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Introduction

Particle swarm optimization (PSO):
developed by Kennedy & Eberhart,
first published in 1995, and
with an exponential increase in the number of publications since
then.

What is PSO?
a simple, computationally efficient optimization method
population-based, stochastic search
individuals follow very simple behaviors:

emulate the success of neighboring individuals,
but also bias towards own experience of success

emergent behavior: discovery of optimal regions within a high
dimensional search space
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Introduction (cont)

Many variations of PSO have been developed, mainly to improve
accuracy
speed to convergence
balance between exploration and exploitation

Focus of the above mainly on the class of problems for which PSO was
developed, i.e.

continuous-valued,
single-objective,
static, and
boundary constrained

Some theoretical analyses of particle trajectories and convergence
have been done to better understand PSO
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Introduction (cont)

PSO versions were also developed to solve the following types of
optimization problems:

Discrete-valued (binary, integer, sets)
Constrained (inequality and/or equality constraints, static and
dynamic)
Dynamic & noisy
Multi-objective (static and dynamic, and many-objectives)
Finding multiple optima (static and dynamic)
Large-scale optimization problems

Other PSO developments include
Self-adaptive PSO
Heterogeneous PSO
Inclusion in hyper-heuristics
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Objectives of Tutorial

The main objective of this tutorial is to discuss recent advances in
PSO, specifically

recent studies to better understand PSO
with a focus on the PSO control parameters, and
particle search behavior

recent PSO algorithms, with a focus on
Self-adaptive PSO
Heterogeneous PSO
Dynamic multi-objective optimization PSO

recent developments not covered
Many-objective PSO
Set-based PSO
Dynamically changing constraints
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Basic Foundations of Particle Swarm Optimization
Main Components

What are the main components?
a swarm of particles
each particle represents a candidate solution
elements of a particle represent parameters to be optimized

The search process:
Position updates

xi(t + 1) = xi(t) + vi(t + 1), xij(0) ∼ U(xmin,j , xmax ,j)

Velocity (step size)
drives the optimization process
step size
reflects experiential knowledge and socially exchanged information
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Basic Foundations of Particle Swarm Optimization
Social Network Structures

Social network structures are used to determine best
positions/attractors

: Star Topology : Ring Topology

: Von Neumann
Topology
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Basic Foundations of Particle Swarm Optimization
global best (gbest) PSO

uses the star social network
velocity update per dimension:

vij(t + 1) = vij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷj(t)− xij(t)]

vij(0) = 0 (preferred)
c1, c2 are positive acceleration coefficients
r1j(t), r2j(t) ∼ U(0,1)

note that a random number is sampled for each dimension
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Basic Foundations of Particle Swarm Optimization
gbest PSO (cont)

yi(t) is the personal best position calculated as (assuming
minimization)

yi(t + 1) =

{
yi(t) if f (xi(t + 1)) ≥ f (yi(t))
xi(t + 1) if f (xi(t + 1)) < f (yi(t))

ŷ(t) is the global best position calculated as

ŷ(t) ∈ {y0(t), . . . ,yns (t)}|f (ŷ(t)) = min{f (y0(t)), . . . , f (yns (t))}

or (removing memory of best positions)

ŷ(t) = min{f (x0(t)), . . . , f (xns (t))}

where ns is the number of particles in the swarm
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Basic Foundations of Particle Swarm Optimization
local best (lbest) PSO

uses the ring social network

vij(t + 1) = vij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷij(t)− xij(t)]

ŷi is the neighborhood best, defined as

ŷi(t + 1) ∈ {Ni |f (ŷi(t + 1)) = min{f (x)}, ∀x ∈ Ni}

with the neighborhood defined as

Ni = {yi−nNi
(t),yi−nNi +1(t), . . . ,yi−1(t),yi(t),yi+1(t), . . . ,yi+nNi

(t)}

where nNi is the neighborhood size
neighborhoods based on particle indices, not spatial information
neighborhoods overlap to facilitate information exchange
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Basic Foundations of Particle Swarm Optimization
Velocity Components

previous velocity, vi(t)
inertia component
memory of previous flight direction
prevents particle from drastically changing direction

cognitive component, c1r1(yi − xi)

quantifies performance relative to past performances
memory of previous best position
nostalgia

social component, c2r2(ŷi − xi)

quantifies performance relative to neighbors
envy
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Basic Foundations of Particle Swarm Optimization
PSO Iteration Strategies

Synchronous Iteration Strategy
Create and initialize the swarm;
repeat

for each particle do
Evaluate particle’s fitness;
Update particle’s personal
best position;
Update particle’s
neighborhood best position;

end
for each particle do

Update particle’s velocity;
Update particle’s position;

end
until stopping condition is true;

Asynchronous Iteration Strategy
Create and initialize the swarm;
repeat

for each particle do
Update the particle’s velocity;
Update the particle’s position;
Evaluate particle’s fitness;
Update the particle’s personal
best position;
Update the particle’s
neighborhood best position;

end
until stopping condition is true;
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PSO Control Parameters
What is the issue

Performance, specifically convergence behavior, of PSO is highly
dependent on the values of the control parameters:

the inertia weight, w
the acceleration coefficients, c1 + c2

the random values, r1 and r2

Consequences for bad values include:
divergent search trajectories
cyclic trajectories
too fast, premature convergence
too long search, slow convergence
undesirable exploration versus exploitation trade-off
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PSO Control Parameters
r1 and r2

PSO is a stochastic search algorithm, with the stochasticity due to r1
and r2

They should be vectors of random values, i.e.

vij(t + 1) = vij(t) + c1r1ij(t)[yij(t)− xij(t)] + c2r2ij(t)[ŷj(t)− xij(t)]

and not scalars, that is not

vij(t + 1) = vij(t) + c1r1i(t)[yij(t)− xij(t)] + c2r2i(t)[ŷj(t)− xij(t)]
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PSO Control Parameters
r1 and r2 (cont)

Note, the random values should be sampled
per iteration
per individual
per dimension

What is the consequence if r1 and r2 are scalars?

Can only reach points in the search space that are linear combinations
of the original particle positions

Formal proof in U Paquet, AP Engelbrecht, Particle Swarms for
Equality-Constrained Optimization, Fundamenta Informaticae, vol 76,
pp 1–24, 2006
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PSO Control Parameters
Effect of w

Controls the tendency of particles to keep searching in the same
direction

for w ≥ 1
velocities increase over time
swarm diverges
particles fail to change direction towards more promising regions

for 0 < w < 1
particles decelerate, depending on c1 and c2

exploration–exploitation
large values – favor exploration
small values – promote exploitation

very problem-dependent
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PSO Control Parameters
Effect of c1 and c2

Respectively scales the influence of the two attractors, the personal
best and the neighborhood best positions

Consequences of different values:
c1 = c2 = 0?
c1 > 0, c2 = 0:

particles are independent hill-climbers
local search by each particle
cognitive-only PSO

c1 = 0, c2 > 0:
swarm is one stochastic hill-climber
social-only PSO

c1 = c2 > 0:
particles are attracted towards the average of yi and ŷi

c2 > c1:
more beneficial for unimodal problems

c1 > c2:
more beneficial for multimodal problems
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PSO Control Parameters
Example Particle Trajectories

Simplified particle trajectories:
no stochastic component
single, one-dimensional particle
using w
personal best and global best are fixed:
y = 1.0, ŷ = 0.0

Example trajectories:
Convergence to an equilibrium
Cyclic behavior
Divergent behavior
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PSO Control Parameters
Example Particle Trajectories: Convergent Trajectories
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PSO Control Parameters
Example Particle Trajectories: Cyclic Trajectories
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PSO Control Parameters
Example Particle Trajectories: Divergent Trajectories
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PSO Control Parameters
Convergence Conditions

What do we mean by the term convergence?
Convergence map for values of w and φ = φ1 + φ2, where
φ1 = c1r1, φ2 = c2r2

: Convergence Map for Values of w and
φ = φ1 + φ2

Convergence conditions on
values of w , c1 and c2:

1 > w >
1
2

(φ1 + φ2)− 1 ≥ 0
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PSO Control Parameters
Stochastic Trajectories

: w = 1.0 and c1 = c2 = 2.0
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PSO Control Parameters
Stochastic Trajectories (cont)

: w = 0.9 and c1 = c2 = 2.0
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PSO Control Parameters
Stochastic Trajectories (cont)

: w = 0.7 and c1 = c2 = 1.4
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PSO Control Parameters
Alternative Convergence Condition

A more recent and accurate convergence condition:

c1 + c2 <
24(1− w2)

7− 5w
for w ∈ [−1,1]

Empirically shown to be the best matching convergence condition
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PSO Issues: Roaming Particles

Empirical analysis and theoretical proofs showed that particles
leave search boundaries very early during the optimization
process
Potential problems:

Infeasible solutions: Should better positions be found outside of
boundaries, and no boundary constraint method employed,
personal best and neighborhood best positions are pulled outside
of search boundaries
Wasted search effort: Should better positions not exist outside of
boundaries, particles are eventually pulled back into feasible space.
Incorrect swarm diversity calculations: As particles move
outside of search boundaries, diversity increases
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PSO Issues: Roaming Particles
Empirical Analysis

Goal of this experiment: To
illustrate

particle roaming
behavior, and
infeasible solutions
may be found

Experimental setup:
A standard gbest PSO was used
30 particles
w = 0.729844
c1 = c2 = 1.496180
Memory-based global best selection
Synchronous position updates
50 independent runs for each
initialization strategy
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PSO Issues: Roaming Particles
Benchmark Functions

Functions Used for Empirical Analysis to Illustrate Roaming Behavior

Function Definition Domain Dimension
AbsValue f (x) =

∑nx
j=1 |xi | [-100,100] 30

Ackley f (x) = −20e
−0.2

√
1

nx
∑nx

j=1 x2
j − e

1
nx
∑nx

j=1 cos(2πxj ) + 20 + e [-32.768,32.768] 30

Bukin 6 f (x) = 100
√
|x2 − 0.01x2

1 |+ 0.01|x1 + 10| [-15,5],[-3,3] 2

Griewank f (x) = 1 + 1
4000

∑nx
j=1 x2

j −
∏nx

j=1 cos
(

xj√
j

)
[-600,600] 30

Quadric f (x) =
∑nx

l=1

(∑l
j=1 xj

)2
[-100,100] 30

Rastrigin f (x) = 10nx +
∑nx

j=1

(
x2

j − 10 cos(2πxj )
)

[-5.12,5.12] 30

Rosenbrock f (x) =
∑nx−1

j=1

(
100(xj+1 − x2

j )2 + (xj − 1)2
)

[-2.048,2.048] 30
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PSO Issues: Roaming Particles
Percentage Particles that Violate Boundaries
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PSO Issues: Roaming Particles
Percentage Best Position Boundary Violations
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PSO Issues: Roaming Particles
Diversity Profiles
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PSO Issues: Roaming Particles
Finding Infeasible Solutions

Functions Used for Empirical Analysis to Illustrate Finding of Infeasible
Solutions

Function Domain Function Definition

Ackley [10,32.768] f (x) = −20e
−0.2

√
1
n
∑nx

j=1 x2
j − e

1
n
∑nx

j=1 cos(2πxj ) + 20 + e
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−0.2

√
1
n
∑nx

j=1 z2
j − e

1
n
∑nx

j=1 cos(2πzj ) + 20 + e
Eggholder [-512,512] f (x) =

∑nx−1
j=1

(
−(xj+1 + 47) sin(

√
|xj+1 + xj/2 + 47|) + sin(

√
|xj − (xj+1 + 47)|)(−xj )

)
GriewankSR [0,600] f (x) = 1 + 1

4000
∑nx

j=1 z2
j −

∏nx
j=1 cos

(
zj√

j

)
NorwegianS [-1.1,1.1] f (x) =

∏nx
j=1

(
cos(πz3

j )

(
99+zj

100

))
RosenbrockS [-30,30] f (x) =

∑nx−1
j=1

(
100(zj+1 − z2

j )
2 + (zj − 1)2

)
Schwefel1.2S [0,100] f (x) =

∑nx
j=1

(∑j
k=1 zk

)2

Schwefel2.26 [-50,50] f (x) = −
∑nx

j=1

(
xj sin

(√
|xj |
))

SphericalS [0,100] f (x) =
∑nx

j=1 z2
i

Salomon [-100,5] f14(x) = − cos(2π
∑nx

j=1 x2
j ) + 0.1

√∑nx
j=1 x2

j + 1
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PSO Issues: Roaming Particles
Finding Infeasible Solutions: Ackley
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PSO Issues: Roaming Particles
Finding Infeasible Solutions: Eggholder
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PSO Issues: Roaming Particles
Finding Infeasible Solutions: gbest Boundary Violations
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PSO Issues: Roaming Particles
Solving the Problem

The roaming problem can be addressed by
using boundary constraint mechanisms
update personal best positions only when solution quality
improves AND the particle is feasible (within bounds)

However, note that some problems do not have boundary constraints,
such as neural network training...
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Self-Adaptive Particle Swarm Optimization
Introduction

PSO performance is very sensitive to control parameter values
Approaches to find the best values for control parameters:

Just use the values published in literature?
Do you want something that works,
or something that works best?

Fine-tuned static values
Dynamically changing values
Self-adaptive control parameters
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Self-Adaptive Particle Swarm Optimization
Control Parameter Tuning

Factorial design
F-Race
Control parameter dependencies
Problem dependency
Computationally expensive
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Self-Adaptive Particle Swarm Optimization
Dynamic Control Parameters

Time-Varying Inertia Weight (PSO-TVIW)

w(t) = ws + (wf − ws)
t
nt

where ws and wf are the initial and final inertia weight values,
nt is the maximum number of iterations
Time-Varying Acceleration Coefficients (PSO-TVAC)

c1(t) = c1s + (c1f − c1s)
t
nt

c2(t) = c2s + (c2f − c2s)
t
nt
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Self-Adaptive Particle Swarm Optimization
Self-Adaptive Control Parameters

PSO with Simulated Annealing:
Inertia weight is adapted as

wi(t) = waF (ηi(t)) + wb

where wa and wb are user-specified positive constants, and

F (ηi(t)) =


2 if ηi(t) < 0.0001
1 if 0.0001 ≤ ηi(t) < 0.01
0.3 if 0.01 ≤ ηi(t) < 0.1
−0.8 if 0.1 ≤ ηi(t) < 0.9
−5.5 if 0.9 ≤ ηi(t) ≤ 1.0

and the relative particle performance is

ηi(t) =
f (ŷi(t − 1))

f (xi(t − 1))

ηi(t) ≈ 0 denotes that particle is much worse than the nbest
ηi(t) = 1 denotes particle is as good as nbest
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Self-Adaptive Particle Swarm Optimization
Self-Adaptive Control Parameters

Social acceleration adapted as

c2i(t) = c2aG(ηi(t)) + c2b

and

G(ηi(t)) =


2.5 if ηi(t) < 0.0001
1.2 if 0.0001 ≤ ηi(t) < 0.01
0.5 if 0.01 ≤ ηi(t) < 0.1
0.2 if 0.1 ≤ ηi(t) < 0.9
0.1 if 0.9 ≤ ηi(t) ≤ 1.0

For ηi low, c2 increases
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Self-Adaptive Particle Swarm Optimization
Self-Adaptive Control Parameters

Particle swarm optimization with individual coefficients adjustment:
Inertia weight:

wi(t) = waF (ξi(t)) + wb

with

F (ξi(t)) = 2
(

1− cos
(
πξi(t)

2

))
Social acceleration

c2i(t) = c2aG(ξi(t)) + c2b

G(ξi(t)) = 2.5
(

1− cos
(
πξi(t)

2

))
and

ξi(t) =

{
0 if f (xi(t − 1)) = 0
f (xi (t−1))−f (ŷi (t−1)

f (xi (t−1)) otherwise
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Self-Adaptive Particle Swarm Optimization
Self-Adaptive Control Parameters

Improved Particle Swarm Optimization adapts inertia weight as:

w(t) = e−λ(t)

with
λ(t) =

α(t)
α(t − 1)

and

α(t) =
1
ns

ns∑
i=1

|f (xi(t))− f (ŷ∗(t))|

where ŷ∗(t) is the iteration-best
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Self-Adaptive Particle Swarm Optimization
Self-Adaptive Control Parameters (cont)

Adaptive particle swarm optimization based on velocity information:
Inertia weight updated using

w(t + 1) =

{
max{w(t)−∆w ,wmin} if v(t) ≥ videal(t + 1)
min{w(t) + ∆w ,wmax} otherwise

where ∆w is a step size, and the ideal velocity is

videal(t) = vs

(
1 + cos(π t

T0.95
)

2

)

where vs = xmax−xmin
2 is the initial ideal velocity, T0.95 is the point

where 95% of the search is complete, and

v(t) =
1

nxns

ns∑
i=1

nx∑
j=1

|vij(t)|
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Self-Adaptive Particle Swarm Optimization
Self-Adaptive Control Parameters (cont)

Adaptive inertia weight particle swarm optimization:
Inertia weight update:

w(t) = (wmax − wmin)Ps(t) + wmin

with

Ps(t) =

∑ns
i=1 Si(t)

ns

and

Si(t) =

{
1 if f (yi(t)) < f (yi(t − 1))
0 otherwise

Increases w when particle successes are high
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Self-Adaptive Particle Swarm Optimization
Self-Adaptive Control Parameters (cont)

The Self-Adaptive PSO, adapts inertia weight as

wi(t) = 0.15 +
1

1 + ef (y(t))−f (yi (t))

where f (y(t)) is the average pbest fitness values of the swarm
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Self-Adaptive Particle Swarm Optimization
Summary

Issues with current self-adaptive approaches:
Most, at some point in time, violate convergence conditions
Converge prematurely, with little exploration of control parameter
space
Introduce more control parameters
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Heterogeneous Particle Swarm Optimization
Introduction

Particles in standard particle swarm optimization (PSO), and most of
its modifications, follow the same behavior:

particles implement the same velocity and position update rules
particles therefore exhibit the same search behaviours
the same exploration and explotation abilities are achieved

Heterogeneous swarms contain particles that follow different
behaviors:

particles follow different velocity and position update rules
some particles may explore longer than others, while some may
exploit earlier than others
a better balance of exploration and exploitation can be achieved
provided a pool of different behaviors is used

Akin to hyper-heuristics, ensemble methods, multi-methods
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Heterogeneous Particle Swarm Optimization
The Model
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Heterogeneous Particle Swarm Optimization
About Behaviors

A behavior is defined as both
the velocity update, and
the position update

of a particle

Requirements for behaviors in the behavior pool:
must exhibit different search behaviors
different exploration-exploitation phases
that is, different exploration-exploitation finger prints
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Heterogeneous Particle Swarm Optimization
Exploration-Exploitation Finger Prints

Exploration-exploitation finger print determined through diversity profile

Diversity calculated as

D =
1
ns

ns∑
i=1

√√√√ nx∑
j=1

(xij − x j)2

where the swarm center is

xj =

∑ns
i=1 xij

ns

and ns is the number of particles
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Heterogeneous Particle Swarm Optimization
Exploration-Exploitation Finger Prints (cont)
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Heterogeneous Particle Swarm Optimization
Exploration-Exploitation Finger Prints (cont)

(c) Rastrigin (d) Rosenbrock
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Heterogeneous Particle Swarm Optimization
Review

A number of PSO algorithms do already exist which allow particles to
follow different search behaviors:

Division of labor PSO: Particles are allowed to switch to local
search near the end of the search process
Life-cycle PSO: Particles follow a life-cycle, changing from a PSO
particle, to GA individual, to a hill-climber
Predator-prey PSO: Predator particles are attracted to only the
gbest position, prey particles follow the standard velocity update
rule
Guaranteed convergence PSO (GCPSO): Global best particle
follows a different, exploitaitve search around best position, while
other particles follow normal velocity updates
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Heterogeneous Particle Swarm Optimization
Review (cont)

NichePSO: Main swarm of particles folllow cognitive PSO, while
sub-swarms follow GCPSO behavior
Charged PSO: Charged particles adds a repelling force to the
velocity update
Heterogeneous cooperative PSO: Sub-swarms use different
meta-heuristics
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Heterogeneous Particle Swarm Optimization
Two HPSO Models

Two different initial HPSO models:
static HPSO (SHPSO)

behaviors randomly assigned from behavior pool during
initialization
behaviors do not change

dynamic HPSO (DHPSO)
behaviors are randomly assigned
may change during search
when particle stagnates, it randomly selects a new behavior
a particle stagnates if its personal best position does not change
over a number of iterations
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Heterogeneous Particle Swarm Optimization
Self-Adaptive HPSO

What is the problem?
Current HPSO models do not make use of any information about
the search process to guide selection towards the most promising
behaviors

What is the solution?
An approach to self-adapt behaviors, i.e. to select the best
behaviors probabilistically based on information about the search
process
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Heterogeneous Particle Swarm Optimization
Self-Adaptive HPSO: Review

Related self-adaptive approaches to HPSO algorithms:
Difference proportional probability PSO (DPP-PSO)

particle behaviors change to the nbest particle behavior
based on probability proportional to how much better the nbest
particle is
includes static particles for each behavior, i.e. behaviors do not
change
only two behaviors, i.e. FIPS and original PSO

Adaptive learning PSO-II (ALPSO-II)
Behaviors are selected probabilistically based on improvements
that they affect to the quality of the corresponding particles
Overly complex and computationally expensive
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Heterogeneous Particle Swarm Optimization
Self-Adaptive HPSO: General Structure

1: initialize swarm
2: while stopping conditions not met do
3: for each particle do
4: if change schedule is triggered then
5: select new behavior for the particle
6: end if
7: end for
8: for each particle do
9: update particle’s velocity and position based on selected behavior

10: end for
11: for each particle do
12: update pbest and gbest
13: end for
14: for each behavior do
15: update behavior score/desirability
16: end for
17: end while
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Heterogeneous Particle Swarm Optimization
Self-Adaptive HPSO: Pheromone-Based

Expanded behavior pool: That of dHPSO, plus
Quantum PSO (QPSO)
Time-varying inertia weight PSO (TVIW-PSO)
Time-varying acceleration coefficients (TVAC-PSO)
Fully informed particle swarm (FIPS)

Two self-adaptive strategies inspired by foraging behavior of ants
Ants are able to find the shortest path between their nest and a
food source
Paths are followed probabilistically based on pheromone
concentrations on the paths
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Heterogeneous Particle Swarm Optimization
Self-Adaptive HPSO: Pheromone-Based (cont)

Definitions:
B is the total number of behaviors
b is a behavior index
pb is the pheronome concentration for behavior b
probb(t) is the probability of selecting behavior b at time step t

probb(t) =
pb(t)∑B
i=1 pi(t)

Each particle selects a new behavior, using Roulette wheel selection,
when a behavior change is triggered
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Heterogeneous Particle Swarm Optimization
Self-Adaptive HPSO: Pheromone-Based (cont)

Constant strategy (pHPSO-const):
Rewards behaviors if they improve or maintain a particle’s fitness
regardless the magnitude of improvement

pb(t) = pb(t) +

Sb∑
i=1


1.0 if f (xi (t)) < f (xi (t − 1))

0.5 if f (xi (t)) = f (xi (t − 1))

0.0 if f (xi (t)) > f (xi (t − 1))

Sb is the number of particles using behavior b
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Heterogeneous Particle Swarm Optimization
Self-Adaptive HPSO: Pheromone-Based (cont)

Linear strategy (pHPSO-lin):
Behaviors are rewarded proportional to the improvement in particle
fitness

pb(t) = pb(t) +

Sb∑
i=1

(f (xi (t − 1))− f (xi (t)))

A lower bound of 0.01 is set for each pb to prevent zero or negative
pheromone concentrations
Each behavior therefore always has a non-zero probability of being
selected
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Heterogeneous Particle Swarm Optimization
Self-Adaptive HPSO: Pheromone-Based (cont)

To maintain diversity in the behavior pool, pheromone evaporates:

pb(t + 1) =

(∑B
i=1,i 6=b pi

)
∑B

i=1 pi
× pb

Amount of evaporation is proportional to the behavior’s pheromone
concentration as a ratio to the total pheromone concentration

A more desirable behavior has stronger evaporation to prevent
domination
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Heterogeneous Particle Swarm Optimization
Self-Adaptive HPSO: Pheromone-Based (cont)

The pHPSO strategies are
computationally less expensive than others,
behaviors are self-adapted based on success of the
corresponding behaviors, and
better exploration of behavior space is achieved through
pheromone evaporation
introduces no new control parameters
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Heterogeneous Particle Swarm Optimization
Self-Adaptive HPSO: Frequency-Based

Frequency-based HPSO is based on the premise that behaviors are
more desirable if they frequently perform well:

Each behavior has a success counter
Success counter keeps track of the number of times that the
behavior improved the fitness of a particle
Only the successes of the previous k iterations are considered, so
that behaviors that performed well initially, and bad later, do not
continue to dominate in the selection process
Behaviors change when a particle’s pbest position stagnates
Next behavior chosen using tournament selection
Two new control parameters: k and tournament size
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Self-Adaptive Heterogeneous PSO
Empirical Analysis

Functions used in 10, 30,
50 dimensions

CEC 2013 benchmark
functions
5 unimodal
15 basic multimodal
8 composition
domain of [−100,100]

Control Parameters
All parameters optimized using
iterated F-Race
Swarm size of 50
Code implemented in CIlib
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Self-Adaptive Heterogeneous PSO
Critical-Difference Graphs

For all functions using Bonferroni-Dunn post-hoc test
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Self-Adaptive Heterogeneous PSO
Critical-Difference Graphs

For unimodal functions using Bonferroni-Dunn post-hoc test
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Self-Adaptive Heterogeneous PSO
Critical-Difference Graphs

For multimodal functions using Bonferroni-Dunn post-hoc test
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Self-Adaptive Heterogeneous PSO
Critical-Difference Graphs

For composition functions using Bonferroni-Dunn post-hoc test
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Self-Adaptive Heterogeneous PSO
Behavior Profile Plots

(a) f4 (b) f12 (c) f27

: Behavior profile plots for functions f4, f12 and f27 in 30 dimensions
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Self-Adaptive Heterogeneous PSO
Behavior Profile Plots (cont)

(a) 10D (b) 30D (c) 50D

: Behavior profile plots for functions f10 in 10, 30 and 50 dimensions
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Self-Adaptive Heterogeneous PSO
Convergence Plots

(a) f4 - 30D (b) f12 - 30D (c) f27- 30D

(d) f10 - 10D (e) f10 - 30D (f) f10- 50DEngelbrecht (University of Pretoria) Advances in PSO IEEE WCCI, 24-29 July 2016 77 / 145



Self-Adaptive Heterogeneous PSO
Behavior Changing Schedules

What is the issue?
Particles should be allowed to change their behavior during the
search process
Change should occur when the behavior no longer contribute to
improving solution quality

Current approaches:
Select at every iteration
Select when pbest position stagnates over a number of iterations
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Self-Adaptive Heterogeneous PSO
Behavior Changing Schedules (cont)

The following behavior selection schedules are proposed:
Periodic

Behaviors change every m iterations
Small m prevents bad behaviors from being used too long, but may
provide insufficient time to determine the desirability of behaviors
Larger m may waste time on bad behaviors, but sufficient time to
“learn” good behaviors

Random
Select irregular intervals, based on some probability

Fitness stagnation
Select when fitness of the particle’s position does not improve for m
iterations
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Self-Adaptive Heterogeneous PSO
Resetting Strategies

The following particle state resetting strategies are considered:
No resetting of velocity and personal best position
Reset velocity upon behavior change to random value
Personal best reset, which sets particle to its pbest position after
behavior change
Reset both velocity and personal best
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Self-Adaptive Heterogeneous PSO
Resetting Strategies (cont)

For the CEC 2013 function, using the same experimental procedure as
previous, 16 different behavior changing schedules were evaluated for
self-adaptive HPSO algorithms

: Critical difference diagram for dHPSO
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Self-Adaptive Heterogeneous PSO
Resetting Strategies (cont)

: Critical difference diagram for fk -PSO
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Self-Adaptive Heterogeneous PSO
Resetting Strategies (cont)

: Critical difference diagram for pHPSO-const
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Self-Adaptive Heterogeneous PSO
Resetting Strategies (cont)

: Critical difference diagram for pHPSO-lin
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Self-Adaptive Heterogeneous PSO
Resetting Strategies (cont)

: Critical difference diagram for all the algorithms
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Summary

While the original PSO and most of its variants force all particles
to follow the same behavior, different PSO variants show different
search behaviors
Heterogeneous PSO (HPSO) algorithms allow different particles
to follow different search behaviors
Proposed the following HPSO strategies:

Static HPSO: Behaviors randomly assigned upon initialization and
do no change
Dynamic HPSO: Behaviors randomly selected when pbest position
stagnates
Self-Adaptive HPSO:

Pheromone-based strategies, where probability of being selected is
proportional to success
Frequency-based strategy, where behaviors are selected based on
frequency of improving particle fitness
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Summary

sHPSO and dHPSO improve performance significantly in
comparison with the individual behaviors
sHPSO and dHPSO are highly scalable compared to individual
behaviors
pHPSO and fk -HPSO perform better than other HPSO algorithms,
with fk -HPSO performing best
Self-adaptive HPSO strategies show clearly how different
behaviors are preferred at different points during the search
process
Proposed self-adaptive HPSO strategies are computationally less
complex than other HPSO strategies
Behavior changing schedules have been shown to have an effect
on performance
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Dynamic Multi-Objective Optimization
Formal Definition

minimize f(x, t)
subject to gm(x) ≤ 0, m = 1, . . . ,ng

hm(x) = 0, m = ng + 1, . . . ,ng + nh
x ∈ [xmin,xmax ]nx

where
f(x, t) = (f1(x, t), f2(x, t), . . . , fnk (x, t)) ∈ O(t) ⊆ Rnk

O(t) is referred to as the objective space
The search space, S, is also referred to as the decision space
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Dynamic Multi-Objective Optimization
DMOO versus SMOO

Goals when solving a MOOP: finding
the set of optimal trade-off solutions (POF)
a diverse set of solutions

: Example of non-dominated solutions
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Dynamic Multi-Objective Optimization
DMOO versus SMOO (cont)

Goals when solving a DMOOP:
in addition to goals of solving a MOOP⇒ want to track the POF
over time

(a) POF of dMOP2 (b) POF of FDA5

: Example of DMOOPs’ POFs
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Dynamic Multi-Objective Optimization
The Main Gaps

The following gaps are identified in DMOO literature:
Most research in MOO was done on static multi-objective
optimization problems (SMOOPs) and dynamic single-objective
optimization problems (DSOOPs)
Even though PSO successfully solved both SMOOPs and
DSOOPs

Mostly evolutionary algorithms (EAs) were developed to solve
DMOOPs
Less than a handful of PSOs were developed for DMOO

For DMOO, there is a lack of standard
benchmark functions, and
performance measures

⇒ Difficult to evaluate and compare dynamic multi-objective
optimization algorithms (DMOAs)
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Dynamic Multi-Objective Optimization
Benchmark Functions

An ideal MOO (static or dynamic) set of benchmark functions should
Test for difficulties to converge towards the Pareto-optimal front
(POF)

Multimodality
There are many POFs
The algorithm may become stuck on a local POF

Deception (@)
There are at least to POFs
The algorithm is "tricked" into converging on the local POF

Isolated optimum (@)
Fitness landscape have flat regions
In such regions, small perturbations in decisionvariables do not
change objective function values
There is very little useful information to guide the search towards a
POF
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Dynamic Multi-Objective Optimization
Benchmark Functions (cont)

Different shapes of POFs
Convexity or non-convexity in the POF
Discontinuous POF, i.e. disconnected sub-regions that are
continuous (@)
Non-uniform distribution of solutions in the POF

Have various types or shapes of Pareto-optimal set (POS) (@)
Have decision variables with dependencies or linkages
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Dynamic Multi-Objective Optimization
Benchmark Functions (cont)

An ideal DMOOP benchmark function suite should include problems
with the following characteristics:

Solutions in the POF that over time may become dominated
Static POF shape, but its location in decision space changes
Distribution of solutions changes over time
The shape of the POFs should change over time:

from convex to non-convex or vice versa
from continuous to disconnected or vice versa

Have decision variables with different rates of change over time
Include cases where the POF depends on the values of previous
POSs or POFs
Enable changing the number of decision variables over time
Enable changing the number of objective functions over time

Engelbrecht (University of Pretoria) Advances in PSO IEEE WCCI, 24-29 July 2016 94 / 145



Dynamic Multi-Objective Optimization
Benchmark Functions (cont)

Four categories of dynamic environments for DMOOPs:

POS
POF No Change Change
No Change Type IV Type I
Change Type III Type II

Other considerations:
Frequency of change
Severity of change
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Dynamic Multi-Objective Optimization
Benchmark Functions (cont)

Has a convex POF

Engelbrecht (University of Pretoria) Advances in PSO IEEE WCCI, 24-29 July 2016 96 / 145



Dynamic Multi-Objective Optimization
Benchmark Functions (cont)

POF changes from convex to
concave

Non-convex POF
Spread of solutions change over
time

(a) FDA2 (b) FDA5
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Dynamic Multi-Objective Optimization
Benchmark Functions (cont)

Discontinuous POF
POF = 1−

√
f1 − f1 sin(10πtf1)

Discontinuous POF
POF = 1−

√
f1

H(t) − f H(t)
1 sin(10πtf1)

H(t) = 0.75 sin(0.5πt) + 1.25
t = 1

nt
b ττt
c
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Dynamic Multi-Objective Optimization
Benchmark Functions (cont)

M Helbig, AP Engelbrecht, Benchmarks for Dynamic Multi-Objective
Optimisation Algorithms, ACM Computing Surveys, 46(3), Article
number 37, 2014
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Dynamic Multi-Objective Optimization
Performance Measures

Comprehensive reviews and studies of performance measures exist
for SMOO and DSOO

In the field of DMOO:
no comprehensive overview of performance measures existed
no standard set of performance measures existed

⇒ Difficult to compare DMOO algorithms

Therefore:
a comprehensive overview of measures was done
issues with currently used measures were highlighted
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

Accuracy Measures:
Variational Distance (VD)

Distance between solutions in POS∗ and POS
′

POS
′

is a reference set from the true POS
Can be applied to the POF too
calculated just before a change in the environment, as an average
over all environments

Success Ratio (SR)
ratio of found solutions that are in the true POF
averaged over all changes
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

Diversity Measures:
Maximum Spread (MS

′
)

length of the diagonal of the hyperbox that is created by the
extreme function values of the non-dominated set
measures how well the POF∗ covers POF

′

Path length (PL)
consider path lengths (length between two solutions)/path integrals
take the shape of the POF into account
difficult to calculate for many objectives and discontinuous POFs

Set Coverage Metric (η)
a measure of the coverage of the true POF

Coverage Scope (CS)
measures Pareto front extent
average coverage of the non-dominated set
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

Robustness:
Stability

measures difference in accuracy between two time steps
low values indicate more stable algorithm

Reactivity
how long it takes for an algorithm to recover after a change in the
environment
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

Combined Measures:
Hypervolume (HV) or Lebesque integral

reference vector is worst value in each objective
large values indicate better approximated front

Hypervolume difference (HVD)

HVD = HV (POF
′
)− HV (POF ∗)
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

Issues arise with current DMOO performance measures when:
1 Algorithms lose track of the changing POF
2 The found POF contains outlier solutions
3 Boundary constraint violations are not managed
4 Calculated in the decision space
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

DMOA loses track of changing POF, i.e. failed to track the moving
POF
POF changes over time in such a way that the HV decreases
⇒ DMOAs that lose track of POF obtain the highest HV
Issue of losing track of changing POF is unique to DMOO
First observed where five algorithms solved the FDA2 DMOOP:

DVEPSO-A: uses clamping to manage boundary constraints
DVEPSO-B: uses dimension-based reinitialization to manage
boundary constraints
DNSGAII-A: %individuals randomly selected and replaced with new
randomly created individuals
DNSGAII-B: %individuals replaced with mutated individuals,
randomly selected
dCOEA: competitive coevlutionary EA
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

(c) DVEPSO-A (d) DVEPSO-B (e) DNSGA-II-A

(f) DNSGA-II-B (g) dCOEA (h) POF of FDA2

: POF and POF ∗ found by various algorithms for FDA2 with nt = 10, τt = 10
and 1000 iterations
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

Performance measure values for τt = 10 (bold indicates best values)

: Performance Measure Values for FDA2

τt Algorithm NS S HVR Acc Stab VD MS R

10 DVEPSO-A 73.4 0.00118 0.99533 0.97848 0.00049 0.45824 0.90878 4

10 DVEPSO-B 63 0.00391 0.99905 0.98157 0.00029 0.43234 0.88916 3

10 DNSGAII-A 39.4 0.00044 1.0044 0.98681 9.565x10−06 0.71581 0.77096 2

10 DNSGAII-B 39.6 0.00042 1.00441 0.98683 9.206x10−06 0.71681 0.77866 1

10 dCOEA 38.4 0.00051 1.00209 0.98454 0.00122 0.70453 0.61923 5
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

When the environment changes frequently
Algorithm finds non-dominated solutions further away from the
true POF
In time available, algorithm does not find any solutions that
dominate outliers
⇒ POF ∗ for a specific time step may contain outliers
Issue of outliers is applicable to both SMOO and DMOO

(a) With outliers (b) Zoomed into POF
region of (a)

(c) POF of dMOP2

: Example of a POF ∗ that contains outlier solutions.
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

Outliers will skew results obtained using:
distance-based performance measures, such as GD, VD, PL, CS
(large distances)
performance measures that measure the spread of the solutions,
such as MS (large diagonal), and
the HV performance measures, such as HV, HVR (outliers
become reference vector)
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

For FDA1:
GD & VD values much larger with outliers present (smaller values
are better)
Spread is incorrectly inflated
For HV, outliers influence the selection of reference vectors,
resulting in larger HV values
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

Solutions tend to move outside the boundary constraints
Most unconstrained DMOOPs have boundary constraints
An algorithm does not manage boundary constraint violations
⇒ infeasible solutions may be added to POF ∗

Infeasible solutions may dominate feasible solutions in POF ∗

⇒ feasible solutions removed from POF ∗

Infeasible solutions may cause misleading results

: HVR values for dMOP2

Algorithm HVR

DVEPSOu 1.00181

DVEPSOc 0.99978
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

When comparing various algorithms with one another
⇒ important to check that all algorithms manage boundary
contraints
Issue of boundary constraint violations is applicable to both
SMOO and DMOO

(a) Contains Infeasible So-
lutions

(b) No Infeasible Solutions (c) True POF

: Example of a POF ∗ that contains infeasible solutions due to boundary
constraint violations
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

Accuracy measures (VD or GD) can be calculated in decision or
objective space
In objective space, VD = distance between POF ∗ and POF ′

One goal of solving a DMOOP is to track the changing POF
⇒ Accuracy should be measured in objective space
VD in decision space measures the distance between POS∗ and
POS
May be useful to determine how close POS∗ is from POS
It may occur that even though algorithm’s POS∗ is very close to
POS, POF ∗ is quite far from POF
Small change in POS may result in big change in POF, so
calculation wrt decision space will be misleading
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Dynamic Multi-Objective Optimization
Performance Measures (cont)

M Helbig, AP Engelbrecht, Performance Measures for Dynamic
Multi-objective Optimisation Algorithms, Information Sciences,
250:61–81, 2013
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Dynamic Multi-Objective Optimization
Vector-Evaluated Particle Swarm Optimization (VEPSO)

introduced by Parsopoulos and Vrahatis
based on the Vector Evaluated Genetic Algorithm
each swarm solves only one objective
swarms share knowledge with each other
shared knowledge is used to update particles’
velocity

S1.vij(t + 1) = wS1.vij(t) + c1r1j(t)(S1.yij(t)− S1.xij(t))

+ c2r2j(t)(S2.ŷi(t)− S1.xij(t))

S2.vij(t + 1) = wS2.vij(t) + c1r1j(t)(S2.yij(t)− S2.xij(t))

+ c2rij(t)(S1.ŷj(t)− S.x2j(t))
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Dynamic Multi-Objective Optimization
VEPSO (cont)

The VEPSO has been extended to include:
an archive of non-dominated solutions
boundary contraint management
various ways to share knowledge among sub-swarms
updating pbest and gbest using Pareto-dominance
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Dynamic Multi-Objective Optimization
VEPSO (cont)

The archive on non-dominated solutions
has a fixed size
a new solution that is non-dominated wrt all solutions in the
archive is added to the archive if there is space
a new non-dominated solution that is dominated by any solution in
the archive is rejected, and not added to the archive
if a new solution dominates any solution in the archive, the
dominated solution is removed
if the archive is full, a solution from a dense area of the POF∗ is
removed
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Dynamic Multi-Objective Optimization
VEPSO (cont)

If a particle violates a boundary constraint in decision space, one of
the following strategies can be followed:

do nothing.....
clamp violating dimensions at the boundary, or close to the
boundary
deflection (bouncing) – invert the search direction
dimension-based reinitialization to position within boundaries
reinitialize entire particle

keep current velocity, or
reset velocity

Engelbrecht (University of Pretoria) Advances in PSO
IEEE WCCI, 24-29 July 2016 119 /

145



Dynamic Multi-Objective Optimization
VEPSO (cont)

Knowledge transfer strategies (KTS):
ring KTS
random KTS
parent-centric based crossover on non-dominated solutions KTS
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Dynamic Multi-Objective Optimization
Dynamic VEPSO (DVEPSO)

Adapted the extended VEPSO for dynamic environments to include:
change detection using sentry particles
change responses
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Dynamic Multi-Objective Optimization
DVEPSO (cont)
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Dynamic Multi-Objective Optimization
DVEPSO (cont)

The following change detection strategy is used:
Sentry particles are used
Objective function value of sentry particles evaluated at beginning
and end of iteration
If there is a difference, then a change has occured
If any one or more of the sub-swarms detect a change, then a
response is triggered
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Dynamic Multi-Objective Optimization
DVEPSO (cont)

When a change is detected, a response is activated for the affected
sub-swarm

Re-evaluation
all particles and best positions re-evaluated
remove stale information

Re-initialization
percentage of particles in sub-swarm(s) re-initialized
introduces diversity

Reset pbest (local guide) to current particle position
Determine a new gbest (global guide) position
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Dynamic Multi-Objective Optimization
DVEPSO (cont)

Archive update:
remove all solutions, or
remove non-dominated solutions with large changes in objective
function values, or
re-evaluate solutions

remove solutions that have become dominated, or
apply hillclimbing to adapt dominated solution to become
non-dominated
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Dynamic Multi-Objective Optimization
DVEPSO (cont)

Guide updates:
local guides vs global guides
update by not using dominance
use dominance relation
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Dynamic Multi-Objective Optimization
DVEPSO (cont)

Experimental setup:
30 runs of 1000 iterations each
15 benchmark functions:

change frequency, τt : 10 (1000 changes), 25 or 50
change severity, nt : 1, 10, 20

Three performance measures:
#non-dominated solutions
accuracy: |HV (POF ′(t))− HV (POF ∗(t))|
stability: max{acc(t − 1)− acc(t)}
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Dynamic Multi-Objective Optimization
DVEPSO (cont)

Analysis of data:
pairwise Mann-Whitney U tests
statistical difference⇒ winner awarded a win, loser a loss
ranked based on diff = #wins −#losses with regards to:

each performance measure (measured over all DMOOPs and nt -τt )
each environment (nt -τt ) (measured over all DMOOPs) and
performance measures)
each DMOOP type with regards to:

each performance measure
each environment

overall performance (measured over all DMOOPs, nt -τt and
performance measures)

best configuration of DVEPSO selected
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Dynamic Multi-Objective Optimization
Empirical Analysis

DVEPSO compared against four DMOAs:
1 DNSGA-II-A: NSGA-II replaces % of random individuals with new

individuals
2 DNSGA-II-B: NSGA-II replaces % of random individuals with

mutated individuals
3 dCOEA: dynamic competitive-cooperative coevolutionary algorithm
4 DMOPSO: MOPSO adapter for DMOO

Parameters for each algorithm optimised for same set of DMOOPs
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Dynamic Multi-Objective Optimization
Empirical Analysis (cont)

Overall results with regards to performance measures:

PM Results DMOO Algorithm
DNSGA-II-A DNSGA-II-B dCOEA DMOPSO DVEPSO

acc Wins 94 109 129 118 119
acc Losses 120 104 164 86 95
acc Diff -26 5 -35 32 24
acc Rank 4 3 5 1 2
stab Wins 67 94 39 117 96
stab Losses 89 66 200 39 50
stab Diff -22 28 -161 78 46
stab Rank 4 3 5 1 2
NS Wins 185 187 116 53 111
NS Losses 83 78 202 195 129
NS Diff 102 109 -86 -142 -18
NS Rank 2 1 4 5 3
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Dynamic Multi-Objective Optimization
Empirical Analysis (cont)

Overall results with regards to performance measures for Type I
DMOOPs:

acc:
Best:DVEPSO, dCOEA; Second: DNSGA-II-B; Worst: DNSGA-II-A
More wins than losses: DVEPSO and dCOEA

stab:
Best: DNSGA-II-B, DMOPSO; Second: dCOEA; Worst: DVEPSO
More wins than losses: DNSGA-II-B and DMOPSO

NS:
Best: DNSGA-II-B; Second: DNSGA-II-A; Worst: DVEPSO
More wins than losses: DNSGA-II-B
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Dynamic Multi-Objective Optimization
Empirical Analysis (cont)

Overall results for Type I DMOOPs:
Best: DNSGA-II-B; Second: dCOEA; Worst: DNSGA-II-A
More wins than losses: DNSGA-II-A

DVEPSO:
struggled to converge to POF of dMOP3 (density of non-dominated
solutions changes over time)
only algorithm converging to POF of DIMP2 (each decision variable
have a different rate of change)
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Dynamic Multi-Objective Optimization
Empirical Analysis (cont)

Results with regards to performance measures for Type II DMOOPs:

nt τt PM Results DMOO Algorithm
DNSGA-II-A DNSGA-II-B dCOEA DMOPSO DVEPSO

all all acc Wins 55 55 36 56 63
all all acc Losses 43 41 106 41 34
all all acc Diff 12 14 -70 15 29
all all acc Rank 4 3 5 2 1
all all stab Wins 36 45 18 53 59
all all stab Losses 43 30 104 20 14
all all stab Diff -7 15 -86 33 45
all all stab Rank 4 3 5 2 1
all all NS Wins 47 49 118 108 47
all all NS Losses 95 91 62 34 87
all all NS Diff -48 -42 56 74 -40
all all NS Rank 5 4 2 1 3
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Dynamic Multi-Objective Optimization
Empirical Analysis (cont)

Overall results for Type II DMOOPs:

nt τt PM Results DMOO Algorithm
DNSGA-II-A DNSGA-II-B dCOEA DMOPSO DVEPSO

all all all Wins 138 149 172 217 169
all all all Losses 181 162 272 95 135
all all all Diff -43 -13 -100 122 34
all all all Rank 4 3 5 1 2
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Dynamic Multi-Objective Optimization
Empirical Analysis (cont)

Results with regards to performance measures for Type III DMOOPs:

nt τt PM Results DMOO Algorithm
DNSGA-II-A DNSGA-II-B dCOEA DMOPSO DVEPSO

all all acc Wins 32 43 70 53 36
all all acc Losses 60 50 43 32 49
all all acc Diff -28 -7 27 21 -13
all all acc Rank 5 3 1 2 4
all all stab Wins 25 36 15 57 42
all all stab Losses 28 22 82 7 22
all all stab Diff -3 14 -67 50 20
all all stab Rank 4 3 5 1 2
all all NS Wins 17 12 81 72 57
all all NS Losses 73 78 48 17 36
all all NS Diff -56 -66 33 55 21
all all NS Rank 4 5 2 1 3
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Dynamic Multi-Objective Optimization
Empirical Analysis (cont)

Overall results for Type III DMOOPs:
nt τt PM Results DMOO Algorithm

DNSGA-II-A DNSGA-II-B dCOEA DMOPSO DVEPSO
all all all Wins 74 91 166 182 135
all all all Losses 161 150 173 56 107
all all all Diff -87 -59 -7 126 28
all all all Rank 5 4 3 1 2

DVEPSO struggled to converge to discontinuous POFs
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Dynamic Multi-Objective Optimization
Empirical Analysis (cont)

Overall results:

Results DMOO Algorithm
DNSGA-II-A DNSGA-II-B dCOEA DMOPSO DVEPSO

Wins 266 303 435 455 384
Losses 429 386 499 233 290

Diff -163 -83 -64 222 94
Rank 5 4 3 1 2

DVEPSO second best
However, performance is very problem-dependant

Engelbrecht (University of Pretoria) Advances in PSO
IEEE WCCI, 24-29 July 2016 137 /

145



Dynamic Multi-Objective Optimization
Empirical Analysis (cont)

(a) DNSGA-II-A (b) DNSGA-II-B (c) dCOEA

(d) DVEPSO (e) POF
: POF ∗ for DIMP2 for nt = 10 and τt = 10. NS(DMOPSO) = 0.
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Dynamic Multi-Objective Optimization
Empirical Analysis (cont)

(a) DNSGA-II-A (b) DNSGA-II-B (c) dCOEA

(d) DMOPSO (e) DVEPSO (f) POF

: POF ∗ for dMOP2 for nt = 10 and τt = 10. NS(DMOPSO) = 0
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Dynamic Multi-Objective Optimization
Empirical Analysis (cont)

(a) DNSGA-II-A (b) DNSGA-II-B (c) dCOEA

(d) DVEPSO (e) DVEPSO - Zoomed (f) POF

: POF ∗ for dMOP2dec for nt = 10 and τt = 10. NS(DMOPSO) = 0
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Dynamic Multi-Objective Optimization
Empirical Analysis (cont)

(a) DNSGA-II-A (b) DNSGA-II-B (c) dCOEA

(d) DVEPSO (e) POF

: POF ∗ for FDA3 for nt = 10 and τt = 10. NS(DMOPSO) = 0
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Dynamic Multi-Objective Optimization
Empirical Analysis (cont)

(a) DNSGA-II-A (b) DNSGA-II-B (c) dCOEA

(d) DMOPSO (e) DVEPSO (f) POF

: POF ∗ for HE2 for nt = 10 and τt = 50
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Heterogeneous Dynamic Vector-Evaluated Particle
Swarm Optimization
HDEVEPSO

The heterogeneous DVEPSO
Each sub-swarm is an HPSO
Behavior selected when change in sub-swarm detected, or
pbest stagnated for a number of iterations
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Heterogeneous Dynamic Vector-Evaluated Particle
Swarm Optimization
Results
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Summary

Research in PSO has been very active over the past two decades, and
there are still much scope for more research, to focus on:

Further theoretical analyses of PSO
PSO for dynamic multi-objective optimization problems
PSO for static and dynamic many-objective optimization problems
PSO for dynamically changing constraints
Set-based PSO algorithms
Application of PSO to new real-world problems not yet solved
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