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 Electric power distribution systems suffer both voltage 

and power quality problems. 

 Efficient operation and loss reduction is a priority for 

Energy Conservation and efficient Electric Energy 

Utilization.  

 Massive increase in the use of Nonlinear loads are 

causing HAVOC with Distribution and Utilization 

systems.  

INTRODUCTION 
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 Nonlinear loads, such as static power converters 
and arc furnaces cause excessive power quality 
problems, voltage sags/swells and harmonics. 

 All contributes to extra Power/Energy Losses and 
voltage Stabilization problems as well as Shock 
Hazards, system Malfunction and  and Equipment 
Damage  

 All results in Poor Utilization and Low Power-
Factor, Feeder Overloading and Noise 
Interference to adjacent communication systems 
[1].  

INTRODUCTION 

5 



 In order to overcome these problems, Power 

Filter/CC  has been used with new FACTS based 

devices such as: 

 Active Power filters, STATCOM, MPF, Switched 

capacitor compensators are used to enhance 

power quality [2]. 

 The APF does not introduce resonance that can 

move a harmonic problem from one frequency to 

another.It can also be used for power factor 

correction and loss reduction [3].  

INTRODUCTION 

6 



What is Power quality ?  

 Definition : “Power quality problem is any power problem 
manifested in voltage, current, or frequency deviation that 
results in failure or misoperation of customer equipment”. 

 Power quality can be simply defined as shown in the interaction 
diagram:  
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What is Power quality ?  

•Voltage Sags 

•Voltage Swells 

•Blackouts/Brownouts 

•Transient 

•Inrush 

•Overcurrent 

•Flickering  

•Harmonics 
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•NLL-Analog/Digital 
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Why are we concerned about PQ? 

North American industries lose Tens-of-Billions of Dollars every 

year in downtime due to power quality problems. (Electrical 

Business Magazine)  

Load nonlinearities in rising and is expected to reach 50 to 70% 

in the year 2005 (Electric Power Research Institute) 

[Computers, UPS, fax machines, printers, fluorescent lighting, 

ASD, industrial rectifiers, DC drives, arc welders, etc).   

The characteristics of the electric loads have changed. 

Harmonics are continuous problem not transient or intermittent. 

The Main reasons behind the growing 

concern about PQ are: 
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Power Quality Issue and Problems 

• Power Quality issues can be roughly broken into a 

number of sub-categories:   

•  Harmonics (sub, super and interharmonics);  

• Voltage swells, sags, fluctuations, flicker, and 

transients 

• Voltage magnitude and frequency deviation, voltage 

imbalance (3ph sys.) 

• Hot grounding loops and ground potential rise 

(GPR)–Safety & Fire Hazards 

• Monitoring and measurement. 
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Power Quality PQ Issue 

Harmonics and NLL issues: 

The harmonic issue (waveform distortion) is a top priority to 

for all equipment manufacturer, users and Electric Utilities 

(New IEC, ANSI, IEEE Standards). 
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SYSTEM MODELS 

Single Line Diagram of Radial Utilization System 

 Converter Type 

 Arc Type 

 Dynamic 

 Cyclical 

 Ripple 

 Inrush 

 Temporal 

 Motorized on/off 

 SMPS 

 ASD 

 Saturation Type 
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Nonlinear Load Models 

Volt-Ampere (VL – IL) 
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Nonlinear Load Models 

Volt-Ampere (VL – IL) 

Temporal time-dependent (Cyclical load) 
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Nonlinear Load Models 

Cyclical Motorized 

Cyclical nonlinear Load 
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Nonlinear Load Models 

Modulated Fanning Effect 

Cyclical Motorized 

Converter-Rectifier Modulated 

Modulated Rectifier Circuit 
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Nonlinear Load Models 

Volt-Ampere (VL – IL) 

Switch Mode Power Supply (SMPS) 
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FL-Starter 

Ballast Nonlinear 

Nonlinear Load Models 
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Nonlinear Load Models 

Volt-Ampere (VL – IL) 
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Switched Modulated Power Filters and Capacitor Compensators 
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Switched Modulated Power Filters and Capacitor Compensators 
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Switched Modulated Power Filters and Capacitor Compensators 

MPF/SPF(Family of Filters – Compensators) Developed by Dr. A. M. Sharaf 
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Switched Modulated Power Filters and Capacitor Compensators 

Economic Tuned-Arm Power Filter and Capacitor Compensator Scheme 

(used in S-phase 2 wire loads) 
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Motorized Inrush Loads 

• Water Pumps 

•A/C 

•Refrigeration 

•Blower / Fans 

Switched Modulated Power Filters and Capacitor Compensators 

Switched Capacitor Compensator Scheme 

(used for on/off Motorized loads) 

N 

M1 

To Load 

L CT 

CS 
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CL 

S2 
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24 



Novel Dynamic Tracking Controllers  
(Family of Smart Controllers Developed by Dr. A. M. Sharaf) 

The Dynamic Control Strategies are: 

 Dynamic minimum current ripple tracking 

 Dynamic minimum current level  

 Dynamic minimum power tracking 

 Dynamic minimum effective power ripple tracking 

 Dynamic minimum RMS source current tracking 

 Dynamic maximum power factor  

 Minimum Harmonic ripple content 

 Minimum reference harmonic ripple content 

 Electric Power/Energy Savings 

 Improve Supply PQ by reducing Harmonics and improve power 

factor and enhance waveforms as close as possible to sine wave 
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Novel Dynamic Controllers 

Dynamic Minimum-RMS Current tracking 
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Novel Dynamic Controllers 

Minimum Harmonic Reference Content  
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Switching Devices (on/off or PWM) 
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Switching Devices (on/off or PWM) 

The solid-state switches (S1, S2) are usually (GTO, IGBT/bridge, 

MOSFET/bridge, SSR, TRIAC) turns “ON” when a pulse g(t) is applied 

to its control gate terminal by the activation switching circuit. Removing 

the pulse will turn the solid-state switch “OFF”  

TS/W=1/fS = (ton + toff)  0<ton<TS/W 

1 
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t 
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t on 

T S/W 

g(t) 

g(t)=1    switch  closed 
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Switching Devices – PWM Circuits 

(1) 

PWM Circuit (Developed by Dr. C. 

Diduch) for use with Matlab/Simulink 
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Switching Devices – PWM Circuits 

(2) 

PWM Circuit (Matlab/Simulink/Stateflow-

Grundlagen) 
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Concept of Modulated Power Filters (MPF) 
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Concept of Modulated Power Filters (MPF) 
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Concept of Modulated Power Filters (MPF) 
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Load is either: 

•Symmetrical Arc Type 

•SMPS 

•Adjustable Speed Drives 

•Asymmetrical Arc-type 

Modulated Tuned Arm Filter (Sym. & Asym.) 
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Modulated Tuned Arm Filter with (SMPS) Load 

Without (THD=74%) With (THD=9%) 
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Nonlinear Temporal Load 

Parameters: 

 

R1=R01+R11sin(wr1*t);  

E1=E01+E11sin(wr2*t);   

R2=R02+R22sin(wr1*t);  

E2=E02+E22sin(wr2*t);   

R2= R1(1+a)     R01=8 R02=12     

R11=2 R22=6   wr1=15 

E2= -E1(1+)        

E01= 46 E02=70      

E11=12 E22=35  wr2=5 
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Without (THD=42%) With (THD=14%) 

Modulated Asymmetrical Tuned-Arm Filter 

Dynamic Controller: Dual loop of RMS current tracking 

and Min. Harmonic Content  

38 



A. M. Sharaf 

Green Plug Filter-GPF 

Professor Dr. Adel M Sharaf,  P. Eng., SMIEEE 

UTT 



A. M. Sharaf 

Description of Green Plug 

Modulated/Switched Dynamic 

Filter/Compensator (MSDFC) for 

Energy Efficiency, Savings and Power 

Quality Enhancement for 

Households  
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A. M. Sharaf 

Outline 
 Objectives 

 Designs 

 Benefits / Application 

 Strategies 

 Digital Simulation 

 Conclusion 

 Future / Extended Work 
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A. M. Sharaf 

Objectives 

• Create a low cost Green Plug design by using 

the neutral or return current for the control 

loop input 

• Run various simulation scenario’s to test the 

Green Plug and control loop’s portability 

• Come up with a final design 
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Designs 

Family of Green Plugs, Energy Misers & MPF/SPF Compensator 

Developed by Dr. A.M. Sharaf 
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A. M. Sharaf 

Designs 
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A. M. Sharaf 

Designs 
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A. M. Sharaf 

Designs 
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A. M. Sharaf 

Designs 
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A. M. Sharaf 

Designs 

Control Schemes 
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A. M. Sharaf 

Designs 
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A. M. Sharaf 

Designs 
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A. M. Sharaf 

Benefits / Application 

 Enhance Power Quality 

 Reduce Energy Consumption 

 Improve Power Factor 

 Reduce THD 

 Clean Waveforms 

 Regulate Voltage 

 Reduce Light Flickering 

 Reduce GPR, neutral voltage/current 
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A. M. Sharaf 

Strategies 

•Digital Simulation using SIMULINK, 

MATALAB software developer for model       

analysis and function constructor 
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A. M. Sharaf 

Strategies 

2 Phase 3 Wire Scott Connection Household Model 
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A. M. Sharaf 

Digital Simulation 

 Green Plug Scheme 1, 2, and 3 

◦ Balanced Case (4.5kW + 1.9kVAR) 

◦ Unbalanced 1 (Phase 1: 4.5kW + 1.9kVAR; Phase 2: 3.5kW + 

1000VAR) 

◦ Unbalanced 2 (Phase 1: 4.5kW + 1.9kVAR; Phase 2: 5.5kW + 

2.5VAR) 

◦ Non-Linear (Phase 1: 500W + 60VAR RECTIFIED; Phase 2: 

2kW + 150VAR) 

◦ Fault Cases: One Phase Open Circuit; One Phase Short Circuit. 
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A. M. Sharaf 

Digital Simulation 

 Approximate 9kVA loading @ 90%PF 

 Filters: 

◦ 150uF, 10mH, & 0.25 ohms 
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A. M. Sharaf 

Digital Simulation 
 Green Plug Design 1 
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A. M. Sharaf 

Digital Simulation 
 Green Plug Design 2 
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A. M. Sharaf 

Digital Simulation 
 Green Plug Design 3 
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A. M. Sharaf 

Conclusion 
 Green Plug: 

◦ Raised PF by average 5% 

◦ Reduced Energy Consumption by an average 5% 

◦ Reduced Harmonics almost 50% on NL load 

◦ Fault Cases showed no sign of excess currents that 
would harm the filter 

◦ All controllers had similar controllability, the filters 
varied the performance 

◦ Seems they need to be “Tailor Made” 
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A. M. Sharaf 

Conclusion 

 Neutral current control has limited 

capabilities which in turn showed limited 

portability 

 Green Plug design 2 performed the best 
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A. M. Sharaf 

Future / Extended Work 

 Study on household: loading, THD... 

 Use maximum PF controller, or minimum 

power controller with Green Plug, which 

uses both phase current and voltage 

(more costly, and compare advantages) 

 Uses single phase filters on both phases 

 Transient Analysis on Green Plug / 

Household Model 
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A. M. Sharaf 

Future / Extended Work 
 

 

 Build Prototype, Lab testing, & Field 

Testing 
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A. M. Sharaf 

A NOVEL POWER QUALITY PQ 

ENHANCEMENT SCHEME 

USING MODULATED POWER 

FILTER COMPENSATOR 



A. M. Sharaf 

Outline 

 Introduction 

 System Description 

 Novel Tri loop Dynamic PWM Switching 

Control Scheme 

 MATLAB/SIMULINK Analysis 

 Conclusions 

 References 
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A. M. Sharaf 

Introduction 

 Electric power distribution systems suffer both voltage and 

power quality problems. 

 Efficient operation and loss reduction is a priority for 

Energy Conservation and efficient Electric Energy 

Utilization.  

 

 Massive increase in the use of Nonlinear loads are causing 

havoc with Distribution and Utilization systems.  
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A. M. Sharaf 

Introduction 

 Nonlinear loads, such as static power converters and arc 
furnaces cause excessive power quality problems, voltage 
sags/swells and harmonics. 

 All contributes to extra Power/Energy Losses and voltage 
Stabilization problems as well as Shock Hazards, system 
Malfunction and  and Equipment Damage  

 

 All results in Poor Utilization and Low Power-Factor, 
Feeder Overloading and Noise Interference to adjacent 
communication systems [1].  
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A. M. Sharaf 

Introduction 

 In order to overcome these problems, Power Filter/CC  has 
been used with new FACTS based devices such as: 

 Active Power filters, STATCOM, MPF, Switched capacitor 
compensators are used to enhance power quality [2]  

 

 The APF does not introduce resonance that can move a 
harmonic problem from one frequency to another.It can 
also be used for power factor correction and loss reduction 
[3].  
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A. M. Sharaf 

Introduction 

 In this presentation, the novel dynamic Filter/Capacitor 
Compensator scheme is used in the radial distribution 
feeder shown in Figure.1as a Dynamic Voltage Regulator 

 This  Hybrid Dynamic Voltage Regulator (DVR)/ 
Modulated Power Filter (MPF)/ Capacitor Compensator 
(CC) is validated using Matlab/Simulink/Sim-Power . 

 

 

 

 

 

Figure.1 DVR/MPF/CC scheme  
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A. M. Sharaf 

System Description 

 A sample single-line diagram of a radial distribution feeder 

study system is shown in Figure.2 (single-line) and 

Figure.3 (simulink). The system comprises a 10 MVA 

substation, a step down transformer of 138/25kV, several 

2km distribution sections as well as six linear type loads 

and one nonlinear load connected by radial feeder. 

 

 

 

 

Figure.2 Sample radial distribution network  
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A. M. Sharaf 

System Description 
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A. M. Sharaf 

Novel PWM Switching Control Scheme  
 A dynamic tri-loop error driven controller is used to adjust 

the switching/pulsing sequence of the GTO complementary 

switches 1 and 2 in the modulated power filter compensator 

[4]. The topology of dynamic tri-loop error driven controller 

is shown in Figure 4. 

 

 

 

 

 

                            Figure.4 Dynamic Tri-loop error driven PID controller 
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A. M. Sharaf 

Novel PWM Switching Control Scheme 

 The dynamic error driven controller comprises three basic 

regulating loops.  

 

 The main loop is the voltage stabilization loop, which 

functions as a tracking minimum voltage error loop for 

load voltage at a radial distribution bus (6) and 

maintaining this bus-voltage at 1.0 per unit.   
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A. M. Sharaf 

Novel PWM Switching Control Scheme 

 The second one is an auxiliary loop is the load /current- 

dynamic error tracking loop, which is an additional loop to 

compensate for any sudden electrical load excursion.  

 

 The third one is an second auxiliary loop for power factor 

improvement.  
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A. M. Sharaf 

Novel PWM Switching Control Scheme 

 All the values of scaling and time delay of the controller 

were selected by an offline guided trial and error method 

to insure fast response and minimize total Squared error 

Functional [5]. 

 

 The total dynamic error signal (Et) is the sum of all three 

weighted loop-errors and is used as input to the PI 

controller whose proportional and integral gains are 5 and 

0.05, respectively. 
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A. M. Sharaf 

 

Novel PWM Switching Control Scheme 

 The output signal of the PI controller is employed to adjust 

PWM reference voltage (modulating voltage) and it is 

compared with a fixed carrier signal to produce two 

complementary pulses, which are used as the external 

control signal for the ideal IGBT switches. With different 

states of the switches 1 and 2, the equivalent admittance of 

the filter is modulated [6]. 
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A. M. Sharaf 

MATLAB/SIMULINK Analysis  
 Three Sample-Study cases were simulated : 

 The first case is the radial distribution system without any 
reactive power Compensating-Device.  

 

 In the second case, a fixed shunt capacitor (Cf) with 
capacitance of 0.20 per unit which is connected at local 
bus 4.  

 

 Finally, a dynamic hybrid-type Filter-Compensator (DVR 
/MPF/ SCC) is interfaced in between the last linear load 
bus and the nonlinear load bus in the third case. 
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MATLAB/SIMULINK Analysis 
 Without any compensation, the system has bad dynamic performance, 

poor power factor, voltage regulation problems and higher harmonic 
content due to the existence of the nonlinear load.  

 

 With a fixed SVC-Capacitor C=0.2pu at bus 4 (in the middle of the 
system), the power factor and the voltage profile were somewhat 
improved but not sufficiently!  

 

 With the additional-dynamic-Switched (DVR) compensation device 
located near the end of the distribution feeder, both power factor and 
power quality are enhanced significantly. So, the DVR compensation 
Scheme can greatly enhance the power factor, voltage profile and power 
quality.  
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MATLAB/SIMULINK Analysis 

 Comparison of the total harmonic distortion (THD) and Fourier 

analysis of the current at each bus was made for the cases with 

and without DVR as shown in Table 1. The total harmonic 

distortion is apparently reduced by applying the proposed DVR 

scheme.  

Table.1 The total harmonic distortion and Fourier analysis 

 Current  1st  3rd  5th  7th  9th  THD 

Without 

Compensation  
468.7  19.74  5.769  2.546  1.731  1.170  

With SVC  
463.0 16.00  5.404  1.527  1.459  1.157  

With DVR  
93.12  10.02  0.091  0.530  1.355  0.285  
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MATLAB/SIMULINK Analysis 

 The dynamic responses of the digital simulation like the 

voltage profile is shown in Figure.5. 

 

 

 

 

 

 

 

Figure.5 Voltage profile of three schemes 

 

1 2 3 4 5 6 7 8
22

22.2

22.4

22.6

22.8

23

23.2

23.4

23.6

23.8

24

without compensation

with 1 capacitor compensation @ 4

with 1 capacitor and DVR compensation 

Voltage Drop at buses

Bus

V
o
lt
a
g
e

79 



A. M. Sharaf 

MATLAB/SIMULINK Analysis 

 Total Feeder Power Losses,  current and voltage 

waveforms of both linear and nonlinear load, real and 

reactive power at each bus are all examined in the case of 

DVR –device disconnected and connected, as shown in 

Figure.6, Figure.7, Figure.8 and Figure.9, respectively.  
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MATLAB/SIMULINK Analysis 

Figure.6 Total power losses of three schemes 
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MATLAB/SIMULINK Analysis 

Figure.7 Current and voltage waveforms of the nonlinear load  without and 

with DVR compensation 

(a) Without DVR compensation (b) With added DVR compensation 
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MATLAB/SIMULINK Analysis 

(a) Without DVR (b) With DVR 

Figure.8 Voltage waveforms of the linear load (Bus 6) 
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MATLAB/SIMULINK Analysis 

Figure.9.1 Voltage waveforms and P-Q profile  

without DVR compensation 
Figure.9.2 Voltage and P-Q profile  

with added DVR compensation 
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MATLAB/SIMULINK Analysis 

 Figure.10 shows the portrait of the loop-error signals in for 

each tracking loop-Vs-total error signal. 
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Figure.10 Error phase-portrait plane for the tri-loop error controller 
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Conclusions 

 A novel PWM- switched dynamic voltage regulator/power 
filter/ capacitor compensator for combined: 

  Voltage-Stabilization and loss Reduction scheme is 
presented for use  in  radial distribution /utilization Feeders 
supplying nonlinear loads (ARC, Temporal, Cyclical, 
Inrush, Converter type,…).  

 

 The proposed dynamic DVR-FACTS-device is controlled 
using a tri-loop error driven PI controller. 

 The objective of  the added DVR is combined Loss 
Reduction and feeder Voltage Stabilization 
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Conclusion 

 The DVR-Added FACTS device and dynamic tri-loop 

dynamic controller is very effective as a low cost tool in 

voltage stabilization, power quality improvement and 

power factor correction.  

 
 The same DVR-FACTS Scheme can be extended for use 

in Renewable Green Energy, dispersed and distributed 

generation systems (Wind, Wave, Small Hydro, Hybrid).  
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Layout 
•Introduction to Wind Energy and Wind 
Energy Conversions Systems (WECS), 

•Test Network Layout and Modeling, 

•Dynamic Voltage Regulator (DVR) Concept, 

•The Tri-Loop Dynamic Error-Driven PI 
Controller, 

•Digital Simulation Results, 

•Conclusions. 
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Wind Energy 
•Wind energy is one of the fastest growing 
renewable energy technologies. 

•Increasing by approximately 25% annually over the 
period between 2002-2007. 

•As of January 1st 2009, wind energy production in 
Canada is 1,876 MW, powering 563,000 Canadian 
home.  

•There is the potential in Canada for wind energy to 
meet about 20% of all its electricity needs, which can 
power 17 million Canadian home. 
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Why Wind Energy? 

• Pros: 

• Low Running Cost 

• Clean Source of Power “No Emissions” 

• Abundant, Low Cost $ 0.05-0.06/Kwh 

• Completely renewable source of power.  

• Cons: 

• High Initial Cost-$ 1800-2800/Kw 

• Low Power Quality (Voltage, Frequency, 
Harmonics & Inertia) 
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Rural Areas & Wind Energy 
It is economical to use in producing power in 
rural isolated/Island/Coastal Off Shore and On 
Shore areas. 

 Problems are caused by the continuous stochastic 
variation in the wind speed and load disturbances. 

 They results in significant fluctuations in  output 
power, voltages of the network in addition to a low 

power factor.  



Wind Energy Conversion Systems 
DFIG PMSG SCIG 

(Stand alone) 

Method of 

operation 

Back to back VSI Back to back VSI Directly 

connected  

to grid 

Gearbox Yes No 

Direct Drive 

Yes 

Excitation Grid Magnet Excitation 

Capacitors 

Voltage Control Easy Easy complicated 

Frequency 

Control 

Easy Easy complicated 

Inertia  Negligible Negligible Considerable 
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Separately Excited (SE)  
Squirrel Cage Induction Generator (SCIG) 

Excitation capacitor bank 
Wind turbine 

SCIG 
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System Layout 
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WIND TURBINE MODELING 

The output mechanical power of the wind 
turbine is  
 
 

The tip speed ratio is calculated as: 
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 The Dynamic Voltage Regulator 

(DVR) 
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Tri-Loop Dynamic Error Driven PI 
Controller PWM 
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System Layout 

•the dynamic load is disconnected by opening CB4 at t=0.2s and is reclosed at 

t=0.3s.  

•The linear load connected at bus 3, is disconnected by opening CB2 at t=0.4s and 

is connected at t=0.5s, by closing CB2. 
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SIMULATION RESULTS 
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SIMULATION RESULTS 
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SIMULATION RESULTS 
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SIMULATION RESULTS 
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SIMULATION RESULTS 
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Conclusions 
•Introduction to Wind Energy and Wind Energy 
Conversions Systems (WECS), 

•Test Network Layout and Modeling, 

•Dynamic Voltage Regulator (DVR) Concept, 

•The Tri-Loop Dynamic Error-Driven PI 
Controller, 

•Simulation Results, 

•Conclusion. 
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Thank You for  
Your Attendance & 

 Attention  
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