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Face Recognition
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Introduction

+Fuzzy system Neural network

Fuzzy Neural Network

Simpler, faster, and 
more intelligent

Fuzzy System

6

Introduction

Rule set: contains a number of fuzzy IF-THEN rules.
Label set: defines the membership functions of the 

fuzzy sets used in the fuzzy rules.
Inference mechanism: performs the inference 

operations on the rules.
Fuzzifier: transforms the crisp inputs into degrees of 

match with linguistic values.
Defuzzifier: transforms the fuzzy results of the 

inference into a crisp output.
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Fuzzy Set
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Introduction
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Fuzzy Rule
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Introduction

Fuzzy IF-THEN rules:

Takagi-Sugeno-Kang model:

Fuzzy systems are essentially rule-based expert systems, 
which consist of a set of linguistic rules in the form of 
“IF-THEN”.

Ri : IF x1  is Fi
1  and …and xr  is Fr

i , THEN y1 is Gi
1  and …and ys  is Gs

i  

Ri : IFx1  is Fi
1  and...and xr  is Fr

i , THEN y x xi i i
r
i

r    0 1 1   

Computational efficiency 

Works well with linear techniques

Works well with optimization and adaptive techniques 

Guaranteed continuity of the output surface

Better suited to mathematical analysis

Advantages of TSK model:
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Fuzzy Inference
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Introduction

Type I - Tsukamoto Fuzzy Models:

Produce a crisp output by inference operations upon 
fuzzy IF-THEN rules
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The overall output is the weighted average of each rule’s 
crisp output induced by the rule’s firing strength      : wi

Fuzzy Inference
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Introduction

Type II - Mamdani Fuzzy Models:
The overall fuzzy output is derived by applying “maximum” 
operation to the qualified fuzzy output 
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Fuzzy Inference
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Introduction

Type III - TSK Fuzzy Models:
The output of each rule is a linear combination of input 
variables plus a constant term and the final crisp output is 
the weighted average of each rule’s output 
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Neural Networks
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Introduction

A neural network consists of many neurons and can be
classified into feedforward (or non-recurrent) and
feedback (or recurrent) neural networks

A neuron:

Each neuron performs two functions: aggregation of its inputs from
other neurons or the external environment and generation of an output
from the aggregated inputs.
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Properties of Neural Networks
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Introduction

 An efficient method to approximate any nonlinear mapping

 Learning ability -- be trained from sample data

 Ability of generalization -- can respond correctly to any 

inputs which are not learned in the sample data

 Can operate simultaneously on both quantitative and 

qualitative data

 Naturally process many inputs and outputs and are readily 

applicable to multivariable systems

 Highly parallel implementation

One of the most salient features of neural networks lies in 
its learning capability from samples

Learning Algorithms

14

Introduction

 Supervised learning: Data and corresponding labels 

are given 

 Unsupervised learning: Only data are given, no labels 

provided

 Reinforcement learning: Only provides a scalar

performance measure without indicating the direction in

which the system could be improved

 Semi-supervised learning: Some (if not all) labels are 

provided
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RBF Neural Networks
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Introduction

y X w w R X Ci i i
i

u

( ) (|| || )  

0

1

Neural network formula:

R x x x( ) log( ) 2

R x x( ) ( ) / 2 2 1 2

R x x( ) ( ) /  2 2 1 2

R x
x

( ) exp( ) 
2

2

 Thin-plate-spline function

 Multiquadric function

 Inverse multiquadric function

 Gaussian function

Comparison

16

Introduction

Skills Fuzzy System Neural Networks

Knowledge
acquisition

Input human expert sample sets

Tools interaction algorithm

Uncertainty
Information quantitative and 

qualitative quantitative

Cognition decision making perception

Reasoning
Mechanism heuristic search parallel 

computation
Speed high low

Adaptation

Fault-tolerance low very high

Learning induction adjusting 
weights

Natural
language

Implementation explicit implicit
Flexibility high low
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Fuzzy Neural Networks
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Introduction

Fuzzy System

 Dependent on the specification 
of good rules by human experts

 No formal framework for the 
choice of various parameters

Neural Networks

 No easy way to predict the 
output

 Connecting weights invariably 
shed no light on what the 
network will do with the data

Fuzzy Neural Networks
Capture capabilities of both types of systems and overcome drawbacks 
of each system
FNNs were used to:
 Tune fuzzy systems
 Extract fuzzy rules from given numerical examples
 Develop hybrid systems combining neural networks and fuzzy systems

Contents

18

 Introduction

 Dynamic Fuzzy Neural Networks

 Enhanced Dynamic Fuzzy Neural

Networks

 Generalized Dynamic Fuzzy

Neural Networks

 Applications

 Conclusions
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Motivation
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Dynamic Fuzzy Neural Network

 Lack of systematic design for membership functions

 Lack of adaptability for reasoning environment changes

 Structure identification is time-consuming

Dynamic Fuzzy 
Neural Network 

(D-FNN)

Pruning 
technology

Hierarchical 
learning

Extended 
RBF NN

Hierarchical on-line
self-organizing learning

Adaptive structure 
identification

Fast learning speed

Architecture of D-FNN

20

Dynamic Fuzzy Neural Network
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Architecture of D-FNN
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Dynamic Fuzzy Neural Network
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Layer 1: Each node in layer 1 represents an input 
linguistic variable.

Architecture of D-FNN

22

Dynamic Fuzzy Neural Network

…
 …

…
 …

…
 …

…
 …
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…
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…
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x1

xr
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w1

w j

wu

Y

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 2: Each node in layer 2 represents a membership 
function (MF) which is a Gaussian function given by:


ij i

i ij
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x c

( ) exp[
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Architecture of D-FNN

23

Dynamic Fuzzy Neural Network
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Layer 3: Each node in layer 3 represents a possible IF-part of 
fuzzy rules. 
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Architecture of D-FNN
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Dynamic Fuzzy Neural Network
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Layer 4: We refer to these nodes as N (normalized) nodes
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Dynamic Fuzzy Neural Network
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 5: Each node in this layer represents an output variable 
which is the summation of incoming signals

y X wk k
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( )  

 

1
rkrkkk xxw   110TSK model:

Learning Algorithm of the D-FNN

26

Dynamic Fuzzy Neural Network

Rule
Generation

Allocation of RBF 
Unit Parameters

Weight 
Adjustment

Rule
Pruning
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Learning Algorithm of the D-FNN
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Dynamic Fuzzy Neural Network

Rule
Generation

Allocation of RBF 
Unit Parameters

Weight 
Adjustment

Rule
Pruning

Error criterion: For observation              , define  ii tX ,

iii yte 

Accommodation criterion:

  ujCXjd iii ,,2,1,     

If                                      , an RBF unit should be considered.    di kjdd  minargmin

An RBF unit should be 
considered

?ek

Hierarchical learning: Accommodation boundary is adjusted 
dynamically k e ee

i max[ , ]max min
k d dd

i max[ , ]max min
Coarse learning to 

fine learning

Learning Algorithm of the D-FNN

28

Dynamic Fuzzy Neural Network

Rule
Generation

Allocation of RBF 
Unit Parameters

Weight 
Adjustment

Rule
Pruning

Allocation of premise parameter :

C Xi i  i k d  min

Case 1: || || , mine k d ki e d 

|| || , mine k d ki e d 

|| || , mine k d ki e d 

|| || , mine k d ki e d 

Case 2:

Case 3:

Case 4:

Rule generation

Do nothing or only update 
consequent parameters

Only adjust consequent 
parameters

Update the width of the nearest 
RBF node and all the weights

For the kth nearest RBF unit:  k
i

w k
ik  1
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Learning Algorithm of the D-FNN
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Dynamic Fuzzy Neural Network

Rule
Generation

Allocation of RBF 
Unit Parameters

Weight 
Adjustment

Rule
Pruning

Assume nth training pattern enters the D-FNN and all these n data 
are memorized by the D-FNN in the input matrix P and the output 
matrix T, respectively, upon which the weights are determined.

Y W   ~
|| ||E T Y 

This problem can be solved by the well-known Linear Least 
Square (LLS) method by approximating:

W T T T* ( )   1

Give the output in the compact form as follows:

where W is the weight matrix,      is the output matrix of N nodes.
The objective is to find an optimal       such that          is minimized.~ ~

E ET*W

Learning Algorithm of the D-FNN

30

Dynamic Fuzzy Neural Network

Rule
Generation

Allocation of RBF 
Unit Parameters

Weight 
Adjustment

Rule
Pruning

Error Reduction Ratio (ERR) Method:

D H E 
., TTT W,HTD   and  where

QR decomposition:

QAH 

ERR:

err
q D

q q D Di
i
T

i
T

i
T


( )2

where Q q q qv
n v  ( , , )1 2 

i v

The ERR offers a simple 
and effective means of 
seeking a subset of 
significant regressors
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Learning Algorithm of the D-FNN
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Dynamic Fuzzy Neural Network

Rule
Generation

Allocation of RBF 
Unit Parameters

Weight 
Adjustment

Rule
Pruning

Determination of RBF Units:

If

    ( , , ) (  1 2
1) u

r u

Define the ERR matrix as


 

i
i
T

i

r


1

Significance of the ith rule is defined as 

 i errk

then the ith rule is deleted.

Prespecified 
threshold

Flowchart of D-FNN Algorithm 

32

Dynamic Fuzzy Neural Network

Initialization

Generate first rule

Compute distance and 
find ݀

Compute actual output 
error ݁

݀  ݇ௗ?

݁  ݇?

Generate a new rule

Compute ERR

ߟ  ݇?

Delete ith rule

End

Observations 
completed?

݁  ݇?

Adjust widths

Adjust consequents 
parameters

Y

Y

N

N

N
N

Y

N

Y

Y
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Enhanced Dynamic Fuzzy Neural Network

Adaptive noise cancellation (ANC) using an adaptive filter:

D-FNN cannot be directly applied to ANC, because the 
neuron generation depends on the systems error, which 
cannot be defined for ANC.  

Adaptive 
filter

 kx      kdkxky 

       kdkdkxkx ˆˆ 

 kn
 kd f

 kd̂ 







Not measurable

Measurable

Not measurable

Measurable
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Motivation
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Enhanced Dynamic Fuzzy Neural Network

 The method based on accommodation boundary and

system error could hardly be evaluated online

 Linear Least Square (LLS) method is not very effective in

processing signals online in a very noisy environment

Online self-organizing 
mapping (SOM)

Recursive Linear 
Least Square (RLLS) 
Estimator or Kalman 

Filter method

EnhancedDynamic Fuzzy 
Neural Network

ED-FNN Learning Algorithms

36

Enhanced Dynamic Fuzzy Neural Network

The ultimate objective is to implement the D-FNN learning 
algorithm in real time

Input Space Partitioning: Online SOM is performed for every 
training pattern (X(k), y(k))

Best Matching Neuron Center:

||})()({||min||)()(|| kiCkX
j

kbCkX 
Update rule:

   )]()()[()()()1( kjCkXkbihkkjCkjC  

where k is the kth input pattern,  a(k) is the adaptation coefficient, and hbi(k), 
the neighborhood kernel centered on the winner unit, is given by

)
)(2

||||
exp()(

2

2

k

jCbC
kbih
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ED-FNN Learning Algorithms
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Enhanced Dynamic Fuzzy Neural Network

Adaptation of the Output Linear Weights: Recursive Linear 
Least Square (RLLS) estimator is used to adjust the weights

RLLS:
1

0 1 1( )TS i i
   

1 1
1 1 1

TS Si ii iS Si i Si

     

1 1 1( )TW W S T Wi i i ii i i       ni ,,2,1 

where Si is the error covariance matrix for the ith observation.

Flowchart of ED-FNN Algorithm 

38

Enhanced Dynamic Fuzzy Neural Network

Generate first rule

SOM to update center 
clustering

Compute distance and 
find ݀

݀  ݇ௗ?

Determine parameters 
of new rule

LLS to adjust weights

RLLS to adjust weights

End

Observations 
completed?

LLS to adjust 
weights

Y

N

N N

Y

Y

First observation 
completed?

Start

Initialization
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Motivation

40

Generalized Dynamic Fuzzy Neural Networks

Do not coincide with the reality

Result in significant overlapping 
and be opaque for users to 
understand

If k and         is too large, the 
widths will be very large.

dmin

Not easy for users to implement

Widths of Gaussian 
MFs are the same

The number of MFs is 
irrespective of MF 
distribution

The width of a new 
Gaussian MF is only 
determined by       and kdmin

Several prespecified 
parameters are selected 
randomly
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GD-FNN

41

Generalized Dynamic Fuzzy Neural Networks

Ellipsoidal Basis Function 
(EBF)

On-line parameter allocation

Sensitivities analysis

Generalized Dynamic
Neural Network

Structure and parameters identification are performed 
automatically and simultaneously without partitioning 
input space and selecting initial parameters a priori

Fuzzy rules can be recruited or deleted dynamically
Fuzzy rules can be generated quickly without resorting to 

the BP iteration learning

Architecture of GD-FNN

42

Generalized Dynamic Fuzzy Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4

…
 …

…
 …

…
 …

…
…

…
…

x1

xr

ruMF
uR

w1

w j

wu

Y
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Equivalence of GD-FNN

43

Corollary 1: The proposed GD-FNN is functionally equivalent to 
the TSK fuzzy system if the following conditions are true:

 The number of receptive field units of the GD-FNN is equal to the

number of fuzzy IF-THEN rules

 The output of each fuzzy IF-THEN rule is a linear combination of input

variables plus a constant term

 The membership functions within each rule are chosen as Gaussian

functions

 The T-norm operator used to compute each rule’s firing strength is

multiplication

 Both the GD-FNN and the TSK fuzzy inference system under

consideration use the same method, i.e. either weighted average or

weighted sum to derive their overall outputs

Generalized Dynamic Fuzzy Neural Networks

Learning Algorithm of the GD-FNN

44

Generalized Dynamic Fuzzy Neural Networks

Rule Generation

Premise Parameter 
Estimation

Sensitivity Analysis

Width Modification

Consequent Para-
meter Determination

Propose criteria of 
rule generation

Allocate parameters 
of new rules

Analyze sensitivity of 
input variables and fuzzy 
rules and prune rules

Adjust width to obtain a 
better local approximation

Determine the optimal 
parameters ܹ∗
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Rule Generation
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Generalized Dynamic Fuzzy Neural Networks

 System Errors

|| || || ||k k ke t y 

|| ||k ee kIf a new rule should be considered, where

max

max min

min

1 / 3

max[ , ] / 3 2 / 3

2 / 3

k
e

e k n

k e e n k n

e n k n



 
   
  

where         is the desired accuracy of the output of the GD-
FNN,         is the maximum error chosen, k is the learning 
epoch, and              , called convergence constant is given by 

maxe
emin

(0, 1) 
3/min

max

( ) ne

e
 

Rule Generation

46

Generalized Dynamic Fuzzy Neural Networks

 -Completeness of Fuzzy Rules

Definition (-Completeness of Fuzzy Rules)*: For any 
input in the operating range, there exists at least one 
fuzzy rule so that the match degree (or firing strength) is 
no less than . 
Calculate Mahalanobis distance (M-distance)

1
arg min ( ( ))k

j u
J md j

 


,min ( )k k dmd md J k 

     jj
T

jk CXCXjmd  1

Find

If

which implies that the existing system is not satisfied with 
-completeness and a new rule should be considered

2
1

21
2

2

1
0 0

1
0 0 0

0 0 0

1
0 0

j

jj

rj









 
 
 
 
 

   
 
 
 
  
 







max min

max min

min max

ln(1/ ) 1 / 3

max[ , ] / 3 2 / 3

ln(1/ ) 2 / 3

k
d

d k n

k d d n k n

d n k n







   
   
   

*C. C. Lee, IEEE Trans.  Syst, Man and Cybern, Vol. SMC 20, pp. 404-436, 1990
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Premise Parameter Estimation
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Generalized Dynamic Fuzzy Neural Networks

Definition (Semi-Closed Fuzzy Sets): Let ܷ ൌ ܽ, ܾ be the universe of
discourse of input .ݔ If each fuzzy set ܣ ൌ ,ݔ ߤ ݔ ݔ ∈ ܷ 	ሺ݅ ൌ

1,2,⋯ ,݉ሻ is represented as the Gaussian function ߤ ݔ ൌ exp െ
௫ି
ఙ
మ

for all ݔ ∈ ܷ , and satisfies the following boundary conditions
simultaneously:

ߤ ݔ ൌ exp െ
௫ି

ఙ
మ if  |ܿ െ ܽ|  ߜ

ߤ ݔ ൌ exp െ
௫ି

ఙ
మ 	 if  |ܿ െ ܾ|  ߜ

ߤ ݔ ൌ exp െ
௫ି
ఙ
మ 	 if |ܿ െ ܽ|  ߜ and  |ܿ െ ܾ|  ߜ

where ߜ is a tolerable small value, and the widths of Gaussian functions
are selected as

ߪ ݔ ൌ
୫ୟ୶	ሼ ିషభ ,|ିశభ|ሽ

୪୬	ሺଵ/ఌሻ
, ݅ ൌ 1,2,⋯ ,݉

where ܿିଵ and ܿାଵ are the two centers of neighboring MFs of ݅ th
membership function. Then, we call ܣ semi-closed fuzzy sets.

Premise Parameter Estimation

48

Generalized Dynamic Fuzzy Neural Networks

Theorem: The semi-closed fuzzy set ܣ satisfy -completeness of fuzzy
rules, i.e., for all ݔ ∈ ܷ, there exists ݅ ∈ 1,2,⋯ ,݉ , such that ߤ ݔ  .ߝ

Calculate E-distance:

݁݀ ݆ ൌ ݔ
 െ Φ ݆ 			݆ ൌ 1,2,⋯ , ݑ  2

where Φ ∈ ሼݔ,ܿଵ, ܿଶ,⋯ , ܿ௨, ௫ሽݔ and find

݆ ൌ arg min
ୀଵ,ଶ,⋯,௨ାଶ

ሺ݁݀ሺ݆ሻሻ

If ݁݀ሺ݆ሻ  ݇, ݔ
 can be completely represented by the existing fuzzy

set ,ሺܿܣ ሻߪ without generating a new MF. Otherwise, a new

Gaussian MF is allocated with its width and center respectively being

determined by

ߪ ݔ ൌ
max	ሼ ܿ െ ܿିଵ , |ܿ െ ܿାଵ|ሽ

lnሺ1/ߝሻ
, ܿሺ௨ାଵሻ ൌ ݔ
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Sensitivity Analysis

49

Generalized Dynamic Fuzzy Neural Networks

 Error Reduction Ratio

D H E 
.,, TTT WHTD   and  where

QR decomposition:

QAH 

ERR:

err
q D

q q D Di
i
T

i
T

i
T


( )2

where Q q q qv
n v  ( , , )1 2 

i v

Linear regression model:

Sensitivity Analysis

50

Generalized Dynamic Fuzzy Neural Networks

 Sensitivity of Fuzzy Rules

If

    ( , , ) (  1 2
1) u

r u

Define the ERR matrix


 

i
i
T

i

r


1

Significance of the ith rule is defined as 

 i errk

then the ith rule is deleted.

ui ,,2,1 
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Sensitivity Analysis

51

Generalized Dynamic Fuzzy Neural Networks

 Sensitivity of Input Variables

Define

If ܤ is small, ith input variable is not sensitive to the system
output, and consequently, width of the hyperellipsoidal region in
ith input variable could be reduced without significant effect of
system performance.

ri ,,2,1 

1

2

( )
r

j j
k

B k




 
ij

ij
j

err
B

B


uj ,,2,1 

ܤ -- total ERR related to input variables in jth rule
ݎݎ݁ -- ERR corresponding to ith input variable in jth rule
ܤ -- The significance of ith input variable in jth rule

Width Modification

52

Generalized Dynamic Fuzzy Neural Networks

In the case ݁  ݇ and ݉݀,  ݇ௗ, which implies the 
significance of the rule is not good to accommodate all the 
patterns, and the ellipsoidal region should be reduced.

In the case ݁  ݇ and ݉݀,  ݇ௗ, which implies the 
significance of the rule is not good to accommodate all the 
patterns, and the ellipsoidal region should be reduced.

Width modification: 

new old
ij ij   

2

1
1/

1 ( 1/ )

1 1/

ij
w ij

ij

B r
k B r

B r


    
 

where
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Consequent Parameter Determination

53

Generalized Dynamic Fuzzy Neural Networks

Assume that the desired output is : 

The optimal ܹ∗ can be determined by  

Give the output in the compact form as follows:

W Y 

T t t tn
n ( , )1 2

Minimizing

2|| ||W T 

* 1( )T TW T   

Flowchart of GD-FNN Algorithm 

54

Generalized Dynamic Fuzzy Neural Networks

Initialization

Generate first rule

Compute M-distances 
and find ݉݀,

Compute actual output 
error ݁
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consequents 
parameters

Adjust 
widths



Confidential & No Circulation 5/29/2016

28

Outline

55

 Introduction

 Dynamic Fuzzy Neural Networks

 Enhanced Dynamic Fuzzy Neural

Networks 

 Generalized Dynamic Fuzzy

Neural Networks

 Applications

 Conclusions

Application 1: 
Mackey—Glass Time-Series Prediction

56

Applications

x t a x t
bx t

x t
( ) ( ) ( )

( )

( )
   


 

1 1
1 10




System model:

Time-series prediction is widely applied in economic and 
business planning, inventory and production control, 
weather forecasting, signal processing, control etc.

where ܽ ൌ 0.1, ܾ ൌ 0.2, τ ൌ 17.

Prediction model:

x t p f x t x t t x t t x t t( ) [ ( ), ( ), ( ), ( )]      2 3

6000 exemplar samples were generated between ݐ ൌ 0 and 
ݐ ൌ 6000 with initial conditions ݔ ݐ ൌ 0 for ݐ ൏ 0 and ݔ 0 ൌ
1.2.
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Applications

Mackey—Glass time-series prediction (from t = 118 to 617 and six-step-
ahead prediction)

Application 1: 
Mackey—Glass Time-Series Prediction
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Applications

Generalization test of the D-FNN for Mackey—Glass time-series 
prediction (from t = 642 to 1141 and six-step ahead prediction)

Application 1: 
Mackey—Glass Time-Series Prediction
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Applications

Comparisons of structure and performance of different algorithms 
(Training case: n = 500, p = 6)

Technique
Number of 

rules

Number of 

parameters

RMSE of 

training

RMSE of 

testing

D-FNN 10 100 0.0082 0.0083

ANFIS 16 104 0.0016 0.0015

OLS 35 211 0.0087 0.0089

RBF-AFS 21 210 0.0107 0.0128

Application 1: 
Mackey—Glass Time-Series Prediction

60

Applications

Generalization comparison between the D-FNN and the ANFIS for p=85

Technique Pattern 

length

Number of 

rules

Number of 

parameters

NDEI

D-FNN 500 14 140 0.3375

ANFIS 500 16 104 0.036

Remark: It is shown that the performance of the D-FNN is
not so good as that of the ANFIS, even the D-FNN has more
adjustable parameters. The reason is that the ANFIS is
trained by iterative learning so that an overall optimal
solution can be achieved, whereas the D-FNN only acquires
a sub-optimal result.

Application 1: 
Mackey—Glass Time-Series Prediction
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Applications

Generalization comparison between D-FNN and RAN, RANEKF and M-
RAN for p=50

Technique Pattern 

length

Number of 

rules

Number of 

parameters

NDEI

D-FNN 2000 25 250 0.0544

RAN 5000 50 301 0.071

RANEKF 5000 56 337 0.056

M-RAN 5000 28 169 *

*The generalization error is measured by weighted prediction
error (WPE)

Application 1: 
Mackey—Glass Time-Series Prediction

Application 2: 
Prediction of Machine Health Condition

62

Applications

An online dynamic fuzzy neural network (OD-FNN) is 
developed for prediction of machine health condition 

prediction

Experimental platform PRONOSTIA 
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Application 2: 
Prediction of Machine Health Condition

63

Applications

Prediction model:

         
       nrkxrkxrkxkx

nrkyrkyrkykyfrky

ssss

sssss




,,2,,

,,,2,,




where ݔ௦ and ݕ௦ are the input and target signals respectively, ݎ
is the prediction step, and ݊  1 is maximum lag.

500 data are applied to initialize the OD-FNN and 500 data 
pairs are applied to test the OD-FNN performance for online 
prediction.

Application 2: 
Prediction of Machine Health Condition

64

Applications

Linear model online prediction results: (a) Prediction output with 
error curves. (b) Accuracies of online training and prediction.

௦ݕ ݅ ൌ ௦ݔ5 ݅  ሻݐሺ݀݊ܽݎ White noise 
signal
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Application 2: 
Prediction of Machine Health Condition
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Applications

Bearing MHC online prediction results: (a) Prediction output with 
error curves. (b) Accuracies of online training and prediction.

Application 2: 
Prediction of Machine Health Condition

66

Applications

Performance comparisons of all prediction methods 

Case NN types ࢉ࢚ ࢇ࢚࣐࢘ ࢊࢋ࣐࢘

Linear 
model

OSBP-NN 8.2471 99.52 99.31

OSELM-FNN 1.3841 99.23 98.28

RRLS-NN 5.2681 99.43 99.34

OD-FNN 1.6833 99.31 99.18

Bearing OSBP-NN 4.0210 98.38 96.01

OSELM-FNN 0.6765 97.31 95.35

RRLS-NN 2.5951 97.34 95.89

OD-FNN 1.6833 97.94 97.54

--ࢉ࢚ total computational time  online training accuracy--ࢇ࢚࣐࢘
online prediction accuracy--ࢊࢋ࣐࢘

Achieve a good trade-
off between prediction 
accuracy and 
computational cost 

Achieve a good trade-
off between prediction 
accuracy and 
computational cost 

Achieve a good trade-
off between prediction 
accuracy and 
computational cost 

Best online prediction
accuracy

Best online prediction
accuracy

Best online prediction
accuracy
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Application 3: 
Online Manipulator Control
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Applications

Articulated two-link robot manipulator

Application 3: 
Online Manipulator Control

68

Applications

Manipulator dynamics:
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Application 3: 
Online Manipulator Control

69

Applications

Online adaptive fuzzy neural control system:

Application 3: 
Online Manipulator Control

70

Applications

Performance comparison of GD-FNN with PD and (adaptive 
fuzzy controller ) AFC controllers:

Steady State 

Error (rad)

Overshoot 

(%)

Rise Time 

(sec)

Maximum 

Control 

Torque (Nm)

PD

Kp =6000; Kv =100

q1 0.050 9.3 0.287 312.7

q2 0.018 7.1 0.254 109.9

AFC

Kp =25; Kv =35

q1 0.022 0 0.237 425.9

q2 0.025 0 0.218 255.6

GD-FNN

Kp =25; Kv =7

q1 0.001 0 0.01 280.3

q2 0.001 0 0.01 110.0
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Application 3: 
Online Manipulator Control

71

Applications

Trajectory tracking results of adaptive online control

Application 3: 
Online Manipulator Control

72

Applications

Convergence of tracking error 
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Conclusions and Recommendations

 A D-FNN based on extended Radial Basis Function

(RBF) neural network is introduced, which has the

following properties: online learning, hierarchical learning,

dynamic self-organizing structure, fast speed in learning,

and generalization in learning.

 An Enhanced Dynamic Fuzzy Neural Network (ED-FNN)

learning algorithm based on SOM and RLLS Estimator is

developed, which is suitable for real-time applications

and it outperforms other approaches
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Conclusions and Recommendations

 A GD-FNN based on Ellipsoidal Basis Function (EBF) is

introduced, which can provide a simple and fast

approach to configure a fuzzy system so that

 some meaningful fuzzy rules could be acquired for

knowledge engineering, and

 the system could be used as a system modeling tool

for control engineering, pattern recognition, etc..
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