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Motivation

Most problems in nature have several (possibly conflicting)
objectives to be satisfied. Many of these problems are frequently
treated as single-objective optimization problems by transforming
all but one objective into constraints.
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A Formal Definition

The general Multiobjective Optimization Problem (MOP) can be
formally defined as:

Find the vector ~x∗ = [x∗1, x
∗
2, . . . , x

∗
n]T which will satisfy the m

inequality constraints:

gi(~x) ≤ 0 i = 1, 2, . . . ,m (1)

the p equality constraints

hi(~x) = 0 i = 1, 2, . . . , p (2)

and will optimize the vector function

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (3)
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What is the notion of optimum

in multiobjective optimization?

Having several objective functions, the notion of “optimum”
changes, because in MOPs, we are really trying to find good
compromises (or “trade-offs”) rather than a single solution as in
global optimization. The notion of “optimum” that is most
commonly adopted is that originally proposed by Francis Ysidro
Edgeworth in 1881.
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What is the notion of optimum

in multiobjective optimization?

This notion was later generalized by Vilfredo Pareto (in 1896).
Although some authors call Edgeworth-Pareto optimum to this
notion, we will use the most commonly accepted term: Pareto
optimum.
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Definition of Pareto Optimality

We say that a vector of decision variables ~x∗ ∈ F is Pareto optimal
if there does not exist another ~x ∈ F such that fi(~x) ≤ fi(~x∗) for
all i = 1, . . . , k and fj(~x) < fj(~x∗) for at least one j.
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Definition of Pareto Optimality

In words, this definition says that ~x∗ is Pareto optimal if there
exists no feasible vector of decision variables ~x ∈ F which would
decrease some criterion without causing a simultaneous increase in
at least one other criterion. Unfortunately, this concept almost
always gives not a single solution, but rather a set of solutions
called the Pareto optimal set. The vectors ~x∗ correspoding to the
solutions included in the Pareto optimal set are called
nondominated. The plot of the objective functions whose
nondominated vectors are in the Pareto optimal set is called the
Pareto front.
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Sample Pareto Front
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Current State of the Area

Currently, there are over 30 mathematical programming techniques
for multiobjective optimization. However, these techniques tend to
generate elements of the Pareto optimal set one at a time.
Additionally, most of them are very sensitive to the shape of the
Pareto front (e.g., they do not work when the Pareto front is
concave or when the front is disconnected).
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Why Metaheuristics?

Metaheuristics seem particularly suitable to solve multiobjective
optimization problems, because they are less susceptible to the
shape or continuity of the Pareto front (e.g., they can easily deal
with discontinuous or concave Pareto fronts), whereas this is a real
concern for mathematical programming techniques. Additionally,
many current metaheuristics (e.g., evolutionary algorithms, particle
swarm optimization, etc.) are population-based, which means that
we can aim to generate several elements of the Pareto optimal set
in a single run.
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Evolutionary Algorithms

EAs use a selection mechanism based on fitness. We can consider,
in general, two main types of multi-objective evolutionary
algorithms (MOEAs):

1. Algorithms that do not incorporate the concept of Pareto
dominance in their selection mechanism (e.g., approaches that
use linear aggregating functions).

2. Algorithms that rank the population based on Pareto
dominance. For example, MOGA, NSGA, NPGA, etc.
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Evolutionary Algorithms

Historically, we can consider the existence of two main generations
of MOEAs:

1. First Generation: Characterized by the use of Pareto
ranking and niching (or fitness sharing). Relatively simple
algorithms. Other (more rudimentary) approaches were also
developed (e.g., linear aggregating functions). It is also worth
mentioning VEGA, which is a population-based (not
Pareto-based) approach.

2. Second Generation: The concept of elitism is introduced in
two main forms: using (µ+ λ) selection and using a secondary
(external) population.
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Representative MOEAs (First Generation)

• VEGA

• MOGA

• NSGA

• NPGA
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Vector Evaluated Genetic Algorithm (VEGA)

• Proposed by David Schaffer in the mid-1980s (1984,1985).

• It uses subpopulations that optimize each objective separately.
The concept of Pareto optimum is not directly incorporated
into the selection mechanism of the GA.
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Vector Evaluated Genetic Algorithm (VEGA)
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Figure 1: Schematic of VEGA selection.
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Multi-Objective Genetic Algorithm (MOGA)

• Proposed by Carlos Fonseca and Peter Fleming (1993).

• The approach consists of a scheme in which the rank of a
certain individual corresponds to the number of individuals in
the current population by which it is dominated.

• It uses fitness sharing and mating restrictions.
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Nondominated Sorting Genetic Algorithm

(NSGA)

• Proposed by N. Srinivas and Kalyanmoy Deb (1994).

• It is based on several layers of classifications of the individuals.

Nondominated individuals get a certain dummy fitness value and

then are removed from the population. The process is repeated until

the entire population has been classified.

• To maintain the diversity of the population, classified individuals are

shared (in decision variable space) with their dummy fitness values.

17



Niched-Pareto Genetic Algorithm (NPGA)

• Proposed by Jeffrey Horn et al. (1993,1994).

• It uses a tournament selection scheme based on Pareto dominance.

Two individuals randomly chosen are compared against a subset

from the entire population (typically, around 10% of the

population). When both competitors are either dominated or

nondominated (i.e., when there is a tie), the result of the tournament

is decided through fitness sharing in the objective domain (a

technique called equivalent class sharing is used in this case).
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Representative MOEAs (Second Generation)

• SPEA and SPEA2

• NSGA-II

• PAES, PESA and PESA II

• The microGA for multiobjective optimization and the µGA2
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The Strength Pareto

Evolutionary Algorithm (SPEA)

SPEA was introduced by Eckart Zitzler & Lothar Thiele (1999). It uses

an external archive containing nondominated solutions previously found.

It computes a strength value similar to the ranking value used by

MOGA. A clustering technique called “average linkage method” is used

to keep diversity.
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The Strength Pareto

Evolutionary Algorithm 2 (SPEA2)

A revised version of SPEA has been recently proposed: SPEA2
(Zitzler, 2001). SPEA2 has three main differences with respect to
its predecessor: (1) it incorporates a fine-grained fitness assignment
strategy which takes into account for each individual the number of
individuals that dominate it and the number of individuals by
which it is dominated; (2) it uses a nearest neighbor density
estimation technique which guides the search more efficiently, and
(3) it has an enhanced archive truncation method that guarantees
the preservation of boundary solutions.
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The Nondominated Sorting

Genetic Algorithm II (NSGA-II)

Kalyanmoy Deb and co-workers (2000,2002) proposed a new
version of the Nondominated Sorting Genetic Algorithm (NSGA),
called NSGA-II, which is more efficient (computationally speaking),
it uses elitism and a crowded comparison operator that keeps
diversity without specifying any additional parameters.
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The Pareto Archived Evolution Strategy (PAES)

PAES was introduced by Joshua Knowles & David Corne (2000).

It uses a (1+1) evolution strategy together with an external archive
that records all the nondominated vectors previously found.

It uses an adaptive grid to maintain diversity.
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The Pareto Envelope-based

Selection Algorithm (PESA)

PESA was proposed by David Corne and co-workers (2000). This
approach uses a small internal population and a larger external (or
secondary) population. PESA uses the same hyper-grid division of
phenotype (i.e., objective funcion) space adopted by PAES to
maintain diversity. However, its selection mechanism is based on
the crowding measure used by the hyper-grid previously mentioned.
This same crowding measure is used to decide what solutions to
introduce into the external population (i.e., the archive of
nondominated vectors found along the evolutionary process).
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The Pareto Envelope-based

Selection Algorithm-II (PESA-II)

PESA-II (Corne et al., 2001) is a revised version of PESA in which

region-based selection is adopted. In region-based selection, the unit of

selection is a hyperbox rather than an individual. The procedure consists

of selecting (using any of the traditional selection techniques) a hyperbox

and then randomly select an individual within such hyperbox.
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The Micro Genetic Algorithm

for Multiobjective Optimization
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The Micro Genetic Algorithm2 (µGA2)

Proposed by Toscano Pulido & Coello [2003]. The main motivation of

the µGA2 was to eliminate the 8 parameters required by the original

algorithm. The µGA2 uses on-line adaption mechanisms that make

unnecessary the fine-tuning of any of its parameters. The µGA2 can even

decide when to stop (no maximum number of generations has to be

provided by the user). The only parameter that it requires is the size of

external archive (although there is obviously a default value for this

parameter).
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The Micro Genetic Algorithm2 (µGA2)
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MOEAs that the world forgot

• The Incrementing Multi-Objective Evolutionary
Algorithm (IMOEA) (Tan et al., 2001). It uses a dynamic
population size, based on the current approximation of the
Pareto front. It also adopts an adaptive niching method.

• The Constraint Method-Based Evolutionary Algorithm
(CMEA) for Multiobjective Optimization (Ranjithan et al.,
2001): Based on the ε-constraint method.

• The Orthogonal Multi-Objective Evolutionary
Algorithm (OMOEA) (Zeng et al., 2004). Based on
orthogonal design and other statistical techniques. It adopts
niching.
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MOEAs that the world forgot

• The MaxiMin Method (Balling, 2000). It uses some sort of
compromise programming to assign fitness and estimate
density with a single mathematical expression.

• The Method based on Distances and the Contact
Theorem from Osyczka and Kundu (1996). It uses a nonlinear
aggregation function that estimates distance with respect to
the ideal vector.

• The Non-Generational Genetic Algorithm for
Multiobjective Optimization from Valenzuela-Rendón and
Uresti-Charre (1997). It uses an aggregation function that
combines dominance count with niching (it uses fitness
sharing).

30



MOEAs that the world forgot

• The Thermodynamic Genetic Algorithm (Kita, 1996).
This is the multi-objective version of an algorithm originally
proposed for combinatorial optimization. This algorithm
incorporates the concept of entropy and the use of a cooling
schedule in its selection mechanism.

• The Nash Genetic Algorithm (Sefrioui, 1996). It uses a
co-evolutionary scheme to try to approximate a Nash
equilibrium point (in a Nash strategy, each player tries to
optimize his/her own criterion, assuming that the other
players’ criteria are fixed). It uses a distance-based mutation
operator. It requires certain mathematical calculations to
define the model to be optimized with a genetic algorithm and
its outcome is a single solution.
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MOEAs that the world forgot

• Use of genders: Allenson (1992) used a variation of VEGA in
which genders were used to distinguish between the two
objective functions related to the planning of a path composed
by several rectilinear pipe segments. In this approach,
recombination is only possible between pairs of individuals
having a different gender (a male and a female) and the gender
is randomly assigned to an offspring. In the initial population,
it is ensured that half of the population are male and half are
female, but this balance is no longer maintained upon the
application of the genetic operators. At each generation, the
worst individual (chosen from one of the two genders) is
eliminated and its place is taken by another individual
(randomly selected) from its same gender.
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MOEAs that the world forgot

Allenson used evolution strategies to implement the sexual
attractors that modify the way in which recombination takes place.
The idea is to model the sexual attraction that occurs in nature
and which determines a not so random mating. In 1996, Lis and
Eiben proposed a generalization of this approach in which there are
as many genders as objectives.
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MOEAs that the world forgot

• ε-MOEA: Deb (2003, 2005) proposed a MOEA based on a
relaxed form of Pareto dominance called ε-dominance
(Laumanns et al., 2002). This approach uses steady state
selection and adopts an external population that incorporates
ε-dominance.

• C-NSGA-II: The Clustered NSGA-II is a version of NSGA-II
in which crowding is replaced by the clustering algorithm
adopted in SPEA.
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Modern MOEAs (After 2002)

• MOEA/D

• Indicator-based Selection (hypervolume and others)

• NSGA-III
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MOEA/D

The Multi-Objective Evolutionary Algorithm based on
Decomposition (MOEA/D) proposed by Zhang et al. (2007) is one
of the most competitive MOEAs in current used. This approach
decomposes a multi-objective problem into several single-objective
optimization problems, which are simultaneously solved. Each
subproblem is optimized using information from its neighboring
subproblems, in contrast with similar approaches (e.g., MOGLS
(Ishibuchi & Murata, 1996)). This MOEA is inspired on a
mathematical programming technique called Normal Boundary
Intersection (NBI) (Das, 1998).
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Indicator-based Selection

Perhaps the most important trend on the design of moderns
MOEAs is the use of a performance measure in their selection
mechanism. For example:

• ESP: The Evolution Strategy with Probability Mutation uses a
measure based on the hypervolume, which is scale independent
and doesn’t require any parameters, in order to truncate the
contents of the external archive (Huband et al., 2003).

• IBEA: The Indicator-Based Evolutionary Algorithm is an
algorithmic framework that allows the incorporation of any
performance indicator in the selection mechanism of a MOEA
(Zitzler et al., 2004). It was originally tested using the
hypervolume and the binary ε indicator.
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Indicator-based Selection

Another important MOEA within this class is the following:

• SMS-EMOA: Emmerich et al. (2005) proposed an approach
based on NSGA-II and the archiving techniques proposed by
Knowles, Corne and Fleischer. This approach was called S
Metric Selection Evolutionary Multiobjective Algorithm.
SMS-EMOA creates an initial population and generates a
single solution per iteration (i.e., it uses steady state selection)
using the crossover and mutation operators from NSGA-II.
Then, it applies Pareto ranking. When the last nondominated
front has more than one solution, SMS-EMOA uses
hypervolume to decide which solution should be removed.
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Indicator-based Selection

In 2007, Beume et al. proposed a new version of SMS-EMOA in
which the hypervolume contribution is not used when, in the
Pareto ranking process, we obtain more than one front. In this
case, they use the number of solutions that dominate to a certain
individual (i.e., the solution that is dominated by the largest
number of solutions is removed). The authors of this approach
indicate that their motivation to use the hypervolume is to improve
the distribution of solutions along the Pareto front (in other words,
hypervolume is used only as a density estimator).
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Indicator-based Selection

• MO-CMA-ES: This is a multi-objective version of the
covariance matrix adaptation evolution strategy (CMA-ES)
proposed by Igel et al. (2007). Its selection mechanism is based
on a nondominated sorting that adopts as its second selection
criterion either the crowding distance or the hypervolume
contribution (two versions of the algorithm were tested, and
the one based on the hypervolume has the best overall
performance). This MOEA is rotation invariant, as its original
single-objective optimizer.

• SPAM: The Set Preference Algorithm for Multiobjective
optimization is a generalization of IBEA which allows to adopt
any set preference relation in its selection mechanism (Zitzler
et al., 2008).
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Indicator-based Selection

• HyPE: The hypervolume estimation algorithm for
multi-objective optimization, was proposed by Bader (2011). In
this case, the author proposes a quick search algorithm that
uses Monte Carlo simulations to approximate the hypervolume
contributions. The core idea is that the actual hypervolume
contribution value is not that important, but only the actual
ranking that is produced with it. Although this proposal is
quite interesting, in practice its performance is rather poor
with respect that of MOEAs that use the exact hypervolume
contributions.
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Indicator-based Selection

The hypervolume (also known as the S metric or the Lebesgue
measure) of a set of solutions, measures the size of the portion of
objective space that is dominated by such solutions, collectively.

The hypervolume is the only performance indicator that is known
to be monotonic with respect to Pareto dominance. This
guarantees that the true Pareto front achieves the maximum
possible hypervolume value, and any other set will produce a lower
value for this indicator.
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Indicator-based Selection

Fleischer (2003) proved that, given a finite search space and a
reference point, maximizing the hypervolume is equivalent to
obtaining the Pareto optimal set. Therefore, a bounded set that
contains the maximum possible hypervolume value for a certain
population size, will only consist of Pareto optimal solutions. This
has been experimentally validated (Knowles, 2003; Emmerich,
2005), and it has been observed that such solutions also have a
good distribution along the Pareto front.
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Indicator-based Selection

The computation of the hypervolume depends on the reference
point that we adopt, and this point can have a significant influence
on the results. Some researchers have proposed to use the worst
objective function values available in the current population, but
this requires a scaling of the objectives.
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Indicator-based Selection

However, the main drawback of using the hypervolume is its high
computational cost. The best known algorithms currently available
to compute the hypervolume have a complexity that is polynominal
on the number of points, but such a complexity grows
exponentially with the number of objectives.
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Indicator-based Selection

It is worth noting that the use of the hypervolume to select
solutions is not straightforward. This indicator operates on a set of
solutions, and the selection operator considers only one solution at
a time. Therefore, when using the hypervolume to select solutions,
a fitness assignment strategy is required.
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Indicator-based Selection

The strategy that has been most commonly adopted in the
specialized literature consists of performing first a nondominated
sorting procedure and then ranking the solutions within each front
based on the hypervolume loss that results from removing a
particular solution (Knowles and Corne, 2003; Emmerich et al.,
2005; Igel et al., 2007; Bader et al., 2010).
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Indicator-based Selection

The main motivation for using indicators in the selection
mechanism is scalability (in objective function space). However, the
high computational cost of the hypervolume has motivated the
exploration of alternative performance indicators, such as ∆p. See:

Oliver Schütze, Xavier Esquivel, Adriana Lara and Carlos A. Coello Coello,

Using the Averaged Hausdorff Distance as a Performance Measure

in Evolutionary Multi-Objective Optimization, IEEE Transactions on

Evolutionary Computation, Vol. 16, No. 4, pp. 504–522, August 2012.
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Indicator-based Selection

The ∆p indicator can be seen as an “averaged Hausdorff distance”
between our approximation and the true Pareto front. ∆p combines
some slight variations of two well-known performance indicators:
generational distance (Van Veldhuizen, 1999) and inverted
generational distance (Coello & Cruz, 2005).
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Indicator-based Selection

∆p is a pseudo-metric that simultaneously evaluates proximity to
the true Pareto front and the distribution of solutions along it.
Although it is not a Pareto compliant indicator, in practice, it
seems to work reasonably well, being able to deal with outliers.
This makes it attractive as a performance indicator. Additionally,
its computational cost is very low.

50



Indicator-based Selection

Nevertheless, it is worth mentioning that in order to incorporate ∆p in the

selection mechanism of a MOEA, it is necessary to have an approximation of

the true Pareto front at all times. This has motivated the development of

techniques that can produce such an approximation in an efficient and effective

manner. For example, Gerst et al. (2011) lineralized the nondominated front

produced by the current population and used that information in the so-called

∆p-EMOA, which was used to solve bi-objective problems. This algorithm is

inspired on the SMS-EMOA and adopts an external archive.
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Indicator-based Selection

There was a further extension of this MOEA for dealing with problems having

three objectives (Trautmann, 2012). In this case, the algorithm requires some

prior steps, which include reducing the dimensionality of the nondominated

solutions and computing their convex hull. This version of the ∆p-EMOA

generates solutions with a better distribution, but requires more parameters

and has a high computational cost when is used for solving many-objective

optimization problems.
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Indicator-based Selection

Another possible way of incorporating ∆p into a MOEA is to use the currently

available nondominated solutions in a stepped way, in order to build an

approximation of the true Pareto front. This was the approach adopted by the

∆p-DDE (Rodŕıguez & Coello, 2012), which uses differential evolution as its

search engine. This MOEA provides results of similar quality to those

generated by SMS-EMOA, but at a much lower computational cost (in high

dimensionality). Its main limitation is that its solutions are normally not

well-distributed in many-objective problems. Additionally, it has difficulties to

deal with disconnected Pareto fronts.
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Indicator-based Selection

Recently, some researchers have recommended the use of the R2
indicator, which was originally proposed by Hansen (1998) for
comparing sets of solutions using utility functions (Brockhoff,
2012). A utility function is a model of the decision maker
preferences that maps each point from the objective function space
to a utility value.
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Indicato-based Selection

It is worth indicating that R2 is weakly monotonic and that it’s
correlated to the hypervolume, but has a much lower
computational cost. Due to these properties, its use is
recommended for dealing with many-objective problems.
Nevertheless, the utility functions that are required to compute this
indicator have to be properly scaled.
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Indicator-based Selection

Currently, there are already several MOEAs based on R2:

Raquel Hernández Gómez and Carlos A. Coello Coello, MOMBI: A New

Metaheuristic for Many-Objective Optimization Based on the R2

Indicator, in 2013 IEEE Congress on Evolutionary Computation

(CEC’2013), pp. 2488–2495, IEEE Press, Cancún, México, 20-23 June, 2013,

ISBN 978-1-4799-0454-9.

Dimo Brockhoff, Tobias Wagner and Heike Trautmann, R2 Indicator-Based

Multiobjective Search, Evolutionary Computation, Vol. 23, No. 3, pp.

369–395, Fall 2015.
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Indicator-based Selection

Alan Dı́az-Manŕıquez, Gregorio Toscano-Pulido, Carlos A. Coello Coello and

Ricardo Landa-Becerra, A Ranking Method Based on the R2 Indicator

for Many-Objective Optimization, in 2013 IEEE Congress on

Evolutionary Computation (CEC’2013), pp. 1523–1530, IEEE Press, Cancún,

México, 20-23 June, 2013, ISBN 978-1-4799-0454-9.

Dúng H. Phan and Junichi Suzuki, R2-IBEA: R2 Indicator Based

Evolutionary Algorithm for Multiobjective Optimization, in 2013

IEEE Congress on Evolutionary Computation (CEC’2013), pp. 1836–1845,

IEEE Press, Cancún, México, 20-23 June, 2013, ISBN 978-1-4799-0454-9.
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NSGA-III

The Nondominated Sorting Genetic Algorithm III (NSGA-III) was
proposed by Deb and Jain (2014) as an extension of NSGA-II
specifically designed to deal with many-objective problems (i.e.,
multi-objective optimization problems having 4 or more objectives).
NSGA-III still uses nondominated sorting (producing different
levels), but in this case, the density estimation is done through
adaptively updating a number of well-spread reference points.
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To Know More About

Multi-Objective Evolutionary Algorithms

Kalyanmoy Deb, Multi-Objective Optimization using
Evolutionary Algorithms, John Wiley & Sons, Chichester, UK,
2001, ISBN 0-471-87339-X.

Carlos A. Coello Coello, Gary B. Lamont and David A. Van
Veldhuizen, Evolutionary Algorithms for Solving
Multi-Objective Problems, Second Edition, Springer, New
York, ISBN 978-0-387-33254-3, September 2007.
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Current state of the literature (mid 2016)
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Alternative Heuristics

• Simulated Annealing

• Tabu Search

• Ant System

• Particle Swarm Optimization

• Artificial Immune Systems

• Differential Evolution
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Simulated Annealing

Based on an algorithm originally proposed by Metropolis et al.
(1953) to simulate the evolution of a solid in a heat bath until it
reaches its thermal equilibrium.
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Simulated Annealing

Kirkpatrick et al. (1983) and Černy (1985) independently pointed
out the analogy between the “annealing” process proposed by
Metropolis and combinatorial optimization and proposed the
so-called “simulated annealing algorithm”.

63



Simulated Annealing

1. Select an initial (feasible) solution s0

2. Select an initial temperature t0 > 0

3. Select a cooling schedule CS

4. Repeat

Repeat

Randomly select s ∈ N(s0) (N = neighborhood structure)

δ = f(s)− f(s0) (f = objective function)

If δ < 0 then s0 ← s

Else

Generate random x (uniform distribution in the range (0, 1))

If x < exp(−δ/t) then s0 ← s

Until max. number of iterations ITER reached

t← CS(t)

5. Until stopping condition is met
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Simulated Annealing

SA generates local movements in the neighborhood of the current
state, and accepts a new state based on a function depending on
the current “temperature” t. The two main parameters of the
algorithm are ITER (the number of iterations to apply the
algorithm) and CS (the cooling schedule), since they have the most
serious impact on the algorithm’s performance.

Despite the fact that it was originally intended for combinatorial
optimization, other variations of simulated annealing have been
proposed to deal with continuous search spaces.
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Simulated Annealing

The key in extending simulated annealing to handle multiple
objectives lies in determining how to compute the probability of
accepting an individual ~x′ where f(~x′) is dominated with respect to
f(~x).
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Simulated Annealing

Some multiobjective versions of SA are the following:

• Serafini (1994): Uses a target-vector approach to solve a
bi-objective optimization problem (several possible transition
rules are proposed).

• Ulungu (1993): Uses an L∞-Tchebycheff norm and a weighted
sum for the acceptance probability.

• Czyzak & Jaszkiewicz (1997,1998): Population-based approach
that also uses a weighted sum.

• Ruiz-Torres et al. (1997): Uses Pareto dominance as the
selection criterion.
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Simulated Annealing

• Suppapitnarm et al. (1999,2000): Uses Pareto dominance plus
a secondary population.

• Baykasoǧlu (2005): Uses preemptive goal programming (the
most important goals are optimized first, followed by the
secondary goals).

• Suman (2002,2003): Uses Pareto dominance, an external
archive and a scheme that handles constraints within the
expression used to determine the probability of moving to a
certain state.

• Bandyopadhyay et al. (2008): It selects individuals with a
probability that depends on the amount of domination
measures in terms of the hypervolume measure. It uses an
external archive
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Some Applications of

Multiobjective Simulated Annealing

• Design of a cellular manufacturing system (Czyzak, 1997).

• Nurse scheduling (Jaszkiewicz, 1997).

• Portfolio optimization (Chang, 1998).

• Aircrew rostering (Lučić & Teodorović, 1999).

• Ship design (Ray, 1995).

• Optimization of bicycle frames (Suppapitnarm, 1999).

• Parallel machine scheduling (Ruiz-Torres, 1997)

• Analog Filter Tuning (Thompson, 2001)
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To Know More About

Multiobjective Simulated Annealing

B. Suman and P. Kumar, A survey of simulated annealing as
a tool for single and multiobjective optimization, Journal of
the Operational Research Society, Vol. 57, No. 10, pp. 1143–1160,
October 2006.

Carlos A. Coello Coello, Gary B. Lamont and David A. Van
Veldhuizen, Evolutionary Algorithms for Solving
Multi-Objective Problems, Second Edition, Springer, New
York, ISBN 978-0-387-33254-3, September 2007.
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Tabu Search

Tabu search was proposed by Fred Glover in the mid-1980s. In general

terms, tabu search has the three following components (Glover &

Laguna, 1997):

• A short-term memory to avoid cycling.

• An intermediate-term memory to intensify the search.

• A long-term memory to diversify the search.
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Tabu Search

1. Select x ∈ F (F represents feasible solutions)

2. x∗ = x (x∗ is the best solution found so far)

3. c = 0 (iteration counter)

4. T = ∅ (T set of “tabu” movements)

5. If N (x)− T = ∅, goto step 4 (N (x) is the neighborhood function)

6. Otherwise, c← c+ 1

Select nc ∈ N (x)− T such that: nc(x) = opt(n(x) : n ∈ N (x)− T )

opt() is an evaluation function defined by the user

7. x← nc(x)

If f(x) < f(x∗) then x∗ ← x

8. Check stopping conditions:

Maximum number of iterations has been reached

N (x)− T = ∅ after reaching this

step directly from step 2.

9. If stopping conditions are not met, update T

and return to step 2
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Tabu Search

The basic idea of tabu search is to create a subset T of N , whose
elements are called “tabu moves” (historical information of the
search process is used to create T ). Membership in T is conferred
either by a historical list of moves previously detected as
improductive, or by a set of tabu conditions (e.g., constraints that
need to be satisfied). Therefore, the subset T constrains the search
and keeps tabu search from becoming a simple hillclimber. At each
step of the algorithm, a “best” movement (defined in terms of the
evaluation function opt()) is chosen. Note that this approach is
more aggressive than the gradual descent of simulated annealing.
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Tabu Search

Tabu search tends to generate moves that are in the area
surrounding a candidate solution. Therefore, the main problem
when extending this technique to deal with multiple objectives is
how to maintain diversity so that the entire Pareto front can be
generated. The proper use of the historial information stored is
another issue that deserves attention.
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Tabu Search

Some multiobjective versions of tabu search are the following:

• Hansen (1997): MOTS*, which uses a λ-weighted Tchebycheff

metric.

• Gandibleux et al. (1997): MOTS, which is based on the use of an

utopian reference point.

• Hertz et al. (1994): Proposed 3 approaches (weighted sum of

objectives, lexicographic ordering and the ε-constraint method).

• Baykasoǧlu (1999,2001): MOTS, which uses 2 lists: the Pareto list

(stores the nondominated solutions found during the search), and

the candidate list (stores all the solutions which are not globally

nondominated, but were locally nondominated at some stage of the

search). Elements from the candidate list are used to diversify the

search.
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Tabu Search

• Ho et al. (2002): Uses Pareto ranking (as in MOGA), an external

archive (which is bounded in size), fitness sharing and a

neighborhood generation based on the construction of concentric

“hypercrowns”.

• Jaeggi et al. (2004): Proposes a multi-objective parallel tabu search

approach that operates on continuous search spaces. The search

engine is based on a multi-objective version of the Hooke and Jeeves

method coupled with short, medium and long term memories.
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Tabu Search

• Kulturel-Konak (2006): Proposes the multinomial tabu search

(MTS) algorithm for multi-objective combinatorial optimization

problems. The idea is to use a multinomial probability mass function

to select an objective (considered “active”) at each iteration. The

approach uses an external archive in which solutions are added based

on Pareto dominance. The approach also performs neighborhood

moves, and uses a diversification scheme based on restarts.

• Xu et al. (2006): Uses an aggregating function. However, a set of

rules based on Pareto dominance are used when evaluating

neighborhood moves, so that some moves during the search may be

based on Pareto dominance.
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Some Applications of

Multiobjective Tabu Search

• Resource constrained project scheduling (Viana and Pinho de
Sousa, 2000).

• Flowshop scheduling (Marett and Wright, 1996).

• Cell formation problems (Hertz et al., 1994).

• Flight instructor scheduling problems (Xu et al., 2006).

• Aerodynamic shape optimization problems (Jaeggi et al., 2004).
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To Know More About

Multiobjective Tabu Search

Fred Glover and Manuel Laguna, Tabu Search, Kluwer Academic
Publishers, Boston, Massachusetts, 1997.

Carlos A. Coello Coello, Gary B. Lamont and David A. Van
Veldhuizen, Evolutionary Algorithms for Solving
Multi-Objective Problems, Second Edition, Springer, New
York, ISBN 978-0-387-33254-3, September 2007.
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Ant System

The Ant System (AS) is a meta-heuristic inspired by colonies of real

ants, which deposit a chemical substance on the ground called pheromone

and was proposed by Marco Dorigo in the mid-1990s. The pheromone

influences the behavior of the ants: paths with more pheromone are

followed more often. From a computer science perspective, the AS is a

multi-agent system where low level interactions between single agents

(i.e., artificial ants) result in a complex behavior of the entire ant colony.
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Ant System

The AS was originally proposed for the traveling salesman problem
(TSP), and most of the current applications of the algorithm
require the problem to be reformulated as one in which the goal is
to find the optimal path of a graph. A way to measure the distances
between nodes is also required in order to apply the algorithm.
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Ant-Q

Gambardella and Dorigo (1995) realized the AS can be interpreted
as a particular kind of distributed learning technique and proposed
a family of algorithms called Ant-Q. This family of algorithms is
really a hybrid between Q-learning and the AS. The algorithm is
basically a reinforcement learning approach with some aspects
incrementing its exploratory capabilities.
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Ant System and Ant-Q

Some multiobjective versions of AS and Ant-Q are the following:

• Mariano and Morales (1999): proposed Multi-Objective Ant-Q

(MOAQ), which uses lexicographic ordering.

• Gambardella et al. (1999): proposed the use of two ant colonies (one

for each objective), and applied lexicographic ordering.

• Iredi et al. (2001): proposed a multi colony approach to handle the

two objectives of a single machine total tardiness problem.

• Gagné et al. (2001): proposed an approach in which the heuristic

values used to decide the movements of an ant take into

consideration several objectives.
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Ant System and Ant-Q

• T’kindt et al. (2002): proposed SACO, which adopts lexicographic

ordering, and incorporates local search.

• Shelokar et al. (2000,2002): proposed a version of SPEA in which

the search engine is an ant system. The approach adopts strength

Pareto fitness assignment, an external archive, thermodynamic

clustering for pruning the contents of the external archive, mutation,

crossover, and a local search mechanism.

• Barán and Schaerer (2003): extends the MAC-VRPTW algorithm

using a Pareto-based approach. All the objectives share the same

pheromone trails, so that the knowledge of good solutions is equally

important for every objective function. The approach maintains a

list of Pareto optimal solutions, and each new generated solution is

compared with respect to the contents of this list.
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Ant System and Ant-Q

• Cardoso et al. (2003): proposed MONACO, which uses a

multi-pheromone trail (the number of trails corresponds to the

number of objectives to be optimized) and performs a local search

over a partially built solution.

• Doerner et al. (2001,2004): proposed P-ACO, which uses a quadtree

data structure for identifying, storing and retrieving nondominated

solutions. Pheromone updates are done using two ants: the best and

the second best values generated in the current iteration for each

objective function.
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Ant System and Ant-Q

• Guntsch and Middendorf (2003): proposed PACO, in which the

population is formed with a subset of the nondominated solutions

found so far. First, one solution is selected at random, but then the

remainder solutions are chosen so that they are closest to this initial

solution with respect to some distance measure. An

average-rank-weight method is adopted to construct a selection

probability distribution for the ants and the new derivation of the

active population to determine the pheromone matrices.
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Ant System and Ant-Q

• Doerner et al. (2003): proposed COMPETants, which was

specifically designed for a bi-objective optimization problem and it

consists of two ant populations with different priority rules. The

first of these colonies uses a priority rule that emphasizes one of the

objectives , and the second one emphasizes the other objective. The

idea is to combine the best solutions from these two populations as

to find good trade-offs.
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Some Applications of

Multiobjective Ant System or Ant-Q

• Optimization of a water distribution irrigation network (Mariano

and Morales, 1999).

• Vehicle routing problems (Gambardella et al., 1999).

• Single machine total tardiness problem (Iredi et al., 2001).

• Industrial scheduling (Gravel et al. 2001).

• Reliability optimization (Shelokar et al., 2002).

• Portfolio selection problems (Doerner et al., 2004).

• Network optimization (Cardoso et al., 2003).
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To Know More About

Multiobjective Ant System or Ant-Q

C. Garćıa-Mart́ınez, O. Cordón and F. Herrera, A taxonomy and
an empirical analysis of multiple objective ant colony
optimization algorithms for the bi-criteria TSP, European
Journal of Operational Research, Vol. 180, No. 1, pp. 116–148,
July 1, 2007.

Carlos A. Coello Coello, Gary B. Lamont and David A. Van
Veldhuizen, Evolutionary Algorithms for Solving
Multi-Objective Problems, Second Edition, Springer, New
York, ISBN 978-0-387-33254-3, September 2007.
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Particle Swarm Optimization

James Kennedy and Russell Eberhart (1995) proposed an approach

called “particle swarm optimization” (PSO) inspired by the

choreography of a bird flock. This approach can be seen as a distributed

behavioral algorithm that performs (in its more general version)

multidimensional search. In the simulation, the behavior of each

individual is affected by either the best local (i.e., within a certain

neighborhood) or the best global individual.
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Particle Swarm Optimization

It is worth mentioning that PSO is an unconstrained search
technique. Therefore, it is also necessary to develop an additional
mechanism to deal with constrained multiobjective optimization
problems. The design of such a mechanism is also a matter of
current research even in single-objective optimization (see for
example (Ray, 2001)).
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Particle Swarm Optimization

1. For i = 1 to M (M = population size)

Initialize P [i] randomly

(P is the population of particles)

Initialize V [i] = 0 (V = speed of each particle)

Evaluate P [i]

GBEST = Best particle found in P [i]

2. End For

3. For i = 1 to M

PBESTS[i] = P [i]

(Initialize the “memory” of each particle)

4. End For
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Particle Swarm Optimization

5. Repeat

For i = 1 to M

V [i] = w × V [i] + C1 ×R1 × (PBESTS[i]− P [i])

+C2 ×R2 × (PBESTS[GBEST ]− P [i])

(Calculate speed of each particle)

(W = Inertia weight, C1 & C2 are positive constants)

(R1 & R2 are random numbers in the range [0..1])

POP [i] = P [i] + V [i]

If a particle gets outside the pre-defined hypercube

then it is reintegrated to its boundaries

Evaluate P [i]

If new position is better then PBESTS[i] = P [i]

GBEST = Best particle found in P [i]

End For

6. Until stopping condition is reached
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Particle Swarm Optimization

To extend PSO for multiobjective optimization, it is necessary to
modify the guidance mechanism of the algorithm such that
nondominated solutions are considered as leaders. Note however,
that it’s important to have a diversity maintenance mechanism.
Also, an additional exploration mechanism (e.g., a mutation
operator) may be necessary to generate all portions of the Pareto
front (mainly in disconnected fronts).
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Particle Swarm Optimization

Some multiobjective versions of particle swarm optimization are
the following:

• Moore & Chapman (1999): Based on Pareto dominance. The

authors emphasize the importance of performing both an individual

and a group search (a cognitive component and a social component).

No scheme to maintain diversity is adopted.

• Ray & Liew (2002): Uses Pareto dominance and combines concepts

of evolutionary techniques with the particle swarm. The approach

uses crowding to maintain diversity and a multilevel sieve to handle

constraints.
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Particle Swarm Optimization

• Coello & Lechuga (2002,2004): Uses Pareto dominance and a

secondary population to retain the nondominated vectors found

along the search process. The approach is very fast and has

performed well compared to other techniques considered

representative of the state-of-the-art in evolutionary multiobjective

optimization.

• Fieldsend & Singh (2002): Also uses Pareto dominance and a

secondary population. However, in this case, a data structure called

“dominated trees” is used to handle an unconstrained archive, as to

avoid the truncation traditionally adopted with MOEAs. A

mutation operator (called “turbulence”) is also adopted.
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Particle Swarm Optimization

• Mostaghim and Teich (2003): proposed a sigma method (similar to

compromise programming) in which the best local guides for each

particle are adopted to improve the convergence and diversity of a

PSO approach used for multiobjective optimization. They also use a

“turbulence” operator, but applied on decision variable space. In

further work, the authors study the influence of ε-dominance on

MOPSO methods. In more recent work, Mostaghim and Teich

(2004) proposed a new method called coveringMOPSO (cvMOPSO),

which works in two phases. In phase 1, a MOPSO algorithm is run

with a restricted archive size and the goal is to obtain a good

approximation of the Pareto-front. In phase 2, the nondominated

solutions obtained from phase 1 are considered as the input archive

of the cvMOPSO, and the aim is to cover the gaps left.
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Particle Swarm Optimization

• Li (2003): proposed an approach that incorporates the main

mechanisms of the NSGA-II into the PSO algorithm. In more recent

work, Li (2004) proposed the maximinPSO, which uses a fitness

function derived from the maximin strategy (Balling, 2003) to

determine Pareto domination.

• Chow and Tsui (2004): A modified PSO called “Multi-Species PSO”

is introduced by considering each objective function as a species

swarm. A communication channel is established between the

neighboring swarms for transmitting the information of the best

particles, in order to provide guidance for improving their objective

values.
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Particle Swarm Optimization

• Alvarez-Benitez et al. (2005): proposed PSO-based methods based

exclusively on Pareto dominance for selecting guides from an

unconstrained nondominated archive. Three different tecnniques are

presented: Rounds which explicitly promotes diversity, Random

which promotes convergence and Prob which is a weighted

probabilistic method and forms a compromise between Random and

Rounds.

• Santana-Quintero et al. (2006): proposed a hybrid algorithm, in

which particle swarm optimization is used to generate a few solutions

on the Pareto front (or very close to it), and rough sets are adopted

as a local search mechanism to generate the rest of the front.
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Particle Swarm Optimization

• Peng and Zhang (2008) proposed the multi-objective particle swarm

optimizer based on decomposition (MOPSO/D). This approach uses

the framework adopted by MOEA/D but replaces the genetic

operators (crossover and mutation) by the inertia flight equations

used in traditional PSO. MOPSO/D uses a turbulence (or mutation)

operator and adopts an archiving strategy (which is based on

ε-dominance (Laumanns, 2002)) to store the nondominated solutions

found during the search.
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Particle Swarm Optimization

• Fuentes-Cabrera and Coello (2010) proposed a micro-MOPSO,

which uses a population containing only five individuals and

performs a relatively low number of evaluations (only 3000). This

approach first selects the leader and then selects the neighborhood

for integrating the swarm. It also performs a reinitialization process

for preserving diversity and uses two external archives: one for

storing the solutions that the algorithm finds during the search

process and another for storing the final solutions obtained.
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Particle Swarm Optimization

• Padhye et al. (2009) proposed the use of hypervolume contributions

for guiding selection in a MOPSO. Jiang and Cai (2009) proposed

the use of hypervolume for pruning archive solutions in the context

of an ε-MOPSO. Chaman and Coello (2014) proposed the use of the

hypervolume contribution of archived solutions for selecting each

particle’s global and personal leaders, and also as a mechanism for

undaping the external archive when inserting new nondominated

solutions into it.
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Particle Swarm Optimization

• Nebro et al. (2009) proposed the Speed-constrained Multi-objective

PSO (SMPSO), which adopts a constriction coefficient (Clerc &

Kennedy, 2002) to limit the velocity. This approach is able to reach

the true Pareto front of several test problems in which most

MOPSOs fail.
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Particle Swarm Optimization

• Today, a wide variety of MOPSOs exist, based on aggregating

functions, decomposition, lexicographic ordering, quantum

computing, speciation, co-evolution, sub-populations, Pareto

ranking, and hybrids with other approaches (e.g., mathematical

programming techniques).
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Some Applications of

Multiobjective Particle Swarm Optimization

• Optimal groundwater management (El-Ghandour & Elbeltagi,
2014).

• Optimize the design of efficient Automatic Train Operation
(ATO) speed profiles in railway systems (Domı́nguez et al.,
2014).

• Planning of electrical distribution systems incorporating
distributed generation (Ganguly et al., 2013).

• Complex network clustering (Gong et al., 2014).

• Partial classification for accident severity analysis (Qiu et al.,
2014).
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To Know More About

Multiobjective Particle Swarm Optimization

Margarita Reyes-Sierra and Carlos A. Coello Coello, Multi-Objective

Particle Swarm Optimizers: A Survey of the State-of-the-Art,

International Journal of Computational Intelligence Research, Vol. 2,

No. 3, pp. 287–308, 2006.

Andries P. Engelbrecht, Fundamentals of Computational Swarm

Intelligence, John Wiley & Sons, Ltd, 2005, ISBN 978-0-470-09191-3.

Konstantinos E. Parsopoulos and Michael N. Vrahatis,

Multi-Objective Particles Swarm Optimization Approaches, in

Lam Thu Bui and Sameer Alam (editors), Multi-Objective Optimization

in Computational Intelligence: Theory and Practice, pp. 20–42,

Information Science Reference, Hershey, PA, USA, 2008.
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Artificial Immune System

Computationally speaking, the immune system is a highly parallel
intelligent system that is able to learn and retrieve previous
knowledge (i.e., it has “memory”) to solve recognition and
classification tasks. Due to these interesting features, several
researchers have developed computational models of the immune
system and have used it for a variety of tasks.

107



Artificial Immune System

There are several computational models of the immune system,
from which the main ones are the following:

• Immune network theory

• Negative selection

• Clonal selection theory
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Artificial Immune System

The main issues to extend an artificial immune system to deal with
multiple objectives are how to influence the propagation of
antibodies (i.e., how to couple the Pareto selection mechanism) and
how to maintain diversity. The use of a secondary population may
also be useful, if possible in the model adopted.

109



Artificial Immune System (fitness scoring)

Repeat

1. Select an antigen A from PA

(PA = Population of Antigens)

2. Take (randomly) R antibodies from PS

(PS = Population of Antibodies)

3. For each antibody r ∈ R, match it against

the selected antigen A
Compute its match score (e.g., using Hamming distance)

4. Find the antibody with the highest match score

Break ties at random

5. Add match score of winning antibody to its fitness

Until maximum number of cycles is reached
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Artificial Immune System

Some examples are the following:

• Yoo & Hajela (1999): Use of a linear aggregating function combined

with the fitness scoring function previously indicated.

• Cui et al. (2001): Another hybrid approach that uses entropy to

maintain diversity.

• Anchor et al. (2002): Adopt both lexicographic ordering and

Pareto-based selection in an evolutionary programming algorithm

used to detect attacks with an artificial immune system for virus

and computer intrusion detection.
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Artificial Immune System

• Luh et al. (2003): proposed the multi-objective immune algorithm

(MOIA) which adopts several biologically inspired concepts. This is

a fairly elaborate approach which adopts a binary encoding. Affinity

of the antibodies is measured in such a way that the best antibodies

are the feasible nondominated solutions. The approach has a

germinal center where the nondominated solutions are cloned and

hypermutated.

• Campelo et al. (2004): proposed the Multiobjective Clonal Selection

Algorithm (MOCSA). This approach combines ideas from both

CLONALG and opt-AINet. MOCSA uses real-numbers encoding,

nondominated sorting, cloning, maturation (i.e., Gaussian mutation)

and replacement (based on nondominated sorting).
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Artificial Immune System

• Cutello et al. (2005): extended PAES with a different representation

(ad hoc to the protein structure prediction problem of their interest)

and with immune inspired operators. The original mutation stage of

PAES, which consists of two steps (mutate and evaluate) is replaced

by four steps: (1) a clonal expansion phase, (2) an affinity

maturation phase, (3) an evaluation phase, and (4) a selection phase

(the best solution is chosen).

• Coello and Cruz (2002,2005): extended a clonal selection algorithm

to handle multiple objectives. A secondary population is adopted.
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Artificial Immune System

• Jiao et al. (2005): proposed the Immune Dominance Clonal
Multiobjective Algorithm (IDCMA), which is based on clonal
selection and adopts Pareto dominance. The antigens are the
objective functions and constraints that must be satisfied. The
antibodies are the candidate solutions. The affinity
antibody-antigen is based on the objective function values and
the feasibility of the candidate solutions. The authors also
determine an antibody-antibody affinity using Hamming
distances. It adopts the “immune differential degree”, which is
a value that denotes the relative distribution of nondominated
solutions in the population (similar to fitness sharing).
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Artificial Immune System

• Lu et al. (2005): proposed the Immune Forgetting Multiobjective

Optimization Algorithm (IFMOA), which adopts the fitness

assignment scheme of SPEA, a clonal selection operator, and an

Immune Forgetting Operator. The clonal selection operator

implements clonal proliferation, affinity maturation, and clonal

selection on the antibody population (the antibodies are the possible

solutions to the problem).

• Freschi and Repetto (2005): proposed the Vector Artificial Immune

System (VAIS). which is based on opt-aiNet. VAIS assigns fitness

using the strength value of SPEA. After assigning fitness to an

initially random population, the approach clones each solution and

mutates them. Then, it applies a Pareto-based selection and the

nondominated individuals are stored in an external memory.
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Some Applications of Multiobjective

Artificial Immune Systems

• Structural optimization (Yoo & Hajela, 1999).

• Computer security (Anchor et al., 2002).

• Multidisciplinary design optimization (Kurapati & Azarm, 2000).

• Unsupervised feature selection (Lu et al., 2005).

• Protein structure prediction problem (Cutello et al., 2005).

• Electromagnetic design (Campelo et al., 2004).
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To Know More About Multiobjective

Artificial Immune Systems

Fabio Freschi, Carlos A. Coello Coello and Maurizio Repetto,

Multiobjective Optimization and Artificial Immune Systems: A

Review, in Hongwei Mo (editor), Handbook of Research on Artificial

Immune Systems and Natural Computing: Applying Complex Adaptive

Technologies, pp. 1–21, Medical Information Science Reference, Hershey,

New York, 2009, ISBN 978-1-60566-310-4.

Felipe Campelo, Frederico G. Guimaraes and Hajime Igarashi,

Overview of Artificial Immune Systems for Multi-Objective

Optimization, in Shigeru Obayashi, Kalyanmoy Deb, Carlo Poloni,

Tomoyuki Hiroyasu and Tadahiko Murata (editors), Evolutionary

Multi-Criterion Optimization, 4th International Conference, EMO 2007,

pp. 937–951, Springer. Lecture Notes in Computer Science Vol. 4403,

Matshushima, Japan, March 2007.
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Differential Evolution

Differential Evolution (DE) is a relatively recent heuristic (it was created

in the mid-1990s) proposed by Kenneth Price and Rainer Storn which

was designed to optimize problems over continuous domains. This

approach originated from Kenneth’s Price attempts to solve the

Chebychev Polynomial fitting Problem that had been posed to him by

Rainer Storn. In one of the different attempts to solve this problem,

Price came up with the idea of using vector differences for perturbing the

vector population.
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Differential Evolution

DE is an evolutionary (direct-search) algorithm which has been
mainly used to solve continuous optimization problems. DE shares
similarities with traditional EAs. DE performs mutations based on
the distribution of the solutions in the current population. In this
way, search directions and possible stepsizes depend on the location
of the individuals selected to calculate the mutation values.
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Differential Evolution

There is a nomenclature scheme developed to reference the different
DE variants. The most popular is called “DE/rand/1/bin”, where
“DE” means Differential Evolution, the word “rand” indicates that
individuals selected to compute the mutation values are chosen at
random, “1” is the number of pairs of solutions chosen and finally
“bin” means that a binomial recombination is used. This algorithm
is shown in the following slide.
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Differential Evolution

1 Begin

2 G=0. Create a random initial population ~xi,G ∀i, i = 1, . . . , NP

3 Evaluate f(~xi,G) ∀i, i = 1, . . . , NP

4 For G=1 to MAX GEN Do

5 For i=1 to NP Do

6 ⇒ Select randomly r1 6= r2 6= r3 :

7 ⇒ jrand = randint(1, D)

8 ⇒ For j=1 to D Do

9 ⇒ If (randj [0, 1) < CR or j = jrand) Then

10 ⇒ ui,j,G+1 = xr3,j,G + F (xr1,j,G − xr2,j,G)

11 ⇒ Else ui,j,G+1 = xi,j,G
12 ⇒ End If

13 ⇒ End For

14 If (f(~ui,G+1) ≤ f(~xi,G)) Then

15 ~xi,G+1 = ~ui,G+1

16 Else ~xi,G+1 = ~xi,G End If

17 End For

18 G = G+ 1. End For End
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Differential Evolution

The “CR” parameter controls the influence of the parent in the
generation of the offspring. Higher values mean less influence of the
parent. The “F” parameter scales the influence of the set of pairs
of solutions selected to calculate the mutation value (one pair in
the case of the algorithm shown in the previous slide).
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Differential Evolution

Some multi-objective extensions of differential evolution are the

following:

• Chang et al. (1999): Adopt an external archive to store the

nondominated solutions obtained during the search. It incorporates

fitness sharing to maintain diversity. The selection mechanism is

modified in order to enforce that the members of the new generation

are both nondominated and at a certain minimum distance from the

previously found nondominated solutions.

• Abbass et al. (2001,2002): proposed the Pareto-frontier Differential

Evolution (PDE) approach. It uses Pareto dominance, and enforces

that only the nondominated individuals are retained in the

population and recombined. A form of niching is also adopted. In a

further paper, a self-adaptive version (SPDE) is proposed (crossover

and mutation rates are self-adapted).
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Differential Evolution

• Madavan (2002): proposed the Pareto-Based Differential Evolution

approach which incorporates the nondominated sorting and ranking

selection procedure from the NSGA-II. Once the new candidate is

obtained using DE operators, the new population is combined with

the existing parents population and then the best members of the

combined population (parents plus offspring) are chosen.

• Xue et al. (2003,2004): proposed the Multi-Objective Differential

Evolution (MODE) approach, in which the best individual is

adopted to create the offspring. A Pareto-based approach is

introduced to implement the selection of the best individual. If a

solution is dominated, a set of nondominated individuals can be

identified and the “best” turns out to be any individual (randomly

picked) from this set.
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Differential Evolution

• Iorio and Li (2004): proposed the Nondominated Sorting
Differential Evolution (NSDE), which is a simple modification
of the NSGA-II. In further work, Iorio and Li (2006) proposed
a variation of NSDE that incorporates directional information
regarding both convergence and spread. For convergence, the
authors modify NSDE so that offpsring are generated in the
direction of the previously generated solutions with better
rank. For spread, the authors modify NSDE so that it favors
the selection of individuals from different regions of decision
variable space.
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Differential Evolution

• Kukkonen and Lampinen (2004): proposed a revised version of
Generalized Differential Evolution (GDE). The basic idea in
this selection rule is that the trial vector is required to
dominate the old population member used as a reference either
in constraint violation space or in objective function space. If
both vectors are feasible and nondominated with respect to
each other, the one residing in a less crowded region is chosen
to become part of the population of the next generation.
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Differential Evolution

• Kukkonen and Lampinen (2005) introduced GDE3, which is a
new version of Generalized Differential Evolution that can
handle both single- and multi-objective optimization problems
(either constrained or unconstrained). The selection
mechanism in GDE3 considers Pareto dominance (in objective
function space) when comparing feasible solutions, and weak
dominance (in constraint violation space) when comparing
infeasible solutions. Feasible solutions are always preferred over
infeasible ones, regardless of Pareto dominance.
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Differential Evolution

• Robič and Filipič (2005): proposed an approach called Differential

Evolution for Multi-Objective Optimization (DEMO), which

combines the advantages of DE with the mechanisms of

Pareto-based ranking and crowding distance sorting (from the

NSGA-II). DEMO only maintains one population and it is extended

when newly created candidates take part immediately in the

creation of the subsequent candidates.

• Santana-Quintero and Coello Coello (2005): proposed the ε-MyDE,

which uses Pareto ranking and ε-dominance. In a further paper,

Hernandez et al. (2006), hybridize ε-MyDE with rough sets.
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Differential Evolution

• Landa Becerra and Coello Coello (2006): proposed the use of the

ε-constraint technique hybridized with a single-objective

evolutionary optimizer: the cultured differential evolution.

• Li and Zhang (2006): proposed a multi-objective differential

evolution algorithm based on decomposition (MODE/D) for

continuous multi-objective optimization problems with variable

linkages. The authors use the weighted Tchebycheff approach to

decompose a multi-objective optimization problem into several

scalar optimization subproblems. The differential evolution operator

is used for generating new trail solutions, and a neighborhood

relationship among all the subproblems generated is defined, such

that they all have similar optimal solutions.
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Some Applications of Multiobjective

Differential Evolution

• Concurrent design of pinion–rack continuously variable transmission

(Portilla-Flores, 2006).

• Classification (Abbass, 2001).

• Fine-tuning of the fuzzy automatic train operation (ATO) for a

typical mass transit system (Chang et al., 1999).
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To Know More About Multiobjective

Differential Evolution

Efrén Mezura-Montes, Margarita Reyes-Sierra and Carlos A. Coello
Coello, Multi-Objective Optimization using Differential
Evolution: A Survey of the State-of-the-Art, in Uday K.
Chakraborty (Editor), Advances in Differential Evolution, pp.
173–196, Springer, Berlin, 2008, ISBN 978-3-540-68827-3.

Carlos A. Coello Coello, Gary B. Lamont and David A. Van
Veldhuizen, Evolutionary Algorithms for Solving
Multi-Objective Problems, Second Edition, Springer, New
York, ISBN 978-0-387-33254-3, September 2007.
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Promising areas of future research

• Can we produce MOEAs that perform a very low number of
objective function evaluations and can handle problems of large
dimensionality?

• How to deal with expensive objective functions (e.g.,
surrogates)?

• Can we provide a solid theoretical foundation to this field?

132



Promising areas of future research

There are plenty of fundamental questions that remain unanswered.
For example:

• What are the sources of difficulty of a multi-objective
optimization problem for a MOEA?

• Can we benefit from hybridizing multi-objective metaheuristics
with mathematical programming techniques.

• Can we use alternative mechanisms into an evolutionary
algorithms to generate nondominated solutions without relying
on Pareto ranking?
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Promising areas of future research

• How to deal with uncertainty?

• How to deal with dynamic multi-objective optimization
problems?

• What about incorporating preferences from the user?

• What is the most appropriate type of algorithm for a particular
problem?
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To know more about evolutionary

multiobjective optimization

Please visit our EMOO repository located at:

http://delta.cs.cinvestav.mx/˜ccoello/EMOO

with a mirror at:

http://www.lania.mx/˜ccoello/EMOO
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To know more about evolutionary

multiobjective optimization
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To know more about evolutionary

multiobjective optimization

The EMOO repository currently contains:

• Over 10180 bibliographic references including 291 PhD theses,
over 4685 journal papers and over 3790 conference papers.

• Contact info of 79 EMOO researchers

• Public domain implementations of SPEA, NSGA-II, the
microGA, MOPSO, MISA, AMOSA and PAES, among others.
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