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Importance of Problem
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Talk Goals

Sparse Signal Recovery is an interesting area with many
potential applications

Tools developed for solving the Sparse Signal Recovery problem
are useful for signal processing practitioners to know
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Problem Description

t is N × 1 measurement vector

Φ is N ×M Dictionary matrix. M >> N .

w is M×1 desired vector which is sparse with K non-zero entries

ε is the additive noise modeled as additive white Gaussian
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Problem Statement

Noise Free Case: Given a target signal t and a dictionary Φ, find
the weights w that solve:

min
w

M∑
i=1

I (wi 6= 0) such that t = Φw

where I (.) is the indicator function

Noisy Case: Given a target signal t and a dictionary Φ, find the
weights w that solve:

min
w

M∑
i=1

I (wi 6= 0) such that ‖t − Φw‖2
2 ≤ β
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Complexity

Search over all possible subsets, which would mean a search over
a total of (MCK ) subsets. Problem NP hard. With
M = 30,N = 20, and K = 10 there are 3× 107 subsets (Very
Complex)

A branch and bound algorithm can be used to find the optimal
solution. The space of subsets searched is pruned but the search
may still be very complex.

Indicator function not continuous and so not amenable to
standard optimization tools.

Challenge: Find low complexity methods with acceptable
performance
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Applications

Signal Representation (Mallat, Coifman, Wickerhauser, Donoho,
...)

EEG/MEG (Leahy, Gorodnitsky, Ioannides, ...)

Functional Approximation and Neural Networks (Chen,
Natarajan, Cun, Hassibi, ...)

Bandlimited extrapolations and spectral estimation (Papoulis,
Lee, Cabrera, Parks, ...)

Speech Coding (Ozawa, Ono, Kroon, Atal, ...)

Sparse channel equalization (Fevrier, Greenstein, Proakis, )

Compressive Sampling (Donoho, Candes, Tao..)
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DFT Example

N chosen to be 64 in this example.

Measurement t:

t[n] = cosω0n, n = 0, 1, 2, ..,N − 1

ω0 =
2π

64

33

2

Dictionary Elements:

φk = [1, e−jωk , e−j2ωk , .., e−j(N−1)ωk ]T , ωk =
2π

M

Consider M = 64, 128, 256 and 512
NOTE: The frequency components are included in the dictionary Φ
for M = 128, 256, and 512.
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FFT Results with Different M
FFT Results

M=64 M=128

M=256 M=512
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Magnetoencephalography (MEG)

Given measured magnetic fields outside of the head, the goal is to
locate the responsible current sources inside the head.

MEG Example
♦ Given measured magnetic fields outside of the head, we would 

like to locate the responsible current sources inside the head.

= MEG measurement point
= Candidate source location
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MEG Example

At any given time, typically only a few sources are active (SPARSE).MEG Example
♦ At any given time, typically only a few sources are active.

=  Candidate source location
=  MEG measurement point

=  Active source location
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MEG Formulation

Forming the overcomplete dictionary Φ

The number of rows equals the number of sensors.
The number of columns equals the number of possible source
locations.
Φij = the magnetic field measured at sensor i produced by a
unit current at location j .
We can compute Φ using a boundary element brain model and
Maxwells equations.

Many different combinations of current sources can produce the
same observed magnetic field t.

By finding the sparsest signal representation/basis, we find the
smallest number of sources capable of producing the observed
field.

Such a representation is of neurophysiological significance
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Compressive Sampling

Transform Coding Compressed Sensing
Ψ w b

Ψ w bA A t

Φ

Compressive Sensing

Compressed Sensing
Ψ w b

Ψ w bA A t

Φ

Computation : t → w → b
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Potential Approaches

Problem NP hard and so need alternate strategies

Greedy Search Techniques: Matching Pursuit, Orthogonal
Matching Pursuit

Minimizing Diversity Measures: Indicator function not
continuous. Define Surrogate Cost functions that are more
tractable and whose minimization leads to sparse solutions, e.g.
`1 minimization

Bayesian Methods: Make appropriate Statistical assumptions on
the solution and apply estimation techniques to identify the
desired sparse solution

Bhaskar RaoDepartment of Electrical and Computer EngineeringUniversity of California, San Diego ()Sparse Signal Recovery: Theory, Applications and Algorithms 19 / 42



Greedy Search Methods: Matching Pursuit

Select a column that is most aligned with the current residual

0.7       4 ….
‐0.3         ….

t Φ w ε

Remove its contribution

Stop when residual becomes small enough or if we have
exceeded some sparsity threshold.

Some Variations

Matching Pursuit [Mallat & Zhang]
Orthogonal Matching Pursuit [Pati et al.]
Order Recursive Matching Pursuit (ORMP)
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Inverse techniques

For the systems of equations Φw = t, the solution set is
characterized by {ws : ws = Φ+t + v , v ∈ N (Φ)}, where N (Φ)
denotes the null space of Φ and Φ+ = ΦT (ΦΦT )−1.

Minimum Norm solution : The minimum `2 norm solution
wmn = Φ+t is a popular solution

Noisy Case: regularized `2 norm solution often employed and is given
by

wreg = ΦT (ΦΦT + λI )−1t

Problem: Solution is not Sparse
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Diversity Measures

Functionals whose minimization leads to sparse solutions

Many examples are found in the fields of economics, social
science and information theory

These functionals are concave which leads to difficult
optimization problems
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Examples of Diversity Measures

`(p≤1) Diversity Measure

E (p)(w) =
M∑
l=1

|wl |p, p ≤ 1

Gaussian Entropy

HG (w) =
M∑
l=1

ln |wl |2

Shannon Entropy

HS(w) = −
M∑
l=1

w̃l ln w̃l . where w̃l =
w 2

l

‖w‖2
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Diversity Minimization

Noiseless Case

min
w

E (p)(w) =
M∑
l=1

|wl |p subject to Φw = t

Noisy Case

min
w

(
‖t − Φw‖2 + λ

M∑
l=1

|wl |p
)

p = 1 is a very popular choice because of the convex nature of the
optimization problem (Basis Pursuit and Lasso).
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Bayesian Methods

Maximum Aposteriori Approach (MAP)

Assume a sparsity inducing prior on the latent variable w
Develop an appropriate MAP estimation algorithm

Empirical Bayes

Assume a parameterized prior on the latent variable w
(hyperparameters)
Marginalize over the latent variable w and estimate the
hyperparameters
Determine the posterior distribution of w and obtain a point as
the mean, mode or median of this density
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Generalized Gaussian Distribution

Density function: Subgaussian: p > 2 and Supergaussian : p < 2

f (x) =
p

2σΓ( 1
p

)
exp

{
−
(
|x |
σ

)p}
Generalized Gaussian Distribution
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Student t Distribution

Density function:

f (x) =
Γ(ν+1

2
)

√
πνΓ(ν

2
)

(
1 +

x2

ν

)( ν+1
2 )

Student-t Distribution
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2 2
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MAP using a Supergaussian prior

Assuming a Gaussian likelihood model for f (t|w), we can find MAP
weight estimates

wMAP = arg max
w

log f (w |t)

= arg max
w

(log f (t|w) + log f (w))

= arg min
w

(
‖Φw − t‖2 + λ

M∑
l=1

|wl |p
)

This is essentially a regularized LS framework. Interesting range for p
is p ≤ 1.
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MAP Estimate: FOCal Underdetermined System

Solver (FOCUSS)

Approach involves solving a sequence of Regularized Weighted
Minimum Norm problems

qk+1 = arg min
q

(
‖Φk+1q − t‖2 + λ‖q‖2

)
where Φk+1 = ΦMk+1, and Mk+1 = diag(|wk.l |1−

p
2 .

wk+1 = Mk+1qk+1.

p = 0 is the `0 minimization and p = 1 is `1 minimization
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FOCUSS summary

For p < 1, the solution is initial condition dependent

Prior knowledge can be incorporated
Minimum norm is a suitable choice
Can retry with several initial conditions

Computationally more complex than Matching Pursuit
algorithms

Sparsity versus tolerance tradeoff more involved

Factor p allows a trade-off between the speed of convergence
and the sparsity obtained
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Convergence Errors vs. Structural ErrorsConvergence Errors vs. Structural Errors

w0w*

-lo
g 

p(
w

|t)

w0w*
-lo

g 
p(

w
|t)

Convergence Error Structural Error

w*   =   solution we have converged to
w0 =   maximally sparse solution
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Shortcomings of these Methods

p = 1

Basis Pursuit/Lasso often suffer from structural errors.

Therefore, regardless of initialization, we may never find the best
solution.

p < 1

The FOCUSS class of algorithms suffers from numerous
suboptimal local minima and therefore convergence errors.

In the low noise limit, the number of local minima K satisfies

K ∈
[(

M − 1
N

)
+ 1,

(
M
N

)]
At most local minima, the number of nonzero coefficients is
equal to N , the number of rows in the dictionary.
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Empirical Bayesian Method

Main Steps

Parameterized prior f (w |γ)

Marginalize

f (t|γ) =

∫
f (t,w |γ)dw =

∫
f (t|w)f (w |γ)dw

Estimate the hyperparameter γ̂

Determine the posterior density of the latent variable f (w |t, γ̂)

Obtain point estimate of w

Example: Sparse Bayesian Learning (SBL by Tipping)
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DFT ExampleDFT Results Using FOCUSS
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Empirical Tests

Random overcomplete bases Φ and sparse weight vectors w0

were generated and used to create target signals t, i.e.,
t = Φw0 + ε

SBL (Empirical Bayes) was compared with Basis Pursuit and
FOCUSS (with various p values) in the task of recovering w0.
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Experiment 1: Comparison with Noiseless Data

Randomized Φ (20 rows by 40 columns).

Diversity of the true w0 is 7.

Results are from 1000 independent trials.

NOTE: An error occurs whenever an algorithm converges to a
solution w not equal to w0.

Experiment I:  Noiseless Comparison

♦ Randomized Φ (20 rows by 40 columns).
♦ Diversity of the ‘true’ w0 is 7.
♦ Results are from 1000 independent trials.

♦ NOTE: An error occurs whenever an algorithm converges to a 
solution w not equal to w0. 
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Experiment II: Comparison with Noisy Data

Randomized Φ (20 rows by 40 columns).

Diversity of the true w0 is 7.

20 db AWGN

Results are from 1000 independent trials.

NOTE: We no longer distinguish convergence errors from structural
errors.

Experiment II: Noisy Comparisons

♦ Randomized Φ (20 rows by 40 columns).
♦ 20 dB AWGN.
♦ Diversity of the ‘true’ w is 7.
♦ Results are from 1000 independent trials.

♦ NOTE: We no longer distinguish convergence errors from 
structural errors.
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MEG Example

Data based on CTF MEG system at UCSF with 275 scalp
sensors.

Forward model based on 40, 000 points (vertices of a triangular
grid) and 3 different scale factors.

Dimensions of lead field matrix (dictionary): 275 by 120, 000.

Overcompleteness ratio approximately 436.

Up to 40 unknown dipole components were randomly placed
throughout the sample space.

SBL was able to resolve roughly twice as many dipoles as the
next best method (Ramirez 2005).
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Summary

Discussed role of sparseness in linear inverse problems

Discussed Applications of Sparsity

Discussed methods for computing sparse solutions

Matching Pursuit Algorithms
MAP methods (FOCUSS Algorithm and `1 minimization)
Empirical Bayes (Sparse Bayesian Learning (SBL))

Expectation is that there will be continued growth in the application
domain as well as in the algorithm development.
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