Sparse Signal Recovery: Theory, Applications and Algorithms

Bhaskar Rao Department of Electrical and Computer Engineering University of California, San Diego

Collaborators: I. Gorodonitsky, S. Cotter, D. Wipf, J. Palmer, K. Kreutz-Delgado

Acknowledgement: Travel support provided by Office of Naval Research Global under Grant Number: N62909-09-1-1024. The

research was supported by several grants from the National Science Foundation, most recently CCF - 0830612

Outline

1 Talk Objective

2 Sparse Signal Recovery Problem

3 Applications

- 4 Computational Algorithms
- 5 Performance Evaluation

6 Conclusion

- (∃)

Outline

Talk Objective

2 Sparse Signal Recovery Problem

3 Applications

- 4 Computational Algorithms
- 5 Performance Evaluation

6 Conclusion

Organized with Prof. Bresler a Special Session at the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing

SPEC-DSP: SIGNAL PROCESSING WITH SPARSENESS CONSTRAINT

Signal Processing with the Sparseness ConstraintIII-1861 B. Rao (University of California, San Diego, USA)
Application of Basis Pursuit in Spectrum Estimation
Parsimony and Wavelet Method for Denoising
Parsimonious Side Propagation
Fast Optimal and Suboptimal Algorithms for Sparse Solutions to Linear Inverse Problems
Measures and Algorithms for Best Basis Selection
Sparse Inverse Solution Methods for Signal and Image Processing ApplicationsIII-1885 B. Jeffs (Brigham Young University, USA)
Image Denoising Using Multiple Compaction DomainsIII-1889 P. Ishwar, K. Ratakonda, P. Moulin, N. Ahuja (University of Illinois, Urbana-Champaign, USA)

- Sparse Signal Recovery is an interesting area with many potential applications
- Tools developed for solving the Sparse Signal Recovery problem are useful for signal processing practitioners to know

Outline

1 Talk Objective

2 Sparse Signal Recovery Problem

3 Applications

- 4 Computational Algorithms
- 5 Performance Evaluation

6 Conclusion

Problem Description

- t is $N \times 1$ measurement vector
- Φ is $N \times M$ Dictionary matrix. M >> N.
- w is $M \times 1$ desired vector which is sparse with K non-zero entries
- ϵ is the additive noise modeled as additive white Gaussian

Problem Statement

Noise Free Case: Given a target signal t and a dictionary Φ , find the weights w that solve:

$$\min_{w} \sum_{i=1}^{M} I(w_i \neq 0) \text{ such that } t = \Phi w$$

where I(.) is the indicator function

Noisy Case: Given a target signal t and a dictionary Φ , find the weights w that solve:

$$\min_{w} \sum_{i=1}^{M} I(w_i \neq 0)$$
 such that $\|t - \Phi w\|_2^2 \leq eta$

- Search over all possible subsets, which would mean a search over a total of $({}^{M}C_{K})$ subsets. Problem NP hard. With M = 30, N = 20, and K = 10 there are 3×10^{7} subsets (Very Complex)
- A branch and bound algorithm can be used to find the optimal solution. The space of subsets searched is pruned but the search may still be very complex.
- Indicator function not continuous and so not amenable to standard optimization tools.

Challenge: Find low complexity methods with acceptable performance

Outline

1 Talk Objective

2 Sparse Signal Recovery Problem

3 Applications

- 4 Computational Algorithms
- 5 Performance Evaluation

6 Conclusion

- Signal Representation (Mallat, Coifman, Wickerhauser, Donoho, ...)
- EEG/MEG (Leahy, Gorodnitsky, Ioannides, ...)
- Functional Approximation and Neural Networks (Chen, Natarajan, Cun, Hassibi, ...)
- Bandlimited extrapolations and spectral estimation (Papoulis, Lee, Cabrera, Parks, ...)
- Speech Coding (Ozawa, Ono, Kroon, Atal, ...)
- Sparse channel equalization (Fevrier, Greenstein, Proakis,)
- Compressive Sampling (Donoho, Candes, Tao..)

DFT Example

N chosen to be 64 in this example.

Measurement t:

$$t[n] = \cos \omega_0 n, n = 0, 1, 2, .., N - 1$$

$$\omega_0 = \frac{2\pi}{64} \frac{33}{2}$$

Dictionary Elements:

$$\phi_k = [1, e^{-j\omega_k}, e^{-j2\omega_k}, ..., e^{-j(N-1)\omega_k}]^T, \omega_k = \frac{2\pi}{M}$$

Consider M = 64, 128, 256 and 512 NOTE: The frequency components are included in the dictionary Φ for M = 128, 256, and 512.

FFT Results with Different M

Bhaskar RaoDepartment of Electrical and CSparse Signal Recovery: Theory, Application

Magnetoencephalography (MEG)

Given measured magnetic fields outside of the head, the goal is to locate the responsible current sources inside the head.

MEG Example

At any given time, typically only a few sources are active (SPARSE).

MEG Formulation

- $\bullet\,$ Forming the overcomplete dictionary $\Phi\,$
 - The number of rows equals the number of sensors.
 - The number of columns equals the number of possible source locations.
 - Φ_{ij} = the magnetic field measured at sensor *i* produced by a unit current at location *j*.
 - We can compute Φ using a boundary element brain model and Maxwells equations.
- Many different combinations of current sources can produce the same observed magnetic field *t*.
- By finding the sparsest signal representation/basis, we find the smallest number of sources capable of producing the observed field.
- Such a representation is of neurophysiological significance

▶ ★ 臣 ▶ …

Bhaskar RaoDepartment of Electrical and CSparse Signal Recovery: Theory, Application

э

A B F A B F

- ∢ 🗇 🕨

Transform Coding

< 17 ▶

Transform Coding

Compressive Sensing

Transform Coding

Compressive Sensing

Computation :
$$t \rightarrow w \rightarrow b$$

Bhaskar RaoDepartment of Electrical and CSparse Signal Recovery: Theory, Application

Outline

1 Talk Objective

- 2 Sparse Signal Recovery Problem
- 3 Applications
- 4 Computational Algorithms
- 5 Performance Evaluation

6 Conclusion

Problem NP hard and so need alternate strategies

- Greedy Search Techniques: Matching Pursuit, Orthogonal Matching Pursuit
- Minimizing Diversity Measures: Indicator function not continuous. Define Surrogate Cost functions that are more tractable and whose minimization leads to sparse solutions, e.g. \$\ell_1\$ minimization
- Bayesian Methods: Make appropriate Statistical assumptions on the solution and apply estimation techniques to identify the desired sparse solution

Greedy Search Methods: Matching Pursuit

• Select a column that is most aligned with the current residual

- Remove its contribution
- Stop when residual becomes small enough or if we have exceeded some sparsity threshold.
- Some Variations
 - Matching Pursuit [Mallat & Zhang]
 - Orthogonal Matching Pursuit [Pati et al.]
 - Order Recursive Matching Pursuit (ORMP)

For the systems of equations $\Phi w = t$, the solution set is characterized by $\{w_s : w_s = \Phi^+ t + v, v \in \mathcal{N}(\Phi)\}$, where $\mathcal{N}(\Phi)$ denotes the null space of Φ and $\Phi^+ = \Phi^T (\Phi \Phi^T)^{-1}$.

Minimum Norm solution : The minimum ℓ_2 norm solution $w_{mn} = \Phi^+ t$ is a popular solution

Noisy Case: regularized ℓ_2 norm solution often employed and is given by

$$w_{reg} = \Phi^T (\Phi \Phi^T + \lambda I)^{-1} t$$

Problem: Solution is not Sparse

- Functionals whose minimization leads to sparse solutions
- Many examples are found in the fields of economics, social science and information theory
- These functionals are concave which leads to difficult optimization problems

Examples of Diversity Measures

$\ell_{(p \leq 1)}$ Diversity Measure

$$E^{(p)}(w) = \sum_{l=1}^{M} |w_l|^p, p \leq 1$$

Gaussian Entropy

$$H_G(w) = \sum_{l=1}^M \ln |w_l|^2$$

Shannon Entropy

$$H_{\mathcal{S}}(w) = -\sum_{l=1}^{M} ilde{w}_l \ln ilde{w}_l.$$
 where $ilde{w}_l = rac{w_l^2}{\|w\|^2}$

Noiseless Case

$$\min_{w} E^{(p)}(w) = \sum_{l=1}^{M} |w_l|^p \text{ subject to } \Phi w = t$$

Noisy Case

$$\min_{w} \left(\|t - \Phi w\|^2 + \lambda \sum_{l=1}^{M} |w_l|^p \right)$$

p = 1 is a very popular choice because of the convex nature of the optimization problem (Basis Pursuit and Lasso).

• Maximum Aposteriori Approach (MAP)

- Assume a sparsity inducing prior on the latent variable w
- Develop an appropriate MAP estimation algorithm

• Empirical Bayes

- Assume a parameterized prior on the latent variable *w* (hyperparameters)
- Marginalize over the latent variable *w* and estimate the hyperparameters
- Determine the posterior distribution of *w* and obtain a point as the mean, mode or median of this density

Generalized Gaussian Distribution

Density function: Subgaussian: p > 2 and Supergaussian : p < 2

$$f(x) = \frac{p}{2\sigma\Gamma(\frac{1}{p})} \exp\left\{-\left(\frac{|x|}{\sigma}\right)^{p}\right\}$$

Bhaskar RaoDepartment of Electrical and CSparse Signal Recovery: Theory, Application

Student t Distribution

Density function:

$$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi\nu}\Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{\left(\frac{\nu+1}{2}\right)}$$

Bhaskar RaoDepartment of Electrical and CSparse Signal Recovery: Theory, Application

< ∃⇒

Assuming a Gaussian likelihood model for f(t|w), we can find MAP weight estimates

$$w_{MAP} = \arg \max_{w} \log f(w|t)$$

= $\arg \max_{w} (\log f(t|w) + \log f(w))$
= $\arg \min_{w} \left(\|\Phi w - t\|^2 + \lambda \sum_{l=1}^{M} |w_l|^p \right)$

This is essentially a regularized LS framework. Interesting range for p is $p \leq 1$.

MAP Estimate: FOCal Underdetermined System Solver (FOCUSS)

Approach involves solving a sequence of Regularized Weighted Minimum Norm problems

$$q_{k+1} = \arg\min_{q} \left(\|\Phi_{k+1}q - t\|^2 + \lambda \|q\|^2 \right)$$

where $\Phi_{k+1} = \Phi M_{k+1}$, and $M_{k+1} = \operatorname{diag}(|w_{k,l}|^{1-\frac{p}{2}})$.

$$w_{k+1} = M_{k+1}q_{k+1}.$$

p=0 is the ℓ_0 minimization and p=1 is ℓ_1 minimization

• For p < 1, the solution is initial condition dependent

- Prior knowledge can be incorporated
- Minimum norm is a suitable choice
- Can retry with several initial conditions
- Computationally more complex than Matching Pursuit algorithms
- Sparsity versus tolerance tradeoff more involved
- Factor *p* allows a trade-off between the speed of convergence and the sparsity obtained

Convergence Errors vs. Structural Errors

 $w_* =$ solution we have converged to $w_0 =$ maximally sparse solution

Shortcomings of these Methods

p = 1

- Basis Pursuit/Lasso often suffer from structural errors.
- Therefore, regardless of initialization, we may never find the best solution.

p < 1

- The FOCUSS class of algorithms suffers from numerous suboptimal local minima and therefore convergence errors.
- In the low noise limit, the number of local minima K satisfies

$$K \in \left[\left(egin{array}{c} M-1 \\ N \end{array}
ight) + 1, \left(egin{array}{c} M \\ N \end{array}
ight)
ight]$$

• At most local minima, the number of nonzero coefficients is equal to N, the number of rows in the dictionary.

Empirical Bayesian Method

Main Steps

- Parameterized prior $f(w|\gamma)$
- Marginalize

$$f(t|\gamma) = \int f(t, w|\gamma) dw = \int f(t|w) f(w|\gamma) dw$$

- Estimate the hyperparameter $\hat{\gamma}$
- Determine the posterior density of the latent variable $f(w|t,\hat{\gamma})$
- Obtain point estimate of w

Example: Sparse Bayesian Learning (SBL by Tipping)

Outline

1 Talk Objective

2 Sparse Signal Recovery Problem

3 Applications

- 4 Computational Algorithms
- 5 Performance Evaluation

6 Conclusion

-∢∃>

DFT Example

35 / 42

æ

-

- Random overcomplete bases Φ and sparse weight vectors w₀ were generated and used to create target signals t, i.e., t = Φw₀ + ε
- SBL (Empirical Bayes) was compared with Basis Pursuit and FOCUSS (with various p values) in the task of recovering w₀.

Experiment 1: Comparison with Noiseless Data

- Randomized Φ (20 rows by 40 columns).
- Diversity of the true w_0 is 7.
- Results are from 1000 independent trials.

NOTE: An error occurs whenever an algorithm converges to a solution w not equal to w_0 .

	FOCUSS $(p = 0.001)$	FOCUSS $(p = 0.9)$	Basis Pursuit $(p = 1.0)$	SBL
Convergence Errors Structural Errors	34.1% 0.0%	18.1% 5.7%	0.0% 22.3%	7.4% 0.0%
Total Errors	34.1%	23.8%	22.3%	7.4%

Experiment II: Comparison with Noisy Data

- Randomized Φ (20 rows by 40 columns).
- Diversity of the true w_0 is 7.
- 20 db AWGN
- Results are from 1000 independent trials.

NOTE: We no longer distinguish convergence errors from structural errors.

	FOCUSS $(p = 0.001)$	FOCUSS $(p = 0.9)$	Basis Pursuit $(p = 1.0)$	SBL
Total Errors	52.2%	43.1%	45.5%	21.1%

Bhaskar RaoDepartment of Electrical and CSparse Signal Recovery: Theory, Application

- Data based on CTF MEG system at UCSF with 275 scalp sensors.
- Forward model based on 40,000 points (vertices of a triangular grid) and 3 different scale factors.
- Dimensions of lead field matrix (dictionary): 275 by 120,000.
- Overcompleteness ratio approximately 436.
- Up to 40 unknown dipole components were randomly placed throughout the sample space.
- SBL was able to resolve roughly twice as many dipoles as the next best method (Ramirez 2005).

Outline

1 Talk Objective

2 Sparse Signal Recovery Problem

3 Applications

- 4 Computational Algorithms
- 5 Performance Evaluation

- Discussed role of sparseness in linear inverse problems
- Discussed Applications of Sparsity
- Discussed methods for computing sparse solutions
 - Matching Pursuit Algorithms
 - MAP methods (FOCUSS Algorithm and ℓ_1 minimization)
 - Empirical Bayes (Sparse Bayesian Learning (SBL))

Expectation is that there will be continued growth in the application domain as well as in the algorithm development.