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Introduction

"i'-"ﬂeview of Intelligent System Theory

UFuzzy Systems -~
UNeural Networks 5 W
U Evolutionary Computation 3=

U Expert System

U Data Mining Simpler, faster, and
0. .. more intelligent

Fuzzy system < Neural network

l J
I

Fuzzy Neural Network

Introduction

) 4 Fuzzy System

Rule Set 7| Label Set

b L

¥

input output
—» Fuzzifier = Inference Mechanizsm | Defuzzifier —»

URule set: contains a number of fuzzy IF-THEN rules.
ULabel set: defines the membership functions of the
fuzzy sets used in the fuzzy rules.
UlInference mechanism: performs the inference
operations on the rules.
UFuzzifier: transforms the crisp inputs into degrees of
match with linguistic values.
UDefuzzifier: transforms the fuzzy results of the
inference into a crisp output. 6
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Introduction

' 4 Fuzzy Set

Membership function (MF) is used to describe the
degree of belonging of an object

Triangular membership: Gaussian membership:
[x=m| ; x—c)’
sl (flxemEe 0= expl- ")
0 otherwise

Trianglar MF Gaussian MF

Introduction

O 4 Fuzzy Rule

Fuzzy systems are essentially rule-based expert systems,
which consist of a set of linguistic rules in the form of
“IF-THEN”.

Fuzzy IF-THEN rules:

R:IF x, is F' and...and X, is F', THEN y, is G/ and...and vy, is G!

Takagi-Sugeno-Kang model:

R':1Fx, is F' and..and x, is F', THEN y'=ag+a|X+-a,X,
Advantages of TSK model:

U Computational efficiency

U Works well with linear techniques

U Works well with optimization and adaptive techniques

U Guaranteed continuity of the output surface

UBetter suited to mathematical analysis 8
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Introduction

‘ 4 Fuzzy Inference

Produce a crisp output by inference operations upon
fuzzy IF-THEN rules

Type | - Tsukamoto Fuzzy Models:

The overall output is the weighted average of each rule’s
crisp output induced by the rule’s firing strength W; :

u Premise part Consequent part
i
X W.
z y WI i 4 4 Mo, 4 B, Hya G
_ =1
y - u w
2w / /
=1 X, Cx, ¥ y
'ux] 'y Az J‘ux; A Bz nuyn R Cz
> w, /
> > Y S 0
Xy X3 h y

Introduction

v 4 Fuzzy Inference

Type Il - Mamdani Fuzzy Models:
The overall fuzzy output is derived by applying “maximum”
operation to the qualified fuzzy output
u Premise part Consequent part
z :uy(Wi) x Wi
y= B _ My 4, He, 4 B M a G
Z‘uy(wi) \ W,
i=1 /
—rl 'rz W i ¥
1"‘)(1 AZ. ‘u-‘(z A Bz' ‘Lly A CZ’
@ -\
4, = K
v (centroid of area) x, X5 3 v 0
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Introduction

‘ ¢ Fuzzy Inference

Type lll - TSK Fuzzy Models:

The output of each rule is a linear combination of input
variables plus a constant term and the final crisp output is
the weighted average of each rule’s output

Premise part Consequent part

luxl A] tux; Y B]

/\ / ; Y, =a%)+aixl+alzxz

2 2 2
Y, =a, to X, +a5X,

EE— > — Wl yl + W2 y2
*1 ¥ W, + W,

Introduction

O 4+ Neural Networks

A neural network consists of many neurons and can be
classified into feedforward (or non-recurrent) and
feedback (or recurrent) neural networks

weights

A neuron: inpts

activation
uncton
Y W net inpLt
el
] (p o,
G ._®/ activation
i 5
transfer
: : function
.
; ¥
Y threshold

Each neuron performs two functions: aggregation of its inputs from
other neurons or the external environment and generation of an output
from the aggregated inputs.
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Introduction

o + Properties of Neural Networks

U An efficient method to approximate any nonlinear mapping

U Learning ability -- be trained from sample data

U Ability of generalization -- can respond correctly to any
inputs which are not learned in the sample data

U Can operate simultaneously on both quantitative and
qualitative data

U Naturally process many inputs and outputs and are readily
applicable to multivariable systems

U Highly parallel implementation

|

its learning capability from samples

One of the most salient features of neural networks lies in ]

Introduction

. 4 Learning Algorithms

U Supervised learning: Data and corresponding labels
are given

U Unsupervised learning: Only data are given, no labels
provided

U Semi-supervised learning: Some (if not all) labels are
provided

U Reinforcement learning: Only provides a scalar
performance measure without indicating the direction in
which the system could be improved

5/29/2016
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Introduction

' 4 RBF Neural Networks

0 Thin-plate-spl)
R(x) = x> log(x)

O Multiquadric function

R(x) = (Reu ey

14

Hidden layer

r§e multiquadric function
(X) — (X2 + 02)71/2

W,

(“ O Gaussian function

Output lager
(RBF nodes)R(X) = exp(——")
(o}

Introduction

* 4 Comparison

r _-'-“Sl(ills ' ,;:'_ ' Fa‘z.z_y System _'::; Neural Nétworks |
Knowledge Input human expert sample sets
et Tools interaction algorithm
, quantitative and ot
: Information qualitative quantitative
Uncertainty — - _
Cognition decision making perception
Mechani heuristic search parallel
Reasoning echanism : Computatlon
Speed high low
Fault-tolerance low very high
Adaptation : i ; adjusting
P Learning induction weights
Natural Implementation explicit implicit
language Flexibility high low

5/29/2016
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Introduction

‘4 Fuzzy Neural Networks
/

Fuzzy System N 4 Neural Networks N

U Dependent on the specification U No easy way to predict the
of good rules by human experts output

U No formal framework for the U Connecting weights invariably
choice of various parameters shed no light on what the

f \ network will do with the data j

Fuzzy Neural Networks

Capture capabilities of both types of systems and overcome drawbacks
of each system

FNNs were used to:

U Tune fuzzy systems

O Extract fuzzy rules from given numerical examples

U Develop hybrid systems combining neural networks and fuzzy systems

-

7

». , Contents

a

U Dynamic Fuzzy Neural Networks
Q
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Dynamic Fuzzy Neural Network

‘ ¢ Motivation

U Lack of systematic design for membership functions
U Lack of adaptability for reasoning environment changes

U4 Structure ido%ntification is time-consuming
@

Dynamic Fuzzy
Neural Network
(D-FNN)

Extended
RBF NN

Pruning
technology

Hierarchical
learning
Hierarchical on-line Adaptive structure Fast learning speed
self-organizing learning identification

19

Dynamic Fuzzy Neural Network

., Architecture of D-FNN

Layer1 Layer2 Layer3 Layer4 Layer5

20

10
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Dynamic Fuzzy Neural Network

‘4 Architecture of D-FNN

Layer1 Layer2 Layer3 Layer4 Layer5

MFq, R, N

Layer 1: Each node in layer 1 represents an input

linguistic variable.
21

Dynamic Fuzzy Neural Network

. | Architecture of D-FNN

Layer1 Layer2 Layer3 Layer4 Layer5

MF, R, N

Layer 2: Each node in layer 2 represents a membership
function (MF) which is a Gaussian function given by:

X; —C;)’ . .
i (%) = exp[—%] =121, ]=12-u 22

i

11
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Dynamic Fuzzy Neural Network

‘4 Architecture of D-FNN

Layer1 Layer2 Layer3 Layer4 Layer5

MF., R, N,
Layer 3: Each node in layer 3 represents a possible IF-part of

fuzzy rules.
(_HX—CJ“W j=12,-,u

Output of jth RBF unit: ¢; = exp >

g

Dynamic Fuzzy Neural Network

. | Architecture of D-FNN

Layer1 Layer2 Layer3 Layer4 Layer5

MF, R, N

Layer 4: We refer to these nodes as N (normalized) nodes
4

u i eee
Z¢k 24
k=1

V=

12
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Dynamic Fuzzy Neural Network

‘4 Architecture of D-FNN

Layer1 Layer2 Layer3 Layer4 Layer5

MF., R, N,
Layer 5: Each node in this layer represents an output variable
which is the summation of incoming signals

u
Y(X)=D W, W, TSK model: W, = &g+ X, ++++ X,
k=1

25

Dynamic Fuzzy Neural Network

' + Learning Algorithm of the D-FNN

Rule
Generation

Allocation of RBF

Unit Parameters Adjustment Pruning

Weight ‘ Rule

26
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Dynamic Fuzzy Neural Network

o + Learning Algorithm of the D-FNN

Rule Allocation of RBF

Generation Unit Parameters Adjustment Pruning

Weight I Rule

Error criterion: For observation (Xi,ti) , define

Hei H = Hti —y, H >k, ? égnzgzrzgit should be

Accommodation criterion:
di(j):”Xi _Ci
If d_, =argmin(d,(j))>k,, an RBF unit should be considered.

9 j:]‘727.'.9u

Hierarchical learning: Accommodation boundary is adjusted

dynamicall i
y y ke =max[e,,, x 8] oarse learning to

k, =max[d_ xy'.d fine learning 27

min ]

Dynamic Fuzzy Neural Network

' + Learning Algorithm of the D-FNN

Rule Allocation of RBF Weight Rule
Generation Unit Parameters Adjustment Pruning

Allocation of premise parameter :
C =X o, =kxd_,

case1: ||&]]> ke, dmin > kd |:> Rule generation

Case 2: |le]|I<k., d . <k Do nothing or only update
|| ||| e> “'min d :> consequent parameters

. ellI<k.d. >k Only adjust consequent
Case 3: || ||| e> “min d |:> parameters

Case 4: |\ei||> ke, dmin < kd |:> Update the width of the n_earest
RBF node and all the weights

For the kth nearest RBF unit: o, =K, X 0':(_1 28

5/29/2016
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Dynamic Fuzzy Neural Network

o + Learning Algorithm of the D-FNN

Rule

Generation Unit Parameters Adjustment Pruning

Allocation of RBF m Weight Rule

Assume nth traihing pattern enters the D-FNN and all these n data
are memorized by the D-FNN in the input matrix P and the output
matrix T, respectively, upon which the weights are determined.

Give the output in the compact form as follows:

Y=Wx¥ E=T-YI
where W is the weight matrix, ¥ is the output matrix of N nodes.
The objective is to find an optimal W " such that ETE is minimized.

This problem can be solved by the well-known Linear Least
Square (LLS) method by approximating:

W* — T(\I;T\P)—l \PT 29

Dynamic Fuzzy Neural Network

' + Learning Algorithm of the D-FNN

Rule Allocation of RBF Weight Rule
Generation Unit Parameters Adjustment Pruning
Error Reduction Ratio (ERR) Method:
D=HO+E
where D=T",H=%",and9=W".
QR decomposition: The ERR offers a simple
_ and effective means of
H= QAnxv seeking a subset of
where Q=(q,,0,,--:q,) €N significant regressors
ERR:
T 2
D .
err, = M I<v %0
q; ;D' D

5/29/2016
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Dynamic Fuzzy Neural Network

o + Learning Algorithm of the D-FNN

Rule
Generation

Allocation of RBF
Unit Parameters

Weight Rule
Adjustment Pruning

Determination of RBF Units:
Define the ERR matrix as

A=(58,,8,,+5,) e R

Significance of the ith rule is defined as
(878,
T
If Prespecified
n, <K, threshold

then the ith rule is deleted.

31

Dynamic Fuzzy Neural Network

., Flowchart of D-FNN Algorithm

v
Initialization Generate a new rule

Generate first rule l
Compute ERR

Compute distance and

find dynin —
! N Adjust widths
Compute actual output

error e; Y,

. Adjust consequents
] Delete ith rule parameters

Observations
completed?

32

16
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Q
O Enhanced Dynamic Fuzzy Neural

Networks
|

d

Enhanced Dynamic Fuzzy Neural Network

O + Motivation

Adaptive noise cancellation (ANC) using an adaptive filter:
(k) o~ y(k)=x(k)+d(k)

4
+4A
l Not measurable | Measurable

() d(k p

n(k Not measurable ]
Ao o

= T s(0)=x()+ d()-d(k)

D-FNN cannot be directly applied to ANC, because the
neuron generation depends on the systems error, which
cannot be defined for ANC.

34

17



Confidential & No Circulation

Enhanced Dynamic Fuzzy Neural Network

‘ ¢ Motivation

U The method based on accommodation boundary and
system error could hardly be evaluated online

U Linear Least Square (LLS) method is not very effective in
processing signals online in a very noisy environment

Recursive Linear
Online self-organizing Least Square (RLLS)
mapping (SOM) Estimator or Kalman
Filter method

pfFRhaneesy

Neural Network s

Enhanced Dynamic Fuzzy Neural Network

‘.4 ED-FNN Learning Algorithms

“The ultimate objectlve is to |mplement the D-FNN Iearmng
__algorithm in real time -

Input Space Partitioning: Online SOM is performed for every
training pattern (X(k), y(k))

Best Matching Neuron Center:
[ X (k) = Cp, (k) [I= ming[| X (k) - C; (k) [}

Update rule: J

Cj k+h=C j &)+ o:(k)hbi (K[X (k) - Cj (k)]

where k is the kth input pattern, a(k) is the adaptation coefficient, and h,;(k),
the neighborhood kernel centered on the winner unit, is given by

(0 i
. = exp(—
bi 20'2(k) 36

5/29/2016
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Enhanced Dynamic Fuzzy Neural Network

o + ED-FNN Learning Algorithms

Adaptation of the Output Linear Weights: Recursive Linear
Least Square (RLLS) estimator is used to adjust the weights

RLLS:

T -1
So =i ¥ip)

Si-1‘1’i‘1’iT Si-1
[P S e S e e

1 1-1
1+ Sl—l
T .

W| :Wi—1+si—1\Pi(Ti _‘Pi Wi—l) I =1929"'an

where §; is the error covariance matrix for the ith observation.

37

Enhanced Dynamic Fuzzy Neural Network

. Flowchart of ED-FNN Algorithm

y
Determine parameters
of new rule

Initialization i _
I LLS to adjust weights
Generate first rule _
SOM to update center |_ || completed? weights
clustering Y
Compute distance and RLLS to adjust weights
find dyyin
N Observations N
w 5 completed?
Y
v End 38

19
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a

d

a
a

Generalized Dynamic Fuzzy
Neural Networks

39

Generalized Dynamic Fuzzy Neural Networks

|

4+ Motivation

bt of Gusion .
epeciveoE

understand

etermined oy mjnan

0

5/29/2016
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Generalized Dynamic Fuzzy Neural Networks

* 4 GD-FNN

Ellipsoidal Basis Function
(EBF) N
J
On-line parameter allocation |:> Sl Ol E
Neural Network
A& J
Sensitivities analysis &

U Structure and parameters identification are performed
automatically and simultaneously without partitioning
input space and selecting initial parameters a priori

WU Fuzzy rules can be recruited or deleted dynamically

WU Fuzzy rules can be generated quickly without resorting to
the BP iteration learning

41

Generalized Dynamic Fuzzy Neural Networks

-

"7 4 Architecture of GD-FNN

Layer1 Layer 2 Layer 3 Layer 4

42

5/29/2016
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Generalized Dynamic Fuzzy Neural Networks

' 4 Equivalence of GD-FNN

Corollary 1: The proposed GD-FNN is functionally equivalent to
the TSK fuzzy system if the following conditions are true:

O The number of receptive field units of the GD-FNN is equal to the

number of fuzzy IF-THEN rules

Q The output of each fuzzy IF-THEN rule is a linear combination of input

variables plus a constant term

U The membership functions within each rule are chosen as Gaussian

functions

4 The T-norm operator used to compute each rule’s firing strength is

multiplication

4 Both the GD-FNN and the TSK fuzzy inference system under
consideration use the same method, i.e. either weighted average or

weighted sum to derive their overall outputs

43

Generalized Dynamic Fuzzy Neural Networks

' + Learning Algorithm of the GD-FNN

Rule Generation ——)

< -
Premise Parameter :>

Estimation

Sensitivity Analysis ——)
< -
Width Modification T——

<>
Consequent Para-

meter Determination IZVN

Propose criteria of
rule generation

Allocate parameters
of new rules

Analyze sensitivity of
input variables and fuzzy
rules and prune rules

Adjust width to obtain a
better local approximation

Determine the optimal
parameters W*

5/29/2016

22



Confidential & No Circulation

Generalized Dynamic Fuzzy Neural Networks

* 4 Rule Generation

U System Errors
e 1=t = Y|

If ||e [|>k, a new rule should be considered, where

€ x I<k<n/3
k, =< max[e,, xA3“e,] n/3<k<2n/3
€ 2n/3<k<n

min

where €, is the desired accuracy of the output of the GD-
FNN, €.... is the maximum error chosen, k is the learning
epoch, and g < (0, 1), called convergence constant is given by
p = (Sunyiie
e 45

max

Generalized Dynamic Fuzzy Neural Networks

‘ 4 Rule Generation

U e-Completeness of Fuzzy Rules o

Definition (e-Completeness of Fuzz 0 5 0
input in the operating range, there exi
fuzzy rule so that the match degree

no less than «. 0

0
0
0
e
0'”-2
Calculate Mahalanobis distance (/@& /

md, (j)=/(x -C,J £;'(x
Find  J =arg min (md,(}))
If md =md, (J)>K,

o =4/In1/&,,)  1<k<n/3

K, =kmax[dm xy*.d.. 1 n/3<k<2n/3

do =A/In(1/6,)  2n/3<k<n

k,min

which implies that the existing system is not satisfied with
g-completeness and a new rule should be considered

*C. C. Lee, IEEE Trans. Syst, Man and Cybern, Vol. SMC 20, pp. 404-436, 1990

5/29/2016
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Generalized Dynamic Fuzzy Neural Networks

‘ 4 Premise Parameter Estimation

Definition (Semi-Closed Fuzzy Sets): Let U = [a, b] be the universe of
discourse of input x. If each fuzzy set A; ={(x,u;(x))|x €U} (=

1,2,---,m) is represented as the Gaussian function p;(x) = exp [—(x;—fl)

i

for all xeU , and satisfies the following boundary conditions
simultaneously:

w0 = exp|- 2] if e —al <6

1 (%) = exp [— ("‘;’)] if |c;—b| <6

0,
1 (x) = exp [—(";—;)] if|c;—a| > & and |c;— b| > &

where § is a tolerable small value, and the widths of Gaussian functions
are selected as

max{|ci—ci—gllci=ci+al} . _
O-l(x): ] l_llzl'“lm

JIn(1/¢)
where c¢;_; and c¢;;; are the two centers of neighboring MFs of ith
membership function. Then, we call 4; semi-closed fuzzy sets. 47

Generalized Dynamic Fuzzy Neural Networks

‘ ¢ Premise Parameter Estimation

Theorem: The semi-closed fuzzy set A; satisfy e-completeness of fuzzy
rules, i.e., for all x € U, there exists i € {1,2,---,m}, such that y;(x) > «.

Calculate E-distance:
edi() = [xf — ()| j=12 - u+2
where ®@; € {Xjpmin Ci1, Cizs > Ciwws Ximax } @nd find
Jn=arg,_ min (ed:i(j))
If ed;(jn) < kumy, x¥ can be completely represented by the existing fuzzy
set A;; (cij, 0i5,) Without generating a new MF. Otherwise, a new
Gaussian MF is allocated with its width and center respectively being

determined by

max{|c; — ¢4, |c; — cip1}

k
) C; = X:
JIn(1/e) ) = 48

oi(x) =

5/29/2016
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Generalized Dynamic Fuzzy Neural Networks

‘4 Sensitivity Analysis

U Error Reduction Ratio
Linear regression model:
D=Hf+E
whereD=T",H =¥",and9=W".
QR decomposition:

H=0QA
where Q = (qlana"'qv) eR™
ERR:
T2
err, =&% i<v

49

Generalized Dynamic Fuzzy Neural Networks

®. , Sensitivity Analysis

U Sensitivity of Fuzzy Rules
Define the ERR matrix

A= (51a52a' : §u) € m(Hl)XU
Significance of the ith rule is defined as
575,
n =
r+1

1 <K i=12,---,u

then the ith rule is deleted.

50

5/29/2016
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Generalized Dynamic Fuzzy Neural Networks

‘4 Sensitivity Analysis

U Sensitivity of Input Variables

Define ol
B =2 p;(k) j=L12,---,u
k=2
err.
B =—1%1
7B, =121

]

B; -- total ERR related to input variables in jth rule
err;; -- ERR corresponding to ith input variable in jth rule
B;; -- The significance of ith input variable in jth rule

If B;; is small, ith input variable is not sensitive to the system

output, and consequently, width of the hyperellipsoidal region in
ith input variable could be reduced without significant effect of

system performance.

Generalized Dynamic Fuzzy Neural Networks

*. , Width Modification

In the case |lex|l > k. and mdy nin < kg4, Which implies the
significance of the rule is not good to accommodate all the
patterns, and the ellipsoidal region should be reduced.

Width modification:

new __ old
Oy = g x Ojj

1
& ={1+k, (B —1/r)’
1 B >1/r

where By <1/7

52

5/29/2016
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Generalized Dynamic Fuzzy Neural Networks

"'g'qpns equent Parameter Determination

W¢ =Y
Assume that the desired output is :
T=(,t--t) eR"
Minimizing
Wg—T],
The optimal W* can be determined by

W =T(g'¢)"'¢'

Give the output in the compact form as follows:

53

Generalized Dynamic Fuzzy Neural Networks

-, Flowchart of GD-FNN Algorithm

T ! N
Initialization Generate a new rule < e <k?
Det : f Y
i etermine parameters
Generate first rule e Calculate
) Bi i
Compute M-distances Compute ERR | Ad}ust
and find md; ;i i
T N widths
Compute actual output Adust Do nothing or
error e; Y consequents adjust
i parameters consequent
Y . Adjust
N L Observations
- < consequents
I completed? parameters
Y 54

5/29/2016
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-, , Outline

O Applications
Q

55

Applications

#»_  Application 1:

# Mackey—Glass Time-Series Prediction

Time-series prediction is widely applied in economic and
business planning, inventory and production control,
~ “weatherforecasting, signal processing, control etc:

System model:

bx(t—7)

X(t + 1) = (1 - a)X(t) + m

wherea=0.1,b=0.2, Tt = 17.
Prediction model:
X(t+p) = FX(1), X(t — At), x(t — 2At), X(t — 3At)]

6000 exemplar samples were generated between t = 0 and
t = 6000 with initial conditions x(t) = 0 for t < 0 and x(0) =
1.2.

56

5/29/2016
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Applications

Application 1:

$# Mackey—Glass Time-Series Prediction

500

57

Mackey—Glass time-series prediction (from t = 118 to 617 and six-step-
ahead pred|Ctlon) . Actual output error e(i)
10 Fuzzy rule generation 30
9 25
8
7 20
6 15
5
4 10
3 5
2 0
1 0 100 200 00 400
0 100 s%(r)r?ple pgtotgrns 400 500 __sample pa?terns
Comparison between desired and actual
008 Root mean squared error 1.4 outputs in training
0.07 12
0.06 1
0.05
0.04 0.8
0.03| 06
0.02 0
0.01 4
0 0 100 200 gOO 400 500 0'20 100 200 300 400 500
sample patterns Timet

Applications

-

Application 1:
$# Mackey—Glass Time-Series Prediction

Comparison between desired and
predicted outputs

desired &
peredlged outgyt .
D 0 = N A

o
n

0.200

600 7 00 900

00 8
Time t

1000

0.03

Generalization test of the D-FNN for Mackey—Glass time-series
prediction (from t = 642 to 1141 and six-step ahead prediction)

prediction error

0.02
0.01

-0.01
-0.02
-0. 035

00

600

700 800 900
Time t

1000

58

5/29/2016
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Applications

&  Application 1:

$# Mackey—Glass Time-Series Prediction

Comparisons of structure and performance of different algorithms
(Training case: n = 500, p = 6)

Number of | Number of | RMSE of RMSE of
Technique
rules parameters | training testing
D-FNN 10 100 0.0082 0.0083
ANFIS 16 104 0.0016 0.0015
OoLS 35 211 0.0087 0.0089
RBF-AFS 21 210 0.0107 0.0128

59

Applications

#»_  Application 1:

$# Mackey—Glass Time-Series Prediction
Generalization comparison between the D-FNN and the ANFIS for p=85

Technique Pattern Number of | Number of NDEI
length rules parameters
D-FNN 500 14 140 0.3375
ANFIS 500 16 104 0.036

Remark: It is shown that the performance of the D-FNN is
not so good as that of the ANFIS, even the D-FNN has more
adjustable parameters. The reason is that the ANFIS is
trained by iterative learning so that an overall optimal
solution can be achieved, whereas the D-FNN only acquires
a sub-optimal result.

60

5/29/2016
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Applications

“  Application 1:

$# Mackey—Glass Time-Series Prediction

Generalization comparison between D-FNN and RAN, RANEKF and M-
RAN for p=50

Technique Pattern Number of | Number of NDEI
length rules parameters
D-FNN 2000 25 250 0.0544
RAN 5000 50 301 0.071
RANEKF 5000 56 337 0.056
M-RAN 5000 28 169 —

*The generalization error is measured by weighted prediction
error (WPE)

61

Applications

#»_  Application 2:

$# Prediction of Machine Health Condition

~ An online dynamic fuzzy neural network (OD-FNN) is
-~ developed for prediction of machine health condition

- prediction - - ey 2

Cylinder Pressure Force sensor Bearing tested Accelecrometers

o _—

NI DAQ card i Pressure regulator

Thermocouple

5/29/2016
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Applications

&  Application 2:

# Prediction of Machine Health Condition

Prediction model:

Yalk+r)=f(yo (k) y(k=r)y,(k =2r), y,(k —nr),
X (k). x,(k =r),x,(k=2r),--, x,(k =nr))

where x; and y; are the input and target signals respectively, r
is the prediction step, and n + 1 is maximum lag.

500 data are applied to initialize the OD-FNN and 500 data
pairs are applied to test the OD-FNN performance for online
prediction.
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Qutputs

Predition error

$# Prediction of Machine Health Condition

Linear model online prediction results: (a) Prediction output with

error curves. (b) Accuracies of online training and prediction.
Vs (i) = 5x4(i) + rand(t) A/_VV/LTJ
b signal

aining accuracy (%)
7=
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# Prediction of Machine Health Condition

Bearing MHC online prediction results: (a) Prediction output with
error curves. (b) Accuracies of online training and prediction.
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4 Prediction of Machine Health Condition

Performance isons of all prediction methods

| Achieve a good trade-

= off between prediction Lcom Ptrain Ppred
Linedaccuracy and 8.2471 99.52 99.31
mod{computational cost 1.3841 99.23 08.28
5.2681 99.43 99.34
OD-ENN 1.6833 99.31 99.18
Be 5 . _ 4.0210 98.38 96.01

est online prediction

accuracy N 0.6765 97.31 95.35
2.5951 97.34 95.89
OD-FNN 1.6833 97.94 97.54

t.om-- total computational time ~ @¢rqin--Online training accuracy_
P,req--ONline prediction accuracy
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# Online Manipulator Control

Articulated two-link robot manipulator

unknown load

>,
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# Online Manipulator Control

Manipulator dynamics:
M@a+QE.d+7y =7=[r 7]

where

o =[(1, +ml,? + 1 +ml 2+ md2) +2(ml L, cos S, )cosq, +2(m,ll, sind,)sing,]q,

+[(Ie + melcez) + (melllce COSé‘e)COSqZ + (melllce Sin&e)Sinqz].q.z
_[(m Illce COSé‘e)Sinqz _(melllce Sil’l 6e)COSq2]ql qz

e

~[(M,,],, cos3,)sin g, — (m,1I,, sin 5,)cos 0, 1(d, + . ) 0

e

+74

TZ = [(Ie + melcez) + (melllce COSé‘e)COSCIZ + (melllce Sin&e)Sin qz].q.1+ (Ie + melcez).q.z

+[(me|l|ce cosﬁe)sin qz - (melllce sinﬁe)cosqz]c.]lz

+74,
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# Online Manipulator Control

Online adaptive fuzzy neural control system:

ga-:éa':éa'_

A Tex

To
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# Online Manipulator Control

fuzzy controller ) AFC controllers:

Performance comparison of GD-FNN with PD and (adaptive

Maximum
Steady State | Overshoot | Rise Time
Control
Error (rad) (%) (sec)
Torque (Nm)
PD op 0.050 9.3 0.287 312.7
K, =6000; K, =100 | q, 0.018 7.1 0.254 109.9
AFC (o] 0.022 0 0.237 425.9
K, =25;K,=35 | q, 0.025 0 0.218 255.6
GD-FNN (o] 0.001 0 0.01 280.3

K, =25;K,=7 | q 0.001 0 0.01 110.0
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# Online Manipulator Control

Trajectory tracking results of adaptive online control
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# Online Manipulator Control

Convergence of tracking error

Tracking Error E
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Conclusions and Recommendations

4 Conclusions

U A D-FNN based on extended Radial Basis Function
(RBF) neural network is introduced, which has the
following properties: online learning, hierarchical learning,
dynamic self-organizing structure, fast speed in learning,
and generalization in learning.

U An Enhanced Dynamic Fuzzy Neural Network (ED-FNN)
learning algorithm based on SOM and RLLS Estimator is
developed, which is suitable for real-time applications
and it outperforms other approaches
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Conclusions and Recommendations

‘ 4 Conclusions

U A GD-FNN based on Ellipsoidal Basis Function (EBF) is
introduced, which can provide a simple and fast
approach to configure a fuzzy system so that

U some meaningful fuzzy rules could be acquired for
knowledge engineering, and

U the system could be used as a system modeling tool
for control engineering, pattern recognition, etc..
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