Vy(s) = : )
win(8) Vs, (8)

This transfer matrix can be made available in practice
using a mixed nonlinear/linear analysis framework for power
systems like, e.g., [7]. More precisely, the nonlinear system
is linearized around a given operation point and, next, the
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Fig. 2. Bode plots of H(s);;, i = PGR : Comparison of the full model

(blue ’+ plot) and the control model (red . plot)

frequency response from all the modes can be made avail-
able. Bode plots of one entry of H(s) for the case of the
UCTE system are given in Fig. 2. A control model can be
obtained from H(s) if each of its entries H;;(s) is written
as a limited order development plus a correction. Indeed,
Hij(s) = Y jp— 575, where r;’ denotes the residue of the
pole py of H;;. Obviously, n, the total number of poles of
H, is huge since it equals the order of the full simulation
model (about 8000 for the European system). However, for
the control model, the concerned dynamics are defined within
the frequency band of the modes in the set A. We propose
as control model the following approximation of H;;(s),
i,j €{1,...,m}:

l ij —ij

Hij(s) =Y [—% &

s—A
k=1 k

P(s)
Q(s)
where rfcj , F,ij , k=1,...,1 are known and the polynomials

P(s) and Q(s) are computed such that H;;(s) fits H(s);; in
the frequency working band mentioned above.

1+ (6)
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C. Test system

The techniques for the synthesis of the control model
and the PSS loops investigated in this paper are tested and
illustrated on a realistic large-scale representation of the
interconnected European power system which consists of
about 400 generators and 2000 buses. The linear model is
described by about 8000 state variables. It is well-known
that this system exhibits a low damped inter-area oscillation
around 0.22 Hz in which the generators of the eastern part of
the grid are oscillating against the generators of the western
part [1]. This phenomenon is represented by the first two
modes of the linearized full model of which dampings are
given in the first line of Table I.

They are studied in this paper along with the one in the
third column of the same table which is of different nature;

TABLE 1
DAMPING ([%] OF THE MODES IN A

mode f1 0.23Hz | mode f2 0.24Hz | mode #3 0.91Hz

without PSSs 3.87 11.7 6.25

with PSSs 8.43 9.97 11.53
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Fig. 3. Bode plots of H(s);;, i = Almaraz, j = Cofrente : Comparison
of the full model (blue *+° plot) and the control model (red . plot)

it is an inter-area mode of the Spanish system at a slightly
higher frequency (0.9 Hz) than the first two ones. Thus, one
has (6) with [ = 3 and \g, £ =1,...,3 given in Table 1.

D. Frequency identification of the parameters of the control
model

The degrees of the polynomials P and () in (3) are chosen
such that H;; is strictly proper:

Q(s) =5"+ g1 + ...+ qo

P(s) =py—18'" 1+ ...+ po 7

To obtain a control model of order 2] + v, 2v parameters
have to be identified as coefficients of P and Q.

If a full simulation model is available for the overall
system, the Bode plots of the entries of H(s) can be easily
made available even for the large-scale systems [7].

In Fig. 2 and Fig. 3 such curves are given in solid lines
for two transfers of the European interconnected system.
They contain information in the wide frequency range of the
full simulation model (i.e., about 8000 modes). However, for
the stabilization problem we want to solve here, only the
frequency range [wy w{] which covers the set of modes A
is of interest. For the chosen test system, this range is defined
around the two major resonance peaks in Fig. 2 and Fig. 3
which correspond to A\; and Az in Table I (the frequency of
A2 is in between), i.e., wy = 0.15 Hz, wj{: 2 Hz.



An adequate control model should fit the Bode plots of the
full simulation model in the frequency range [wy w}].

The coefficients p;, g; in (7) of each transfer I;[”(s) in (6)
are thus computed via a frequency identification procedure
based on a least squares objective function of the form

Jident =

DT <wk<w+[ak(Ak |H; ](Zwk)|) ®)

Br(or — arctg(Hyj(iwy)))?

where Ajp and ¢ are the values of the magnitude and
respectively the phase of Hjj(iwyg) and 2 = —1. (Ag,wy)
and (¢, wy,) are points of the Bode plots of the transfer of the
full simulation model and are thus input data for the frequency
idntitification problem

{pis diticqo,...ny = argmin{ Jigen: } ©

The weights ay, (i are used to manage the trade-off
between magnitude and phase fitting and, eventually, to give
priority to the fitting at specific frequencies.

A stability constraint on the roots of ¢ could be used
in (9) to ensure a stable control model ﬁij but this is
mostly redundant since a low value achieved for Jigen: is
synonymous of stability of Q since the full model H;; is stable.

This identification is repeated as a trial and error iterative
procedure with increasing degrees n for the polynomials
above till an acceptable frequency response fitting is achieved.

Such a situation is shown in Fig. 2 for a transfer function of
the diagonal of H(s). The responses of the full model are in
solid lines and the reduced model is obtained with deg(P) = 1
and deg(Q) = 2, i.e., for a control model of order 8. For the
transfers of the extra diagonal entries of H the fitting is more
difficult since interactions among different machines should
be captured. Fig. 3 shows the result obtained with the same
order (v = 2) for two Spanish machines (: = Almaraz, j =
Cofrentes). If necessary, accuracy of the identification can be
further increased by increasing v. However, order 2 has been
retained for the example treated in this paper since the tuning
provided with this model was satisfactory. Indeed, the main
objective here is to tune with the simplest control model.

III. COORDINATED TUNING

The control model (6) is used to simultaneously tune the
PSSs of the machines in the set M for desired target values
¢, i =1,...,1 of the damping of the modes in A. To ensure

a standard IEEE structure for the PSSs, like, e.g.,

Vi(s) 14+ Tis1+T3s Tss
w(s) 1+ Tosl1+Tys1l+Tgs
the problem is formulated as an optimization one which

gives an optimal set of gains and time constants for each
machine (K and T; in (10)).

(10)

A. The objective function

The objective function to be minimized should capture the
dynamic performance specified, basically the damping of the
oscillatory response of the system. In [14] a modal objective
function is proposed:

Jeontr = Zk 1[ ak\Il(Ckvwk Zz 12] 1 ?_? ]1/2
2¢3T
U (Cr,wr) = %ﬁé"k (eci+w’“ -1)
(11

where (j, is the damping of the mode Ag, r,ij is the residue
of the same mode in the transfer H;;(s), ay a weighting
function (ax = 1 if Ay is real and ag = 2 if A\; is complex)
and T > 0 is the time horizon over which J.,,¢- is evaluated.

Roughly speaking, (11) contains the integral of the surface
under the modal response envelope through a given time
horizon T'. First, the computation of this function is not
straightforward in practice and, next, minimizing Jeontr
given by (11) leads to a response with maximum damping
which is not necessarily needed. Indeed, only the level ¢/,
1 =1,...,1 of damping is required and not going below would
allow one to settle a better trade-off robustness/performance
[15]. This led us to test a simpler and more direct index of
performance:

!

= Z((i — 2

i=1

Relation (3) can be exploited to obtain in a simplified
manner the influence of the adjustment of the gains of the
PSSs on the modes in A. Moreover, to reduce the size of the
problem, it is considered that 75 = T and Ty = T in (10).
The optimal PSS parameters are thus:

(12)

Jcontr

{K:, Tl*a TQ*} = a'rgminconstraints{Jcontr} (13)

where J.ontr 1S now given by (12).

B. The constraints

Several types of constraints are considered:

1) Physical bound constraints: They contain the physical
bounds for the gains and the time constants of the power
system stabilizers (PSSs):

Ty, >0
T2i Z 0 ’ i € {laam}
K; >0

A result with K = 0 means that the damping objective

can be achived with less PSSs than the a priori chosen family
M (without PSS on machine M;).

(14)

An additional upper bound K; < K;*%* can be added
to (14) to ensure implementable solutions, i.e., to avoid
mathematical solutions with unrealistic high gain.



2) Stability constraint: The fist nonlinear constraint con-
sists in a stability condition of the resulting closed-loop (H (s)
feedback connected with T'(s) in Fig. 1). The eigenvalues of
state matrix of the closed-loop should be in the left-half plane:

Maz{Re(A\)} < 0,k € {1,...,21 + n + 3m} (15)

Remark that /\zl are functions of K;, T1, and T», of the
PSSs I'(s); of type (10).

3) Performance/Robustness constraints: It is well-known
in the theory of the robust control (see, e.g., [15]) that the
performance and the robustness objectives are contradictory.
The result of the tuning of the parameters of the PSSs
is thus a trade-off between the two classes of objectives
mentionned above. Those objectives can be quantified in
terms of H*° norms of some well-chosen transfer matrices
of the closed-loop in Fig. 1 which are:

a) The Sensitivity Function S(s) defined by (see [15] for
more details)

w(s) = S(s)d(s)

S(5) = [In — T(s)H(s)] " (16)
dy(s)
where d(s) = : in Fig. 1.
dm(s)

S(s) gives the influence of an additive output disturbance to
the output of the system. To ensure a good level of rejection
of such type of disturbance one must thus make

1S5($)]Joc < 5™ (17)

[[S(s)|loo is thus a measure of the performances of the
closed-loop.

b) The Complementary Sensitivity Function T (s) defined by

T(s) = S(s)l'(s)H(s) (18)

gives the influence of the output noise to the output w(s)
of the closed-loop. To improve the attenuation of the output
noise one should thus make

1T (s)]|o0 <T™® (19)

Also, V,(s)=T(s)V"¢f(s) in Fig. 1. Thus, when minimizing
the norm of 7', one minimizes also the energy of the stabilizing
signal V, i.e., the level of the control for the problem studied
here. ||T(s)||loo is thus a measure of the robustness of the
closed-loop and constraints (17) and (19) have opposite
effects. By adequate choices of S™%* and T™** one can thus
manage the trade-off between performances and robustness,
well-known in control theory ([15]).

The influence of those constraints on the optimization (13)
is discussed on the studied system in the next section.

TABLE II
EFFECT OF INITIAL VALUES OF PARAMETERS ON THE CONVERGED ONES
IN CASE OF TWO CHOICES

Machine K* ) =Ty | Ty =Ty
Almaraz 0.0013 / 0 0/ 021 |07/ 023
Cofrente | 0.004 / 456 | 0 / 049 | 0 / 0.06
PGR 001 /0 0/ 050 |07/ 006

Problem (13) is a minimization of a nonlinear objective
function (3) under mixed linear (14) and nonlinear ((15), (17)
and (19)) constraints. It was solved here using the standard
Matlab routines (based on the Levenberg-Marquardt algorithm
[9D.

IV. TESTS AND VALIDATION

For the test system presented in Section II-C, the Spanish
machines Almaraz, Cofrentes and PGR were chosen to damp
the modes selected in Table I since they have high participation
in these modes and they are not already equipped with PSSs.
The damping target is ("*/ = 10% for each of the three modes.
This objective is interpreted as follows: mode #1 is poorly
damped but the damping actions should be chosen in order to
not degrade the damping of the other two modes, one directly
concerned by the east-west oscillation and the other one local
to the Spanish system.

A. Influence of the constraints and of the initial point

1) Initialization: The choice of the initial point (K?,T7)
of the optimization (13) is important. Indeed, if a trivial
initial point K? = 0,70 = 0 is chosen, (13) lacks on a local
optimum (for example, J7,,,,, = 0.0045) with less physical
meaning (in the treated example, all the time-constants T of
the solution are zero as indicated in the first entries of Table
II). A better way of doing is to start the optimization with K?
computed using (3) with the target poles A} deduced from the
target dampings ("¢ and usual values for T? (TY = 0.2 s,
TY = 0.02 s). Doing so, a lower value of the performance
function is obtained (J},,,;, = 0.0031 for the same example
treated above) with more realistic parameters for the PSSs
(second entries in Table II).

2) Nonlinear Constraints: To study the influence of the
non linear constraints, the influence of the initialization have
been eliminated by using the same initial points for all the
tests above. So. Adding constraints of type (17) or (19)
obviously increases the difficulty of the optimization problem,
i.e., the number of iterations. However, doing so, one can
better handle the trade-off robustness/performance or to more
precisely assign some specific levels of performance. As an
example, when adding (17), as shown in Table III, a better
damping is achieved in this case with S™** = 2 (values in
line 2) in comparison to the case when only the constraints
(14) and (15) are used in the optimization (13) (the results in
this case are given in line 1 of the same table). Also, as it
is shown below, constraint (17) leads also to a better output
disturbance rejection.



TABLE III

EFFECT OF THE IMPOSED CONSTRAINTS INTO ACHIEVED OBJECTIVE FUNCTION, EIGENVALUE DAMPING AND STABILIZER GAIN

COMPARISON OF THE STABILIZER PARAMETERS ACHIEVED WITH

Constraints [[C* = Cresll G1 (2 (3 K} | K; K3

(14) & (15) 0.0019 0.1004 | 0.0855 | 0.0583 0 4.56 0
(14) & (15) & (17) 0.0018 0.1005 | 0.0907 | 0.0583 | 059 | 481 | 0
(14) & (15) & (19) 0.0021 0.0952 | 0.0800 | 0.0587 0 3.55 | 0.008

TABLE IV

COORDINATED TUNING AND WITH ROBUST COORDINATED TUNING

K* T =Ty Ty =Ty
Almaraz | 0.59 / 243 | 022 / 021 | 0.05 / 0.02
Cofrente | 4.81 / 5.74 | 0.59 / 0.58 | 0.15 / 0.05
PGR 0/ 054 0.71 / 0.61 | 0.15 / 0.06

On the contrary, constraint (19) has the opposite effect. As
explained in Section III-B3, when including (19), the damping
is lower (line 3 in Table III obtained for T™%* = 1.2) but
the energy of the control is lower and thus, the robustness
is improved. Indeed, in this case ||Vy(s)||3 = 1.48 while
[[Vs(s)]|]3 = 1.91 for the control generated only with the
constraints (14) and (15) (PSS parameters in line 1 of Table
IID).

B. Linear validation

For a more functional validation, the results obtained min-
imizing (13) under the constraints (14), (15) and (17) with
Smat = 2 (parameters given in line 2 of Table I and first
positions of the entries in Table IV) are compared to the ones
provided by the tuning proposed in [12] where only a static
control model is used (second position in the same Table IV).
First, the gains obtained with the procedure presented above
are lower than the ones in [12] and thus the robustness is
improved in general. This difference can also be remarked
in the Bode plots of the open-loop transfer functions of the
control system, i.e., I'; H;;, given in Fig. 4 for i = Almaraz.
Next, only two machines (Almaraz and Cofrentes) are needed
to reach the damping objectives with the tuning procedure
presented here since the gain obtained for PGR is K* =0 as
shown by the damping values in line 2 of Table I.

With the present synthesis, also the disturbances on the
machine speed are better rejected as seen in Fig. 5 which
comparatively presents the linear closed-loop responses of w
of the Almaraz machine at an unitary step additive disturbance
(d in Fig. 1) on the output of the same machine.

C. Full nonlinear validation

The achieved level of performance evaluated on the linear
model is given in Table I. It is now shown that this level is
still valid in nonlinear simulation. For the latter validation, the
system is simulated in detail using the Eurostag software for
transient stability analysis [8]. All the machines of the overall
model (about 800 representative machines of the European
power system) along with their detailed regulations and the
225 kV/400 kV grid transmission system are taken into
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Fig. 5. Output disturbance rejection: Comparison of the Coordinated tuning
model (blue plot) and Robust coordinated tuning model (red plot)

account in a precise electromecanic nonlinear modeling. Fig.
6 gives the speed responses of machines Almaraz to a short-
circuit of 200ms at the grid connection point of the same
machine. It can be seen that the damping of the response is
improved (the more damped curve corresponds to the situation
when the 2 PSSs described in the first entries of Table IV) are
used, while the less damped response is obtained on the initial
situation when no PSSs are used on the machines in the set
M).
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V. CONCLUDING REMARKS

The use of a dynamic control model allows coordination
in fulfilling local and global damping objectives. Robustness
techniques of modern control theory can be used with the
constraint of keeping an a priori given structure of the PSS
loops. This is a promising track to tackle the new requirements
of the evolving European system in which the inter-area modes
are at lower frequencies, thus further from the local ones and
closer to the turbine dynamics with which the PSSs loops may
now interact.
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