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Abstract — This paper considers economic dispatch and unit 

commitment of the combined cycle (CCGT) CHP plant in 
electricity market conditions and taking into account new 
environmental challenges. The proposed algorithm was verified 
on example of CCGT CHP plant. 
 

Index Terms— CHP plants (cogeneration), economic dispatch, 
production simulation, quadratic equations, Monte Carlo method. 

I. INTRODUCTION 

EVELOPMENT of cogeneration power plants is 
especially supported in the European Union because it 

allows saving considerable amounts of energy resources, 
enhancing security of electricity supply and substantially 
reducing harmful emissions into the atmosphere, especially 
those of greenhouse effect gases. 

New market instruments are being looked for in order to 
support cogeneration. In some countries, for instance in 
Denmark and Finland, mandatory electricity purchase and 
regulated feed-in tariffs, which provided guaranteed profits for 
cogeneration plants but in fact distorted the market, were 
abolished. Instead of the old support scheme, there were 
proposed new ones, such as subsidies for investments, 
premiums, capacity purchases, tenders, certificates, tax 
exemptions. 

The main difference is that the just mentioned schemes 
cover only a part of costs but the rest is to be earned by the 
cogeneration plant owner himself by selling electricity on the 
free market. This means that neither electricity amount to be 
sold, nor electricity prices are known beforehand. 

This makes optimisation of the cogeneration plant operating 
regimes by far more complicated stochastic task. In order to 
address this issue, there is a need to work out new methods, 
which would allow creating the model of electricity trading 
from cogeneration plant in a SPOT electricity market [1].  

There is another important issue that makes development of 
model for optimisation of operating regimes of cogeneration 
plants more complicated [2]. This is CO2 emissions trading 
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when fossil fuel power plants are obliged to buy necessary 
emission quotas (allowances) in the market. The price for CO2 

emission allowance is a variable value whereas their necessary 
amount depends on the amount of electricity to be sold on the 
market and consumed fuel amount. 

In order to make a right decision, while choosing the best 
trading strategy, optimal unit commitment and unit dispatch, 
an optimisation model is necessary [3], [4], [5]. 

II.  FORMULATION OF THE OBJECTIVE FUNCTION 

Main targets for short term optimisation of cogeneration 
power plants are selection of optimal unit combination (unit 
commitment) and optimal allocation of load between selected 
units (unit dispatch). The purpose of economic dispatch of 
cogeneration power plants is to satisfy electric and heat 
demand at minimum cost or maximum profit.  

The objective function of cogeneration power plant could be 
formulated as the sum of cost functions of its separate 
elements. Minimisation of the objective function of 
cogeneration power plant with cogeneration unit and heat only 
boilers could be represented as following [6]: 
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where 

tn - number of time intervals with duration t ; 

PEtΠ - cost of purchased electricity for time interval nt ; 

PEtN - volume (capacity) of purchased electricity at the 

time interval nt ; 

( )y
t

y
ty QNC , - cost function of “y” cogeneration unit as a 

function of electric y
tN  and heat y

tQ  capacity of this 

particular unit at the time interval nt ; 

ytw - binary variable, which describes the operating status 

of the unit (“0” – out of operation, “1” – in operation); 
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COGn - number of cogeneration units; 

y
StartC , y

StopC - start-up and shut-down costs of “y” 

cogeneration unit; 

ytv - binary variable, which is superior than “0”, if “y” unit 

was started; 

ytu - binary variable, which is superior than “0”, if “y” unit 

was stopped;  

( )x
tx QC  - cost function of heat only boiler “x”; 

HOBn  - number of heat only boilers. 

Start-up costs for the (StartC ) for the time interval   could 

be calculated according to formula: 
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where Startn  is start-up time; 

itB - fuel consumption of the unit at the time interval nt ; 

t
FUELC - fuel cost; 

2CO
itE - CO2 emission volumes at time period nt ; 

2CO
tΠ  - CO2 emission allowance cost. 

Similar formula could be used for calculation of shutdown 

costs ( StopC ). 

Binary variable ytv  indicates, that cogeneration unit “y” 

was started at the time interval nt , if 0>ytv , but binary 

variable ytu  - that the unit was stopped, if  0>ytu . It is 

possible to express it as following: 

1−−= ytytyt wwv                   (3)  

ytytyt wwu −= −1          (4) 

Cogeneration power plant, which sells electricity in the 
SPOT market, would like to maximise its profit [7]: 
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where 
s
EtΠ  - electricity SPOT price for nt  in scenario s ( we 

assume that nt  is relatively short and price will not change 

within nt  ); 

QtΠ  - heat price or tariff at the begin of  nt ; 

s
ytw  - binary variable of CHP status;  

CHPC  - cost function of cogeneration power plant 

according to (1). 
 
Formula (5) could be simplified and rewritten in the 

following form: 
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where 
SPOT
EtN  - electricity sales volume (capacity) in the SPOT 

market according to (11); 

HtQ  - heat capacity sales in the heat market, according to 

(12) or (21). 
 
In case, trading portfolio of a cogeneration power plant 

includes a bilateral power purchase agreement (PPA) with a 

fixed volume PPA
EtN  and price PPA

EtΠ , certain part of a power 

plant capacity, say SPOT
EtN , the owner is planning to sell in the 

SPOT market at a forecasted price sEtΠ  (with probability of 

sφ ), but the rest to be offered to transmission system operator 

( PPA
Et

SPOT
Ett

AUX
Et NNNN −−= max ) as a spinning reserve at 

the price AUX
EtΠ , than profit maximisation task could be 

specified as following: 
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Let’s name this task as the “market dispatch”. 
 
European Union Emission trading scheme (EU ETS) has 

significantly influenced the logic of power plant operating 
regime planning and control. The objective function shall be 
supplemented with additional costs associated with the 
purchase of CO2 emission allowances: 
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where 
2CO

ytΠ - CO2 emission allowance price at time interval nt ; 

2CO
ytE - CO2 emission volumes at the time interval nt , 

according to formula: 

( )2210
2

ijij
CO
ij BuBuuE ++=   (9) 

During the second emission trading period (2008-2012), 
free emission quotas to certain extent will be available for 
electricity producers, while during the third trading period 
(starting from 2013) all the quotas in the electricity sector 
would be sold in the auction. So, during 2008-2012 electricity 
producers still would have a choice to produce electricity (and 
heat) and spend their CO2 emission quotas or to stop 
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production and got profits from CO2 emission trading. The 
decision could be made based on analysis of electricity and 
emission allowance prices. The objective function for this case 
could be expressed as following, taking into account (5) & (8): 
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Let’s call this case the “environmental dispatch”. 
 
It assumes profit maximisation from electricity and heat 

production or alternatively from trading of CO2 emission 

quotas. Binary variable ( )s
ytw−1  would have an opposite 

meaning in comparison to s
ytw : if 0=s

ytw , than 

( ) 11 =− s
ytw . So it shall indicate whether the unit is in 

operation and consuming CO2 emission allowances or it is out 
of operation and is capable to sell quotas. 

When calculating the objective function, it is necessary to 
take all the constraints into account, including CO2 emission 
constraints. If necessary, other, regular emissions (NOx, SO2, 
particles, etc.) could be taken into account during the 
environmental dispatch.   

Performing minimisation of the objective functions (1) and 
(8) or maximisation of the objective functions (5), (7) and 
(10), it is necessary to take global and local constraints into 
account. Electricity and heat balances of a cogeneration system 
are global constraints, while minimum and maximum capacity 
of cogeneration units are local constraints. In addition it is 
possible to define limitations on emission, fuel or energy 
volume during one hour, day or any other time interval.   

Global constraints: 
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If cogeneration system has a heat accumulator, than heat 
balance shall be supplemented by capacity (volume) of heat 
accumulator, in accordance with (21). In case if some part of 
cogeneration electricity to be traded in the SPOT market 

( SPOT
EtN ), another part to be sold according to fixed power 

purchase agreement (PPA
EtN ), but unused capacity to be 

offered to the system operator as auxiliary services, for 

example as a spinning reserve (AUX
EtN ), than expression (11) 

could be transformed to the following one: 
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Emission, energy and fuel consumption constraints could be 
expressed as following: 
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where 

EtN , HtQ - respectively heat and electric load at time 

interval nt ; 

min
ytN , max

ytN - minimum and maximum electric capacity of 

cogeneration unit “y” at the time intervalnt ; 

min
ytQ , max

ytQ - minimum and maximum heat capacity of 

cogeneration unit “y” at the time intervalnt ; 

min
xtQ , max

xtQ - minimum and maximum heat capacity of 

heat only boiler “x” at the time intervalnt ; 

quota
yE - free CO2 emission quota (if applicable); 

dayyW max - maximum daily generation of the unit “y”; 

dayyF max - maximum daily fuel consumption of “y” unit; 

The volume of heat accumulator during the next hour ( 1+tV ) 

could be defined as volume during the previous hour ( tV ), 

plus heat production of cogeneration units (∑
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applicable) fictitious load of gland condenser (summer cooler). 
In this case heat balance (12) could be transformed to the 
form:    
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III.  ALGORITHM 

The algorithm is made of two cycles (Fig. 1). The inner 
cycle is intended for profit maximisation of gas turbine and 
heat recovery boiler as the outer cycle is arranged for profit 
maximisation of a whole power plant. Number of iterations is 
to be made until optimisation criteria    and   are met and then 
the results are received. 

The algorithm starts with entering of input data (tariffs, 
prices, ambient air temperature, and heat load) and defining 
constraints (minimal and maximum capacity of equipment). 
Then the outer cycle starts. By using a random number 
generator, capacity and fuel consumption of a first heat only 
boiler are determined at this iteration. Heat loading of a steam 
turbine is calculated as a difference between the required heat 
load and capacity of a first heat only boiler multiplied by 
random number function “rand”. When heat capacity of steam 
turbine is known, it is possible to calculate its electric capacity 
and steam consumption of the turbine. 

Then the inner cycle starts. The first step makes a split of 
steam consumption between two heat recovery boilers. For this 
purpose, the random number generator “rand” is used once 
again in order to determine steam consumption of the first heat 
recovery boiler. The rest of the whole steam consumption is 
ensured with the second heat recovery boiler. In case there is 
no possibility to ensure steam consumption from a boiler by 
operating only a gas turbine then supplementary firing is 
started. Fuel consumption of gas turbines and supplementary 
firings is calculated. Gas turbine electrical loading is 
calculated as the function of its fuel consumption. Now, the 
profit provided by gas turbines and heat recovery boilers can 
be determined. The calculated profit is compared with that at 
the previous iteration. If the difference is less than the required 
criterion    then the optimum of the inner cycle has been found 
and the process is to return to the outer cycle, if not then the 
process continues with a next iteration. On return to the outer 
cycle, loading and fuel consumption of the second heat only 
boiler are calculated to ensure heat balance. Further, the total 
profit of the plant is calculated. It is compared with the profit 
at the previous iteration and, on conditions that the optimum is 
found, the calculation stops and results are printed out.  

IV.  NUMERICAL EXAMPLE 

Let us consider application of algorithm mentioned in the 
Fig. 1 for cogeneration power plant with installed net electric 
capacity 144 MW and heat capacity 375 MW. Main 
components of combined cycle unit of the CHP plant are two 
gas turbines SGT-800 with capacity 43 MW each, two heat 
recovery boilers with two loops (steam and thermofication) 
and with supplementary firing and one backpressure steam 
turbine MP 24 with installed capacity 54 MW. Heat capacity 
of cogeneration unit is 142 MW. 
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Fig. 1.  Optimisation algorithm of combined cycle CHP plant operating 
regimes 

 
Let us consider the spring regime with the reference to the 

data recorded on 30 March 2006. Fig. 2 and Fig. 3 compares 
modelled and reported production schedules of Riga CHP-1 
for electricity and heat. Modelled data is indicated with dashed 
lines. It is possible to conclude, that simulated heat production 
schedule is almost coincide with the reported data (deviation is 
only 0,07%), while modelled electricity production schedule is 
slightly differ from statistics (deviation is 7,5%). The main 
difference is concerned with operation of gas turbine and 
supplementary firing units. The model decides to unload one 
gas turbine in favour of loading the second gas turbine and 
supplementary firing. 
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Fig. 2.  Heat production schedule ( Qtt real heat production from steam 
turbine, Qttm – optimized. Here and forward all values with “m” are from 
model, without – from real data )  

 
The selected manner of operation is motivated by fuel 

savings of about 3,5% for the 24 hours period and which is 
especially important by CO2 emission reduction. One of the 
explanation for such a result is a very low tariff for electricity 
production (of Riga CHP-1), which discourage from electricity 
production in cogeneration mode. As the results overall 
calculated electricity production volumes are lower than actual 
(Fig. 3). 
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Fig. 3.  Electricity  production schedule 

 
In the Fig. 4 it is possible to observe, that calculated fuel 

consumption by supplementary firing is superior, than it was in 
reality, but fuel consumption of gas turbines is lower.  
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Fig. 4.  Fuel consumption volumes 

 
 
Due to overall reduction of fuel consumption, there is 

reduction of CO2 emission volumes (Fig. 5). 
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Fig. 5.  CO2 emission volumes 
 

Taking into account the reduction of electricity production 
volumes in calculated schedule, modelled overall revenues are 
lower than of reported data (Fig. 6). However, lower are also 
production costs due to fuel savings.  
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Fig. 6.  Revenues and costs 

 
As we consider the total results, the calculated profit is 

higher than reported profit (Fig. 7). 
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Fig. 7.  Profits 
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V. CONCLUSION 

Planning of operating regimes of CHP plants in new market 
conditions requires utilization of new mathematical models. 
Model based on two stage Monte-Carlo optimization method 
allows achieving quiet good results with moderate requirement 
of computing resources.     
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