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INTRODUCTION

* Electric power distribution systems suffer both voltage
and power quality problem:s.

* Efficient operation and loss reduction is a priority for
Energy Conservation and efficient Electric Energy
Utilization.

e Massive increase in the use of Nonlinear loads are
causing HAVOC with Distribution and Ultilization
systemes.



\ INTRODUCTION

» Nonlinear loads, such as static power converters
and arc furnaces cause excessive power quality
problems, voltage sags/swells and harmonics.

» All contributes to extra Power/Energy Losses and
voltage Stabilization problems as well as Shock
Hazards, system Malfunction and and Equipment
Damage

« All results in Poor Utilization and Low Power-
Factor, Feeder Overloading and Noise
Interference to adjacent communication systems

[1].



INTRODUCTION

 In order to overcome these problems, Power
Filter/CC has been used with new FACTS based
devices such as:

» Active Power filters, STATCOM, MPF, Switched
capacitor compensators are used to enhance
power quality [2].

» The APF does not introduce resonance that can
move a harmonic problem from one frequency to
another.lt can also be used for power factor
correction and loss reduction [3].
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\ What is Power quality ?

» Definition : “Power quality problem is any power problem
manifested in voltage, current, or frequency deviation that
results in failure or misoperation of customer equipment”.

» Power quality can be simply defined as shown in the interaction

diagram:
Electrical Grid
Utility

Voltage
Quality

Current
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Power
Quality

v

Nonlinear Loads
Industrial/Commercial/Residential
Consumers




What is Power quality ?
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Why are we concerned about PQ?

The Main reasons behind the growing
concern about PQ are:

North American industries lose Tens-of-Billions of Dollars every
year in downtime due to power quality problems. (Electrical
Business Magazine)

Load nonlinearities in rising and is expected to reach 50 to 70%
In the year 2005 (Electric Power Research Institute)
[Computers, UPS, fax machines, printers, fluorescent lighting,
ASD, industrial rectifiers, DC drives, arc welders, etc).



Power Quality Issue and Problems

Power Quality issues can be roughly broken into a
number of sub-categories:

Harmonics (sub, super and interharmonics);
\oltage swells, sags, fluctuations, flicker, and
transients
\oltage magnitude and frequency deviation, voltage
Imbalance (3ph sys.)

Hot grounding loops and ground potential rise
(GPR)-Safety & Fire Hazards
Monitoring and measurement.



Power Quality PQ Issue

Harmonics and NLL issues:
The harmonic issue (waveform distortion) is a top priority to

for all equipment manufacturer, users and Electric Utilities
(New IEC, ANSI, IEEE Standards).

2.1
(THD;) = | 1= PF =

- DPF
Iy J1+THD?
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* Smart-controllers are
based on specified control

objectives
Control
. Signals
IS
VS
PS —8 ——

eight designs
(Dr. A.M. Sharaf)

SYSTEM MODELS
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Nonlinear Load Models
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Nonlinear Load Models
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Nonlinear Load Models
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‘ Switched Modulated Power Filters and Capacitor Compensators

VF
. (o) VF \I/I
i . IFZJ/ 1., F1
Dual-Tuned-

I !
Tuned-Arm 3 L 3
Filter (TAF) % 5 > %Rl Arm Filter
4 %

S

on/off or )
PWM

TAF

MPF/SPF(Family of Filters — Compensators) Developed by Dr. A. M. Sharaf
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‘ Switched Modulated Power Filters and Capacitor Compensators
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MPF/SPF(Family of Filters — Compensators) Developed by Dr. A. M. Sharaf
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] Switched Modulated Power Filters and Capacitor Compensators

A N
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B
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L S2=51
f
Parameters: TAF + Static Capacitor
Cs L, R SPE/SCC Compensator

MPF/SPF(Family of Filters — Compensators) Developed by Dr. A. M. Sharaf
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‘ Switched Modulated Power Filters and Capacitor Compensators
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Economic Tuned-Arm Power Filter and Capacitor Compensator Scheme
(used in S-phase 2 wire loads)
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l Switched Modulated Power Filters and Capacitor Compensators
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Novel Dynamic Tracking Controllers
(Family of Smart Controllers Developed by Dr. A. M. Sharaf)

The Dynamic Control Strategies are:

° Dynamic minimum current ripple tracking

° Dynamic minimum current level

° Dynamic minimum power tracking

° Dynamic minimum effective power ripple tracking
o Dynamic minimum RMS source current tracking
o Dynamic maximum power factor

o Minimum Harmonic ripple content

° Minimum reference harmonic ripple content

= Electric Power/Energy Savings

= Improve Supply PQ by reducing Harmonics and improve power
factor and enhance waveforms as close as possible to sine wave




Novel Dynamic Controllers
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‘ Novel Dynamic Controllers
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‘ Switching Devices (on/off or PWM)

Error generated by
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Switching Devices (on/off or PWM)

A
9(t)
g(t)=1 switch closed
g()=0 switch open
1 Loff
.
0 B
ton | t
S
Ts/w

The solid-state switches (S1, S2) are usually (GTO, IGBT/bridge,
MOSFET/bridge, SSR, TRIAC) turns “ON” when a pulse g(t) is applied
to its control gate terminal by the activation switching circuit. Removing
the pulse will turn the solid-state switch “OFF”

TS/W:]'/ fS = (ton i toff) O<ton<TS/W



‘ Switching Devices — PWM Circuits
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Diduch) for use with Matlab/Simulink
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‘ Switching Devices — PWM Circuits
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‘ Concept of Modulated Power Filters (MPF)
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‘ Concept of Modulated Power Filters (MPF)
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‘ Concept of Modulated Power Filters (MPF)

Ve frequency respaonse of Tune Arm Filter
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Modulated Tuned Arm Filter (Sym. & Asym.)

«Symmetrical Arc Type
*SMPS

utility

4314

Transformer

<

feeder

Vi

*Adjustable Speed Drives
«Asymmetrical Arc-type

Dynamic Controller:
-Min. effec. Power
-RMS current tracking

-Min. Harmonic Content

%Lc
%R

+ NLL 3

SMPS-

s Bl N [ ) Computer

is ;
iF l VF IL-totg}l ﬂ
L,

Network

NLL 1
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Single Line Diagram of System and Modulated / PWM Tuned-Arm Filter
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Modulated Tuned Arm Filter with (SMPS) Load
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Modulated Asymmetrical Tuned-Arm Filter

Utility

Nonlinear Temporal Load

Parameters:

R,=R,; Ry sin(wrl*t);
E,=E,,+E;sin(wr2*t);
R,=Ry,+R,,sin(wrl*t);
E,=E,,+E,,sin(wr2*t);

R,=R,(1+a) Ry,=8R,,=12
R,,=2 R,,=6 wrl1=15
E,= -E,(1+p)

E,,= 46 E,,=70
E,=12 E,,=35 wr2=5

Transformer
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S1 fe complementary
tons switching



Supply Current(is)
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Green Plug Filter-GPF

Professor Dr.Adel M Sharaf, P.Eng., SMIEEE
UTT

A. M. Sharaf
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Description of Green Plug

* Modulated/Switched Dynamic
Filter/Compensator (MSDFC) for
Energy Efficiency, Savings and Power
Quality Enhancement for
Households

A. M. Sharaf
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Objectives

 Create a low cost Green Plug design by using
the neutral or return current for the control
loop Input

 Run various simulation scenario’s to test the
Green Plug and control loop’s portability

Come up with a final design

A. M. Sharaf
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Family of Green Plugs, Energy Misers & MPF/SPF Compensator
Developed by Dr. A.M. Sharaf

Ltilization
Systems

3 phase-3w

Vs Rz L=z V.

1 phase-2w -
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3 phasedw

SMPFPWHNFFE Scheme
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Designs
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Designs

MOSFET switched MFF Filter

A. M. Sharaf
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Switched (2phase -dw) MPF-

Triac/GTO switch

A. M. Sharaf

Designs
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Rectifier |-~“*ﬂ

switchedModulated PW R Scheme
for 2phase-3w Ltilization System



Designs
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A. M. Sharaf
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Designs

Control Schemes
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A. M. Sharaf
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Designs

PI Controller
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A. M. Sharaf
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Designs

Pl Controller ! T :
10% ! fy switch 51
V (- 1 amor v G A 7Y . ToGTO
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1+5T1
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MNotch Filter

A. M. Sharaf

Minimum Power Tracking Controller



Benefits / Application

e Enhance Power Quality

e Reduce Energy Consumption

e Improve Power Factor

 Reduce THD

e Clean Waveforms

* Regulate Voltage

* Reduce Light Flickering

e Reduce GPR, neutral voltage/current

A. M. Sharaf
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Strategies

*Digital Simulation using SIMULINK,
MATALAB software developer for model

analysis and function constructor

A. M. Sharaf
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Strategies

2 Phase 3 Wire Scott Connection Household Model
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A. M. Sharaf
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Digital Simulation

* Green Plug Scheme 1,2,and 3
> Balanced Case (4.5kW + 1.9kVAR)

Unbalanced | (Phase |:4.5kW + | .9kVAR; Phase 2: 3.5kW +
|000VAR)

Unbalanced 2 (Phase 1:4.5kW + | .9kVAR; Phase 2: 5.5kW +
2.5VAR)

Non-Linear (Phase |:500W + 60VAR RECTIFIED; Phase 2:
2kW + |150VAR)

Fault Cases: One Phase Open Circuit; One Phase Short Circuit.

O

O

O

O

A. M. Sharaf



Digital Simulation

» Approximate 9kVA loading @ 90%PF

* Filters:
° |50uF, I10mH, & 0.25 ohms

A. M. Sharaf
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Digital Simulation
* Green Plug Design |
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Digital Simulation
* Green Plug Design 2
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Digital Simulation

e Green Plug Design 3
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A. M. Sharaf
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Conclusion

* Green Plug:
> Raised PF by average 5%
> Reduced Energy Consumption by an average 5%
> Reduced Harmonics almost 50% on NL load

> Fault Cases showed no sign of excess currents that
would harm the filter

> All controllers had similar controllability, the filters
varied the performance

> Seems they need to be “Tailor Made”

A. M. Sharaf



Conclusion

* Neutral current control has limited
capabilities which in turn showed limited
portability

* Green Plug design 2 performed the best

A. M. Sharaf



Future / Extended Work

 Study on household: loading, THD...

e Use maximum PF controller, or minimum
power controller with Green Plug, which
uses both phase current and voltage
(more costly,and compare advantages)

» Uses single phase filters on both phases

 Transient Analysis on Green Plug /
Household Model

A. M. Sharaf



Future / Extended Work

* Build Prototype, Lab testing, & Field
Testing

A. M. Sharaf
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Introduction

» Electric power distribution systems suffer both voltage and
power quality problems.

» Efficient operation and loss reduction is a priority for
Energy Conservation and efficient Electric Energy
Utilization.

» Massive increase in the use of Nonlinear loads are causing
havoc with Distribution and Utilization systems.

A. M. Sharaf



Introduction

» Nonlinear loads, such as static power converters and arc
furnaces cause excessive power quality problems, voltage
sags/swells and harmonics.

» All contributes to extra Power/Energy Losses and voltage
Stabilization problems as well as Shock Hazards, system
Malfunction and and Equipment Damage

» All results in Poor Utilization and Low Power-Factor,
Feeder Overloading and Noise Interference to adjacent
communication systems [1].

A. M. Sharaf



Introduction

» In order to overcome these problems, Power Filter/CC has
been used with new FACTS based devices such as:

» Active Power filters, STATCOM, MPF, Switched capacitor
compensators are used to enhance power quality [2]

» The APF does not introduce resonance that can move a
harmonic problem from one frequency to another.It can
also be used for power factor correction and loss reduction

13].

A. M. Sharaf



Introduction

* In this presentation, the novel dynamic Filter/Capacitor
Compensator scheme is used in the radial distribution
feeder shown in Figure.las a Dynamic Voltage Regulator

» This Hybrid Dynamic Woltage Regulator (DVR)/
Modulated Power Filter (MPF)/ Capacnor Compensator

(CC)isvalid " Ao ’i “-Power .

—
ITH T

Bus=n P =

g m [
Ideal Switch
RLLC
In1  Onotd —L1 : 2

n
Inz Otz =g m }

Fnrha Ideal Switchz

A M. Sharaf Figure.1 DVR/MPF/CC scheme



System Description

» A sample single-line diagram of a radial distribution feeder
study system is shown in Figure.2 (single-line) and
Figure.3 (simulink). The system comprises a 10 MVA
substation, a step down transformer of 138/25kV, several
2km distribution sections as well as six linear type loads
and one nonlinear load connected by radial feeder.

@

Figure.2 Sample radial distribution network

Vs T Vi fr*l ’T‘vz
Tt
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o

A. M. Sharaf
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System Description

Transmission line
25kv 2km
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Figure.3 Matlab/Simulink Unified Functional model of the radial distribution system
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Novel PWM Switching Control Scheme

» A dynamic tri-loop error driven controller is used to adjust
the switching/pulsing sequence of the GTO complementary
switches 1 and 2 in the modulated power filter compensator
[4]. The topology of dynamic tri-loop error driven controller
IS shown in Figure 4.

] b =
V1ref GamaV Et PWM PWM 1
1
[z —p> > - N

v PID > »(SignalBulses
T Ponal®

VL . en(s)
Vrms1 Gainl Transfer Fenl Saturation PWM?2
PWM Generator

CGO—)
PF
V1 refl

- (N
? . ' " Hen(s)

Vrms2 Gain Transfer Fch2

A4
m

rEp

Figure.4 Dynamic Tri-loop error driven PID controller
A. M. Sharaf



uTr

THE UNIVERSITY OF TRINIDAD AND TOBAGO

Novel PWM Switching Control Scheme

» The dynamic error driven controller comprises three basic
regulating loops.

 The main loop is the voltage stabilization loop, which
functions as a tracking minimum voltage error loop for
load voltage at a radial distribution bus (6) and
maintaining this bus-voltage at 1.0 per unit.

A. M. Sharaf
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Novel PWM Switching Control Scheme

» The second one is an auxiliary loop is the load /current-
dynamic error tracking loop, which is an additional loop to
compensate for any sudden electrical load excursion.

» The third one is an second auxiliary loop for power factor
Improvement.

A. M. Sharaf
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Novel PWM Switching Control Scheme

 All the values of scaling and time delay of the controller
were selected by an offline guided trial and error method
to insure fast response and minimize total Squared error
Functional [5].

 The total dynamic error signal (Et) is the sum of all three
weighted loop-errors and is used as input to the Pl
controller whose proportional and integral gains are 5 and
0.05, respectively.

A. M. Sharaf
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Novel PWM Switching Control Scheme

» The output signal of the PI controller is employed to adjust
PWM reference voltage (modulating voltage) and it is
compared with a fixed carrier signal to produce two
complementary pulses, which are used as the external
control signal for the ideal IGBT switches. With different
states of the switches 1 and 2, the equivalent admittance of
the filter iIs modulated [6].

A. M. Sharaf
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» Three Sample-Study cases were simulated :

» The first case is the radial distribution system without any
reactive power Compensating-Device.

« In the second case, a fixed shunt capacitor (Cf) with
capacitance of 0.20 per unit which is connected at local
bus 4.

» Finally, a dynamic hybrid-type Filter-Compensator (DVR
IMPF/ SCC) is interfaced in between the last linear load
bus and the nonlinear load bus in the third case.

A. M. Sharaf
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MATLAB/SIMULINK Analysis

» Without any compensation, the system has bad dynamic performance,
poor power factor, voltage regulation problems and higher harmonic
content due to the existence of the nonlinear load.

o With a fixed SVC-Capacitor C=0.2pu at bus 4 (in the middle of the
system), the power factor and the voltage profile were somewnhat
Improved but not sufficiently!

» With the additional-dynamic-Switched (DVR) compensation device
located near the end of the distribution feeder, both power factor and
power quality are enhanced significantly. So, the DVR compensation
Schie_me can greatly enhance the power factor, voltage profile and power
quality.

A. M. Sharaf



MATLAB/SIMULINK Analysis

» Comparison of the total harmonic distortion (THD) and Fourier
analysis of the current at each bus was made for the cases with
and without DVR as shown in Table 1. The total harmonic
distortion is apparently reduced by applying the proposed DVR

scheme.

Table.1 The total harmonic distortion and Fourier analysis

Current

15'[

3rd

5th

7th

9th

THD

Without

Compensation

468.7

19.74

5.769

2.546

LFSE

1.170

With SVC

463.0

16.00

5.404

1.527

1.459

i B

With DVR

93.12

10.02

0.091

0.530

1.355

0.285




MATLAB/SIMULINK Analysis

» The dynamic responses of the digital simulation like the
voltage profile is shown in Figure.5.

VR compensatior

Figure.5 Voltage profile of three schemes

A. M. Sharaf
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MATLAB/SIMULINK Analysis

» Total Feeder Power Losses, current and voltage
waveforms of both linear and nonlinear load, real and
reactive power at each bus are all examined in the case of
DVR —device disconnected and connected, as shown in
Figure.6, Figure.7, Figure.8 and Figure.9, respectively.

A. M. Sharaf
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losses in system

w10t

MATLAB/SIMULINK Analysis

PEQ losses in distributed sy stem without campensation
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FE&Q losses in distributed sy stem with 8YC compensation
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y 180 losses in distributed system with SvC and DVR compensation
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Figure.6 Total power losses of three schemes
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MATLAB/SIMULINK Analysis
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(a) Without DVR compensation (b) With added DVR compensation

Figure.7 Current and voltage waveforms of the nonlinear load without and

with DVR compensation
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MATLAB/SIMULINK Analysis
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(a) Without DVR (b) With DVR

Figure.8 Voltage waveforms of the linear load (Bus 6)
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MATLAB/SIMULINK Analysis
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MATLAB/SIMULINK Analysis

» Figure.10 shows the portrait of the loop-error signals in for
each tracking loop-Vs-total error signal.

RSN

L

Figure.10 Error phase-portrait plane for the tri-loop error controller

A. M. Sharaf



Conclusions

» A novel PWM- switched dynamic voltage regulator/power
filter/ capacitor compensator for combined:

» \oltage-Stabilization and loss Reduction scheme is
presented for use In radial distribution /utilization Feeders
supplying nonlinear loads (ARC, Temporal, Cyclical,
Inrush, Converter type,...).

» The proposed dynamic DVR-FACTS-device is controlled
using a tri-loop error driven Pl controller.

» The objective of the added DVR is combined Loss
Reduction and feeder Voltage Stabilization

A. M. Sharaf



Conclusion

» The DVR-Added FACTS device and dynamic tri-loop
dynamic controller is very effective as a low cost tool in
voltage stabilization, power quality improvement and

power factor correction.

» The same DVR-FACTS Scheme can be extended for use
In Renewable Green Energy, dispersed and distributed
generation systems (Wind, Wave, Small Hydro, Hybrid).

A. M. Sharaf
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A Novel Dynamic Voltage
Regulator Compensation Scheme
for a Standalone Village Electricity

Wind Energy Conversion System
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Layout

-Introduction to Wind Energy and Wind
Energy Conversions Systems (WECS),

‘Test Network Layout and Modeling,
-Dynamic Voltage Regulator (DVR) Concept,

‘The Tri-Loop Dynamic Error-Driven PI1
Controller,

-Digital Simulation Results,
-Conclusions.
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Wind Energy

‘Wind energy is one of the fastest growing
renewable energy technologies.

-Increasing by approximately 25% annually over the
period between 2002-2007.

-As of January 1%t 2009, wind energy production in
Canada is 1,876 MW, powering 563,000 Canadian
home.

‘There is the potential in Canada for wind energy to
meet about 20% of all its electricity needs, which can
power 17 million Canadian home.

A. M. Sharaf
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Why Wind Energy?

Pros:
Low Running Cost
Clean Source of Power “No Emissions”

Abundant, Low Cost $ 0.05-0.06/ Kwh
Completely renewable source of power.

Cons:
High Initial Cost-$ 1800-2800/Kw

Low Power Quality (Voltage, Frequency,
Harmonics & Inertia)

A. M. Sharaf
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Rural Areas & Wind Energy

It is economical to use in producing power in

rural isolated /Island / Coastal Off Shore and On
Shore areas.

Problems are caused by the continuous stochastic
variation in the wind speed and load disturbances.

They results in significant fluctuations in output
power, voltages of the network in addition to a low
power factor.

A. M. Sharaf
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SCIG

(Stand alone)
Method of Back to back VS| Back to back VSI Directly
operation connected
to grid
Gearbox Yes No Yes
Direct Drive
Excitation Grid Magnet Excitation
Capacitors
Voltage Control Easy Easy complicated
Frequency Easy Easy complicated
Control

Inertia Negligible Negligible Considerable
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Wind turbine

Gear Box
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The output mechanical power of the wind
turbine 1s 1

P = ECp(/%,B)PAVfV
The tip speed ratio is calculated as:

1

Cp(ﬂaﬁ) = C1(02 %_C?,,B_CMBX _C5je A

1 1 0035
A A+0088 pB+1
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Bus, Bus, Bus, Bus, Bus,

3km feeder 3km feeder 3km feeder 3km feeder

[m
3
CB5 =
/ CcB1 -
CB4 / CB3/ CB2 3 daa (:%
o
= :
Non-Linear Load = e =
5 A = | 2 :
EOYPO s 3 =
g DVR Z=E 2 2=
3 R °
) o Gear Box
QD
g e J__
o
M q ——
E Wind Turbine

Dynamic Load

-the dynamic load is disconnected by opening CB, at t=0.2s and is reclosed at
t=0.3s.

The linear load connected at bus 3, is disconnected by opening CB, at t=0.4s and
is connected at t=0.5s, by closing CB,.
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Reactive power at Bus1 (pu)
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Power Factor at Bus L
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Conclusions

‘Introduction to Wind Energy and Wind Energy
Conversions Systems (WECS),

‘Test Network Layout and Modeling,
-Dynamic Voltage Regulator (DVR) Concept,

‘The Tri-Loop Dynamic Error-Driven PI1
Controller,

‘Simulation Results,
-Conclusion.
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